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Abstract: In the recent years, multi-constellation and multi-frequency have improved the positioning
precision in GNSS applications and significantly expanded the range of applications to new areas and
services. However, the use of multiple signals presents advantages as well as disadvantages, since
they may contain poor quality signals that negatively impact the position precision. The objective
of this study is to improve the Single Point Positioning (SPP) accuracy using multi-GNSS data
fusion. We propose the use of robust-Extended Kalman Filter (referred to as robust-EKF hereafter)
to eliminate outliers. The robust-EKF used in the present work combines the Extended Kalman
Filter with the Iterative ReWeighted Least Squares (IRWLS) and the Receiver Autonomous Integrity
Monitoring (RAIM). The weight matrix in IRWLS is defined by the MM Estimation method which
is a robust statistics approach for more efficient statistical data analysis with high breaking point.
The RAIM algorithm is used to check the accuracy of the protection zone of the user. We apply the
robust-EKF method along with the robust combination of GPS, Galileo and GLONASS data from
ABMF base station, which significantly improves the position accuracy by about 84% compared to the
non-robust data combination. ABMF station is a GNSS reception station managed by Météo-France
in Guadeloupe . Thereafter, ABMF will refer to the acronym used to designate this station. Although
robust-EKF demonstrates improvement in the position accuracy, its outputs might contain errors
that are difficult to estimate. Therefore, an algorithm that can predetermine the error produced by
robust-EKF is needed. For this purpose, the long short-term memory (LSTM) method is proposed as
an adapted Deep Learning-Based approach. In this paper, LSTM is considered as a de-noising filter
and the new method is proposed as a hybrid combination of robust-EKF and LSTM which is denoted
rEKF-LSTM. The position precision greatly improves by about 95% compared to the non-robust
combination of data from ABMF base station. In order to assess the rEKF-LSTM method, data from
other base stations are tested. The position precision is enhanced by about 87%, 77% and 93% using
the rEKF-LSTM compared to the non-robust combination of data from three other base stations AJAC,
GRAC and LMMF in France, respectively.

Keywords: GNSS; data fusion; MM-Estimation; IRWLS; robust-EKF; LSTM; rEKF-LSTM

1. Introduction

Nowadays, positioning services can greatly improve life quality by covering a wide range of
applications such as automatic driving, intelligent transportation, agriculture and so on. In this
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context, the Global Navigation Satellite System (GNSS) is an optimal infrastructure to perform accurate
positioning. The GNSS-based absolute positioning technologies can be called single point positioning
(SPP) technologies and offer multifold advantages, such as the absence of restriction by the inter-station
distance, low cost and simple data processing.

GNSS brings more signals to enhance the accuracy of user position. However, a main challenge
for multi-constellation GNSS positioning is to determine the reliable satellite measurements from all
visible satellites for inferring true positions. The estimation precision depends on the ability of the
receiver to get the position in the presence of outlying observations that can affect the data. Multipath
and NLoS (Non-Line Of Sight) signals can cause errors in the satellite observations for the receiver
moving in harsh environments such as urban canyons, under crowded trees, or inside tunnels. It is thus
challenging to achieve the positioning accuracy and reliability in such environments and it is required
to adopt robust positioning estimation techniques to prevent the effects of possible wrong or outlier
satellite observations on the user position. For this purpose, several algorithms and methods have
been proposed to improve the GNSS receiver performance in terms of positioning accuracy. Receiver
autonomous integrity monitoring (RAIM) is a commonly used approach to reject outlier observations
using pseudo-range measurement redundancy to maintain the positioning accuracy by isolating the
contaminated measurements from the good ones [1–3]. However, for user position estimation in urban
environments, visible and available satellites are rapidly changing and it is difficult to use the RAIM
for satellite selection. Besides the satellite selection, Weighted Least-Squares Estimation (WLSE) is
often used for calculating and assigning weights to the GNSS observations [4–9]. The weight model is
defined based on the elevation angle and the signal to noise ratio. However, it suffers from the same
shortcomings as RAIM since the satellite elevation angle and the signal to noise ratio can be impacted
by the multipath and radio interferences, especially in urban canyons. This has been highlighted
in previous works [8,9] where we used the WLSE based on the elevation angle and signal to noise
ratio. The positioning accuracy can improve, but the estimations remain unstable. In consequence,
the robust-Extended Kalman Filter (robust-EKF) [10–18] is proposed in this paper to address this issue.
Robust-EKF is the combination of the Extended Kalman Filter with Iterative Reweighted Least Squares
algorithm with a weight matrix defined by MM-Estimation, and using the RAIM algorithm to check
the protection zone of user.

The robust-EKF is based on robust statistical estimation which is employed to reduce the negative
impact of the inaccurate pseudo-range measurements. In the statistical framework, robust estimation
algorithms are assessed based on three factors: efficiency, stability and breakdown point. Efficiency is
a measure of the performance of an estimator; stability is a measure of how small deviations from the
model assumptions affect the performance; whereas the breakdown point is defined as the measure of
the maximal fraction of outlier data that the estimator can handle without resulting in an incorrect final
estimate. The role of a robust algorithm is to harmonize these three factors. Multiple robust statistical
estimation techniques have been discussed including M-Estimation, S-Estimation, MM-Estimation
etc. [19]. In this paper, the MM-Estimation proposed by Yohai [20] is used to define the weight matrix
for its efficient statistical data analysis with a high breakdown point. Iterative Reweighted Least
Squares (IRWLS) [21,22] is used for optimizating results by an iterative method in which each step
involves solving a weighted least squares problem. Even though combining MM-Estimation and
IRWLS algorithm can eliminate the outlier data, a method to check user’s protection zone is necessary.
In this case, the RAIM algorithm [23] is proposed to calculate the Horizontal Protection Level (HPL).

Furthermore, although robust-EKF can significantly improve the position accuracy, if the initial
state estimate is erroneous, or if the process is incorrectly modelled, the final results are negatively
impacted. Therefore, an algorithm which can predetermine the behavior error of the robust-EKF is
needed. Recently, “deep learning” is known as one of the powerful methods to apply in many domains
such as automatic speech recognition, image recognition, medical image analysis, GNSS, etc. Long
Short-Term Memory (LSTM) is an artificial recurrent neural network architecture used in the field of
deep learning and known as an effective method to infer predictions based on time series data [24–28].
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This paper hence proposes to use LSTM as a denoising filter. Figure 1 summarizes the global flowchart
for the position determination using the proposed approach.

Figure 1. Global flowchart for the position estimation.

The remainder of this paper is organized as follows: Section 2 introduces the single point
positioning technology; Section 3 presents the Robust-Extended Kalman Filter; Section 4 shows
the experimental results of applying robust-EKF; Section 5 presents the de-noising filter method and
experimental results; Section 6 presents the conclusions and perspectives.

2. Single Point Positioning Technology

The Single Point Positioning technology can provide meter-level positioning accuracy for
emerging multi-GNSS integration and opens various new prospects. GNSS brings more signals
to improve the user position and velocity accuracy. In this paper, observation models of three
satellite systems (GPS, Galileo and GLONASS) are combined. For combining these satellites data,
two important things are paid attention to: coordinate reference and time reference.

With respect to the coordinate reference, the coordinate systems of GPS, Galileo and GLONASS
satellites adopt the broadcast orbits of WGS-84, GTRF and PZ90.11, respectively. Even though their
coordinates are different, the disparity is around several centimeters as stated in [29]. As a result,
their coordinate systems are considered the same.

As for the time reference, GPS, Galileo and GLONASS systems define their own time scale. These
time systems are presented in the RINEX report version 3.03 [30]. GPS time (GPST) runs parallel to
UTC (Universal Time Coordinated) (1 microsecond difference), but it is a continuous time scale that
does not insert any leap seconds. Galileo runs on Galileo System Time (GST) which is nearly identical
to GPS time (tens of nanoseconds difference). GLONASS is basically running on UTC or, more precisely,
GLONASS time (GLONASST) linked to UTC(SU). It is not a continuous time, i.e., it introduces the
same leap seconds as UTC. The reported GLONASS time has the same hours as UTC and not UTC+3h
as the original GLONASS System Time. Apart from the mild errors in the realization of the different
time systems, the relation between them is given by:

GLONASST = UTC and GPST = GST = UTC + ∆tLS + τGPS (1)

where ∆tLS is the time difference between GPST and UTC due to leap seconds (1 January 2019,
∆tLS = 18), τGPS is the fractional time offset between the two systems (GPS and GLONASS).

After synchronization of the coordinate and time systems, the position and velocity estimation
models are presented in the following.

Pseudo-range measurements are considered as the sum of the distance to the satellite, the receiver
clock error, the ionospheric and tropospheric errors and multi-paths. They are expressed as follows:



Appl. Sci. 2020, 10, 4335 4 of 25

ρG,E,R =
√
(xG,E,R − xu)

2 + (yG,E,R − yu)
2 + (zG,E,R − zu)

2

+ c (δtG,E,R − δTSG,E,R) + IonoG,E,R + TropoG,E,R + MulpaG,E,R + ερ,G,E,R (2)

where the superscripts/subscripts G, E and R refer to GPS, Galileo and GLONASS satellites
respectively; ρ is the measured pseudo-range; c is the speed of light in vacuum; [xu, yu, zu] is the
user position; [xG,E,R, yG,E,R, zG,E,R] are positions of GPS, Galileo and GLONASS satellites respectively;
δt is the user clock offset; δTS is the satellite clock offset; Iono is the ionospheric delay; Tropo is the
tropospheric delay; Mulpa are the multi-paths and ερ is measured noise.

Before the determination of user position and velocity, it is required to correct the GNSS errors
that are the satelllites clocks bias, the ionospheric errors, the tropospheric errors, and the multi-paths.
The corrections of the satellite clock for GPS and GLONASS are presented in [31] (pp. 88–89), whereas
the correction of the satellite clock of GLONASS is discussed in [30] (p. 34). We use the Saastamoinen
model to correct the tropospheric errors as in [32] (pp. 135–137). We correct the ionospheric errors using
the dual-frequency method in [23] (p. 286). While the multi-paths are estimated by the combination
of the code pseudo-ranges and the phase pseudo-ranges in [23] (pp. 290–291). After compensating
for satellite clock bias, ionospheric errors, tropospheric errors, and multi-paths from Equation (2),
the corrected pseudo-ranges can be written as:

ρG,E,R
c = rG,E,R + cδtG,E,R + ερ,G,E,R (3)

where ρc is the corrected pseudo-range; r is the true range from the satellite to the user:

rG,E,R =
√
(xG,E,R − xu)

2 + (yG,E,R − yu)
2 + (zG,E,R − zu)

2 (4)

Given the Doppler effect, the pseudo-range rate ρ̇ can be computed as [31]:

ρ̇ = −Dc
f

(5)

where D is the Doppler effect; c is the speed of light and f is the satellite transmitted frequency.
The velocity can be estimated from the pseudo-range rate, starting by differentiating Equation (3)

to obtain:
ρ̇G,E,R

c = ṙG,E,R + cδṫG,E,R + ε ρ̇,G,E,R (6)

where δṫ is the user’s clock drift (sec/sec); ε ρ̇ is the error in observation (meters/sec); and ṙ is the true
range rate expressed as:

ṙG,E,R = 1x (vx,G,E,R − vx,u) + 1y
(
vy,G,E,R − vy,u

)
+ 1z (vz,G,E,R − vz,u) (7)

where
[
vx,G,E,R, vy,G,E,R, vz,G,E,R

]
is the satellite’s velocity;

[
vx,u, vy,u, vz,u

]
is the true user’s velocity;

and
[
1x, 1y, 1z

]
is the true line of sight unit vector from the satellite to the user:

[
1x, 1y, 1z

]
=

[(xG,E,R − xu) , (yG,E,R − yu) , (zG,E,R − zu)]√
(xG,E,R − xu)

2 + (yG,E,R − yu)
2 + (zG,E,R − zu)

2
(8)

Thus, the combined equations for the corrected pseudo-ranges (Equation (3)) and corrected
pseudo- range rates (Equation (6)) can be as expressed as follows:

ρG,E,R
c = rG,E,R + cδtG,E,R + ερ,G,E,R and ρ̇G,E,R

c = ṙG,E,R + cδṫG,E,R + ε ρ̇,G,E,R (9)
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To simultaneously estimate the user position and velocity, the state vector is defined from
Equations (7)–(9) as follows:

X =
[

xu vx,u yu vy,u zu vz,u cδtG cδṫG cδtE cδṫE cδtR cδṫR

]T
(10)

This vector will be used in robust extended Kalman filter algorithm detailed in Section 3.

3. Robust Extended Kalman Filter

Extended Kalman Filter (EKF) is an extended application of Kalman filter in solving nonlinear
optimal filtering problems. It is used in a wide range of technological fields (radar, electronic
vision, communication). However, in hybrid positioning, the large outliers can negatively impact its
application to position estimation. According to [17,18], the resulting Kalman filter outliers can be
sorted into three types: observation, innovation and structural outliers. In this paper, robust extended
Kalman filter is used to handle observation and innovation outliers. Robust-EKF is presented as the
combination of the Extended Kalman Filter with the Iterative Reweighted Least Squares algorithm
(Section 3.3) with a weight matrix determined by MM-estimation (Section 3.2). Moreover, a combination
of Robust-EKF with the RAIM algorithm (Section 3.4) is used to check the accuracy of user zone.

3.1. Robust Extended Kalman Filter Model

The state space representation for the extended Kalman filter model is defined by two equations
as follows:

State Equation :
Xk = f (Xk−1) + εk (11)

Observation Equation :
Zk = h (Xk) + ek (12)

where Xk is the state vector and Zk is the measurement vector at time tk; εk is the vector that conveys
the system error sources; ek is the vector that represents the measurement error sources; f () is the
function for state transition and h() is the function for the measurement.

IRWLS works on linear regression to handle the problem of outliers in the data. Therefore,
converting a non-linear model into a linear model is necessary to apply the robust-EKF that consists in
three steps: Linearizing equations, reforming filter and updating.

Step 1: Linearizing equations

The linearized state in Equation (11) is described as:

Ak =
∂ f (Xk−1)

∂X
(13)

where Ak is the Jacobian of the process model.
The predicted state is determined by:

X−k = AkXk−1 (14)

The relation between the true state XK and its prediction
(
X−k
)

can be written as:

X−k = Xk − δk (15)

where δk is the error between the true state and its prediction.
Linearizing Equation (12) using the first order Taylor series expansion with the predicted state

vector
(
X−k
)
:
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Zk = h
(
X−k
)
+

∂h
∂X

∣∣∣∣
X=X−k

(
Xk − X−k

)
+ ek (16)

By noting: ∂h
∂X

∣∣∣
X=X−k

= Hk, Equation (16) can be written as:

Zk = h
(
X−k
)
+ Hk

(
Xk − X−k

)
+ ek (17)

Or
Zk − h

(
X−k
)
+ HkX−k = HkXk + ek (18)

Step 2: Reforming the filter

This step will reform the filter to a regression equation. To perform this, combining Equations (15)
and (18) together in a matrix form yields the following:[

X−k
Zk − h

(
X−k
)
+ HkX−k

]
=

[
I

Hk

]
Xk +

[
−δk
ek

]
(19)

where I is the identity matrix.
Equation (19) is expressed in a compact form as:

Z̆k = H̆kXk + ĕk (20)

The covariance matrix of ĕk is given by:

R̆k =

[
P−k 0
0 Rk

]
= LkLT

k (21)

where Rk = E
(
ekeT

k
)

is the measurement covariance matrix and P−k = E
[
δkδT

k
]

is the covariance matrix
of the predicted error. P−k is determined by:

P−k = AkPk−1 AT
k + Qk (22)

where Qk is the covariance matrix of the process.
Lk in Equation (21) is calculated using Cholesky decomposition. To perform pre-whitening,

Equation (20) is multiplyed by L−1
k and by defining: yk = L−1

k Z̆k, Gk = L−1
k H̆k , ζk = L−1

k ĕk.
Equation (20) becomes the regression equation written as:

yk = GkXk + ζk (23)

Step 3: Updating

This step consists in updating the estimated state and checking the position accuracy using
RAIM algorithm presented in section “RAIM algorithm” (Section 3.4). The estimated state X̂k in
Equation (23) is optimized by the IRWLS algorithm presented in section “Iterative Reweighted Least
Squares Algorithm” (Section 3.3). The final state estimate X̂k is given by:

X̂k =
(

GT
k WkGk

)−1
GT

k Wkyk (24)

where Wk is the diagonal weight matrix at time tk. This matrix is defined in section “MM Estimation
theory” (Section 3.2) and is calculated in section “Iterative Reweighted Least Squares Algorithm”
(Section 3.3).
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The error covariance matrix is updated as follows:

Pk = (I − KHk) P−k (25)

where K the gain of the filter given by:

K = P−k HT
k

(
HkP−k HT

k + Rk

)−1
(26)

3.2. MM Estimation Theory

In regression analysis, using the least squares method would not be enough to handle outliers or
extreme observations. We therefore resort to the MM-Estimation which is known as a robust statistics
method providing a more efficient analysis of statistical data with high breaking point as demonstrated
in [20,22].

The linear equation in this paper is written as follows:

y = GX + e (27)

where y is the new observation vector after combining system and observation data; G is the combined
system and observation matrices corresponding to y; X is the unknown state vector and e is the noise
vector corresponding to y.

The robust method is used to bound the influence of outliers on the X state estimates. The goal of
the robust estimator is to seek the best fitting criterion to the real observations in order to reduce the
effect of abnormal data. Generally, a robust estimator minimizes the cost function J(r) given by:

J(r) =
n

∑
i=1

µ (ri) =
n

∑
i=1

µ (yi − GiX) (28)

where yi is the ith observation, Gi is the transformation vector for the ith observation, and yi − GiX is
the residual error for the ith observation. µ(r) is the objective function that gives the contribution of
each residual to the cost function J (r).

The scaled estimation is used to minimize the weights out of the restrained
observations dynamically:

min
n

∑
i=1

µ
( ri

s

)
=

n

∑
i=1

µ

(
yi − GiX

s

)
(29)

where s is the scale factor.
Let ϕ be the derivative of the objective function for the unknown X, ϕ = µ′|X. Differentiating

the objective function in Equation (29) and setting the derivative to zero:

− 1
s

n

∑
i=1

ϕ

(
yi − GiX

s

)
Gi = 0 (30)

Which is equivalent to:
n

∑
i=1

ϕ

(
yi − GiX

s

)
Gi = 0 (31)

By introducing a weight w(r̆s,i) to consider the effects of each scaled residual r̆s,i = yi−GiX
s ,

Equation (31) can be modified as:
n

∑
i=1

w (r̆s,i) ϕ (r̆s,i) Gi = 0 (32)

The solution of Equation (32) is a weighted least squares estimation. Nevertheless, the weights
are determined by the scaled residuals, which rely upon the estimated coefficients, which themselves
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rely upon the weights. For this reason, the Iterative Re-Weighted Least Squares method is used and
presented in section “Iterative Reweighted Least Squares Algorithm” (Section 3.3) to optimize the
solution. The weight function plays an important role and some variants are presented in Table 1.

Table 1. Weighting functions [22].

Name Weight Function

Huber w(ri) =

{
1 |ri| ≤ α

α/|ri| |ri| > α

Bi-Tukey w(ri) =

{
1 |ri| ≤ α
0 |ri| ≥ α

Bi-Square w(ri) =

{
[1− (|ri|/α)]2 |ri| ≤ α
0 |ri| > α

In Table 1, ri is the ith observation residual. α is a tuning constant to optimize the estimation with
a balance between a high breakdown point and efficiency of the estimator [22].

3.3. Iterative Reweighted Least Squares Algorithm

An Iterative Reweighted Least Squares Algorithm (IRWLS) is performed to eliminate the outliers.
The steps for the robust estimation procedure are defined as follow:

1. Find an initial estimate X̂0

X̂0 =
(

GT
0 G0

)−1
GT

0 y (33)

2. Estimate the vector for initial residuals of the observations r0:

r0 = y− G0X̂0 (34)

3. Define the initial scale value s0 [33]

s0 = 1.4826 median (|r0|) (35)

where “median” stands for the median function computed on the residuals vector r0.

4. Estimate the initial diagonal weight matrix by MM-Estimation.

W0(i, i) =

 1
∣∣∣ r0(i)

s0

∣∣∣ ≤ α

0
∣∣∣ r0(i)

s0

∣∣∣ > α
(36)

where i = 1, . . . , n; n being the number of observations.

5. While (j is jth iteration)

(a) Update the value of the matrix Gj at the jth iteration with X̂j−1

(b) Solve the estimated state X̂j using the weighted least-squared method

X̂j =
(

GT
j Wj−1Gj

)−1
GT

j Wj−1y (37)

(c) Calculate the HPL (in Section 3.4)

(d) If
∥∥X̂j − X̂j−1

∥∥ < 0.001; break
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(e) If
∥∥X̂j − X̂j−1

∥∥ > 0.001; continue

(f) Update the estimated residuals
rj = y− GjX̂j (38)

(g) Calculate the scale value
sj = 1.4826 median

(∣∣rj
∣∣) (39)

(h) Recalculate the diagonal weighted matrix using MM-Estimation:

Wj(i, i) =

 1
∣∣∣ rj(i)

sj

∣∣∣ ≤ α

0
∣∣∣ rj(i)

sj

∣∣∣ > α
(40)

(i) Go to step (a)

6. End

7. If HPL ≤ HAL then the estimated positions are accepted, (HAL: Horizontal Alert Limit)
If not, they are rejected.

In this paper, we use the bi-Tukey weight function in Equations (36) and (40). The HPL is
calculated using the RAIM algorithm presented in Section 3.4.

3.4. RAIM Algorithm

In this paper, RAIM algorithm is used to detect positioning errors exceeding the alert limit. One of
RAIM’s outputs is the HPL, that is defined as the radius of a circle in the horizontal plane, centered at
the true position. The Horizontal Alert Limit (HAL) is the maximum allowed HPL, which means that
the estimated positions are accepted when HPL ≤ HAL. Given the linear Equation (27), the estimated
state vector X̂ is determined by IRWLS as explained in Section 3.3:

X̂ =
(

GTWG
)−1

GTWy (41)

where W is the W matrix last obtained matrix in Equation (40).
The state error is calculated as the difference between the estimated state vector X̂ and the true

state vector X :

δX = X̂− X =
(

GTWG
)−1

GTWy− X =
(

GTWG
)−1

GTW(GX + e)− X

=
(

GTWG
)−1

GTWe
(42)

The estimated residual ê is determined by computing the difference between the measured
observation y and the estimated observation (GX̂):

ê = y− GX̂ = y− G
(

GTWG
)−1

GTWy =

(
I − G

(
GTWG

)−1
GTW

)
y = Sy

=

(
I − G

(
GTWG

)−1
GTW

)
(GX + e)

= GX + e− G
(

GTWG
)−1

GTWGX− G
(

GTWG
)−1

GTWe

= GX + e− GX− G
(

GTWG
)−1

GTWe =
(

I − G
(

GTWG
)−1

GTW
)

e = Se

(43)

where:
S = I − G

(
GTWG

)−1
GTW (44)
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Note that S is a projector matrix and thus idempotent: S2 = S. The a priori standard deviation of
the pseudo-range is calculated as follows:

σ0 =
√

êTWê/
√

n− p (45)

where n is the number of observations and p is the number of parameters in the unknown state X.
The position error in the state error (δX) of Equation (42) is defined in the (x, y, z) coordinate

system. In practice, a local (e, n, u: east, north, up) coordinate system is more suitable. To transform
from (x, y, z) coordinates to (e, n, u) coordinates, the FT orthogonal transformation matrix is
required [23]:

FT =

 − sin λ cos λ 0
− sin ϕ cos λ − sin ϕ sin λ cos ϕ

cos ϕ cos λ cos ϕ sin λ sin ϕ

 (46)

where ϕ is the longitude and λ the latitude.
Here, only the parameters of coordinates are considered. For example, the state vector X is

defined following Equation (10) with the first, third and fifth positions in relation to the three (x, y, z)
coordinates. Therefore, the new G̃0 matrix is obtained as G̃0 = G(:, 1 : 2 : 5) and the position errors as
δX̃0 = δX(1 : 2 : 5). The M matrix related to the errors in easting (dE), northing (dN) and upping (dU)
is calculated as follows:

δXENU =

 dE
dN
dU

 = FTδX̃0 = FT
(

G̃T
0 G̃0

)−1
G̃T

0 e = Me (47)

Since the horizontal error related to easting and northing is considered, a matrix M̃0 can be
defined as M̃0 = M(1 : 2, :). In reality, none of the elements in e is equal to zero. However, when
serious observation measure error occurs, some elements in e may be extremely larger than the others.
Therefore, we only consider the ith observation that has a failure of magnitude β, while we suppose
that the other elements are equal to zero. The error vector can thus be re-written as:

e =
[

0 · · · β . . . 0
]T

(48)

The norm squared of δXEN (errors in easting and northing) assuming this specific choice of e is
computed as:

‖δXEN‖2 = eT M̃T
0 M̃0e =

(
m2

1i + m2
2i

)
β2 (49)

From Equation (43), ê = Se is recalled. Then STS = S and the diagonal entry (i, i) of S is denoted
sii and we have:

‖ê‖2 = êT ê = eTSTSe = |sii| β2 (50)

Combining Equations (49) and (50) gives:

‖δXEN‖2 =
m2

1i + m2
2i

|sii|
‖ê‖2 (51)

Or

‖δXEN‖ =

√
m2

1i + m2
2i

|sii|
‖ê‖ = αi‖ê‖ (52)

The obtained equation is a linear function with a straight line through the origin and a slope αi.
The slope αi of the failure mode axis related to observation i is computed for all i = 1, . . . , n as:
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αi =

√
m2

1i + m2
2i

|sii|
(53)

The mode axis with the largest αi is denoted αmax and the HPL is defined as:

HPL = αmaxσ0 (54)

where σ0 is calculated following Equation (45).

4. Experimental Results of Applying Robust-EKF

Numerous investigations on robust-EKF for GNSS data exist in the literature [13–15]. In [13],
robust-EKF is used for GEO/IGSO/GPS Raw-PPP/INS data fusion. In [14], it is applied for
GPS/Galileo/GLONASS data combination. In [15], it is used for GPS/GLONASS data combination.
All these studies assert the significant improvement of the position precision brought by the application
of robust-EKF. In this paper, we combine the robust-EKF with the RAIM algorithm to ensure the
position precision. The details of this robust-EKF and the experimental results for GNSS data are
presented in the sequel in Sections 4.1 and 4.2 respectively.

4.1. Applying Robust-EKF

From Equation (10), we can write the compact user state of the three systems GPS, Galileo and
GLONASS as follows:

X =
[

xu vx yu vy zu vz bG dG bE dE bR dR

]T
(55)

where [xu, yu, zu] is the user position; [vx, vy, vz] is the user velocity; bG, bE and bR are the errors in
range due to the user’s clock bias with GPS, Galileo and GLONASS time, respectively; dG, dE and dR
are the user’s clock drifts with GPS, Galileo and GLONASS time respectively.

We then proceed to the steps of the robust Extended Kalman Filter:

Step 1: Linearizing equations

By linearizing the function f (Xk−1), the state transition matrix Ak is obtained as a 6 × 6 block
diagonal matrix of the form:

Ak =
∂ f
X

∣∣∣∣
X=Xk−1

=



Ax 0 0 0 0 0
0 Ay 0 0 0 0
0 0 Az 0 0 0
0 0 0 Ab,G 0 0
0 0 0 0 Ab,E 0
0 0 0 0 0 Ab,R


(56)

where Ax = Ay = Az = Ab,G = Ab,E = Ab,R =

[
1 ∆ T
0 1

]
, and ∆T is the time interval between

two epochs.
The predicted state is then determined by:

X−k = AkXk−1 (57)

The relation between the true state (Xk) and its prediction (X−k ) can be written as:

X−k = Xk − δk (58)
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The observation equation is defined as: Zk = h (Xk) + ek, where

Zk =



Zρ,G
Zρ̇,G
Zρ,E
Zρ̇,E
Zρ,R
Zρ̇,R


(59)

where Zρ,G and Zρ̇,G are the pseudo range (ρG) and the pseudo range rate (ρ̇G) matrices of Ngps GPS
satellites tracked (dimension (Ngps × 1) ); Zρ,E and Zρ̇,E are the pseudo range (ρE) and the pseudo
range rate ( ρ̇E) matrices of Ngal Galileo satellites tracked (dimension (Ngal × 1)); Zρ,R and Zρ̇,R are
the pseudo range (ρR ) and the pseudo range rate ( ρ̇R) matrices of Nglo GLONASS satellites tracked
(dimension (Nglo × 1) ). The ρG, ρ̇G, ρE, ρ̇E, ρR, and ρ̇R are calculated in Equation (9).

Following step 1 in Section 3.1, the linearized “Observation equation” using the first order Taylor
series expansion with the predicted state vector X−k is written as:

Zk − h
(
X−k
)
+ HkX−k = HkXk + ek (60)

where the matrix Hk is determined as the derivative of the function h(X−k ) : Hk =
∂h
∂X

∣∣∣
X=X−k

Hk =



Hρ,G 1 0 0 0 0 0
Hρ̇,G 0 1 0 0 0 0
Hρ,E 0 0 1 0 0 0
Hρ̇,E 0 0 0 1 0 0
Hρ,R 0 0 0 0 1 0
Hρ̇,R 0 0 0 0 0 1


(61)

Hρ,G, Hρ,E and Hρ,R are the Jacobians of the pseudo-range measurement model for GPS, Galileo and
GLONASS data with the dimensions (Ngps × 6), (Ngal × 6) and (Nglo × 6), respectively; Hρ̇,G, Hρ̇,E and
Hρ̇,R are the Jacobians of the pseudo-range rate measurement model for GPS, Galileo and GLONASS
data with the dimensions (Ngps × 6), (Ngal × 6) and (Nglo × 6), respectively.

Hρ,G is computed as :

Hρ,G =



∂ρ1
c,G

∂x 0
∂ρ1

c,G
∂y 0

∂ρ1
c,G

∂z 0
∂ρ2

c,G
∂x 0

∂ρ2
c,G

∂y 0
∂ρ2

c,G
∂z 0

...
...

...
...

...
...

∂ρ
Ngps
c,G
∂x 0

∂ρ
Ngps
c,G
∂y 0

∂ρ
Ngps
c,G
∂z 0


(62)

And Hρ̇,G is computed as:

Hρ̇,G =



0
∂ρ1

c,G
∂x 0

∂ρ1
c,G

∂y 0
∂ρ1

c,G
∂z

0
∂ρ2

c,G
∂x 0

∂ρ2
c,G

∂y 0
∂ρ2

c,G
∂z

...
...

...
...

...
...

0
∂ρ

Ngps
c,G
∂x 0

∂ρ
Ngps
c,G
∂y 0

∂ρ
Ngps
c,G
∂z


(63)
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where
∂ρi

c,G
∂x =

−(xi
G−xu)√

(xi
G−xu)

2
+(yi

G−yu)
2
+(zi

G−zu)
2 ;

∂ρi
c,G

∂y =
−(yi

G−yu)√
(xi

G−xu)
2
+(yi

G−yu)
2
+(zi

G−zu)
2 ;

∂ρi
c,G

∂z =

−(zi
G−zu)√

(xi
G−xu)

2
+(yi

G−yu)
2
+(zi

G−zu)
2 , with i = 1, . . . , Ngps.

Hρ,E , Hρ,R and Hρ̇,E, Hρ̇,R are computed similarly to Hρ,G, and Hρ̇,G respectively.

Step 2: Reforming filter

Following step 1 and step 2 in Section 3.1, from Equations (58) and (60) we have the equation as
Equation (19). We compact it as Equation (20), the compact regression equation is as follows:

Z̆k = H̆kXk + ĕk (64)

The covariance matrix of ĕk is R̆k =

[
P−k 0
0 Rk

]
= LkLT

k ; where Rk = E(ekeT
k ) is the

measurement covariance matrix and P−k = E
[
δkδk

T
]

is the covariance matrix of the predicted error,
and both matrices are needed to determine Lk.

The determination of Rk is not straightforward and in this work the Exponential model is proposed
to estimate it. The Exponential model formulation [23] depends on the elevation angle and is given by:

Sl = x0 + x1e−
El(l)

x2 (m) (65)

where l refers to the lth satellite; Sl is the elevation uncertainty (m); x0 and x1 are constant; El(l) is the
elevation angle of the lth satellite ( in degrees) and x2 is a scaled value of the elevation error (in degrees).
x0, x1 and x2 must be estimated empirically. After performing many tests, we chose the values x0 = 0.8,
x1 = 0.4 and x2 = 12. The normalization elevation uncertainty σ2

l is given by [7]:

σ2
l = Sl/

(
ns

∏
l=1

Sl

)ns

(66)

ns being the number of the tracked satellites.
The covariance of the measurement noise of GPS satellite is determined as follows:

Rk,G =


σ2

1 0 0

0
. . . 0

0 0 σ2
Ngps

 (67)

where Ngps is the number of the tracked GPS satellites.
The covariance of the measurement noise of Galileo (Rk,E) and GLONASS (Rk,R) satellites are

determined the same way as GPS satellite (Rk,G). Therefore, the covariance of the measurement noise
of GPS, Galileo and GLONASS satellites is written as:

Rk =



Rk,G 0 0 0 0 0
0 γRk,G 0 0 0 0
0 0 Rk,E 0 0 0
0 0 0 γRk,E 0 0
0 0 0 0 Rk,R 0
0 0 0 0 0 γRk,R


(68)

where γRk,G , γRk,E and γRk,R are the covariance matrices of the pseudo-range rates of GPS, Galileo
and GLONASS, respectively. γ is the covariance pseudo-range rate to the covariance pseudo-range
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ratio and is empirically chosen; After performing several tests, the value γ = 0.01 was chosen in
this paper.

The covariance prediction P−k is calculated by:

P−k = AkPk−1 AT
k + Qk (69)

where Qk is the process covariance matrix. It plays an important role in the optimal recursive process
and is written as:

Qk =
∫ tk

tk−1

A(τ)∑ AT(τ)dτ (70)

where A(τ) = diagonal(Ax,τ , Ay,τ , Az,τ , Ab,G,τ , Ab,E,τ , Ab,R,τ), with Ax,τ = Ay,τ = Az,τ =

Ab,G,τ= Ab,E,τ = Ab,R,τ =

[
1 τ

0 1

]
. The matrix ∑ is the spectral density matrix given by:

∑ = diagonal
(
Sx, Svx, Sy, Svy, Sz, Svz, Sb,G, Sd,G, Sb,E, Sd,E, Sb,R, Sd,R

)
(71)

where Sx, Svx; Sy, Svy & Sz, Svz are the power spectral densities of position noise and speed noise in
the x-, y- and z-coordinates, respectively; Sb is the power spectral density of the clock bias noise and
Sd is the power spectral density of the frequency drift noise. To simply, we consider to the ∑ which
is unchangeable.

The covariance matrix Qk in Equation (70) is rewritten as:

Qk = diagonal
(
Qx, Qy, Qz, Qb,G, Qb,E, Qb,R

)
(72)

With

Qx =

[
Sx∆T + Svx(∆T)3/3 Svx(∆T)2/2

Svx(∆T)2/2 Svx∆T

]
(73)

Qy and Qz are determined similarly to Qx; and Qb,G is expressed as:

Qb,G =

[
Sb,G∆T + Sd,G(∆T)3/3 Sd,G(∆T)2/2

Sd,G(∆T)2/2 Sd,G∆T

]
(74)

Qb,E and Qb,R are determined similarly to Qb,G.
After the calculation of the covariance matrix Rk and the covariance prediction P−k , it is easy to

determine the matrix Lk using the Cholesky decomposition. Multiplying Equation (64) by L−1
k and

defining: yk = L−1
k Z̆k, Gk = L−1

k H̆k, ζk = L−1
k ĕk, Equation (64) becomes the regression equation

written as:
yk = GkXk + ζk (75)

Step 3: Updating

The estimated state X̂K in Equation (75) is optimized by the IRWLS algorithm previously detailed
in Section 3.3. After testing all weight functions in Section 3.2, we chose the bi-Tukey weight function
to eliminate the outliers data and α is set to 1.756 (empirically chosen after many tests) for the IRWLS
algorithm. The final estimated state is calculated as Equation (24): X̂k =

(
GT

k WkGk
)−1 GT

k Wkyk.
The error covariance matrix is updated as Equation (25): Pk = (I − KHk) P−k ; where K is the filter

gain determined in Equation (26) : K = P−k HT
k
(

HkP−k HT
k + Rk

)−1.
After the state estimation, RAIM algorithm in Section 3.4 is applied to check the position accuracy.
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4.2. Experimental Results

To demonstrate the above algorithm, this study uses the GPS, Galileo and GLONASS data
from ABMF station (RINEX version 2.11 (GPS and GLONASS) and version 3.02 (Galileo) format).
This reference station is located in Guadeloupe. RINEX data and broadcast ephemeris data used for
calculation were downloaded from RGP network and CDDIS for day of 1 January 2019. In order to
assess the algorithm performance, five scenarios are investigated under MATLAB environment:

• Scenario #1: Navigation solution based on GPS data,
• Scenario #2: Navigation solution based on Galileo data,
• Scenario #3: Navigation solution based on GLONASS data,
• Scenario #4: Navigation solution based on GPS/Galileo/GLONASS data,
• Scenario #5: Navigation solution based on robust-EKF GPS/Galileo/GLONASS data.

Figure 2 illustrates the number visible satellites of GPS (red curve), Galileo (black curve),
GLONASS (cyan curve), and combined GPS/Galileo/GLONASS (blue curve) systems over an
elevation mask of 10◦. It demonstrates that the number Galileo and GLONASS satellites is zero
during some epochs. The average number of visible satellites is about 20 satellites when GPS, Galileo,
and GLONASS are combined for positioning, which presents an advantage since they bring more
signals to the receiver. However, it also presents a disadvantage since they may bring fault signals
which can penalize the position estimation accuracy. The results are given Figure 3 which represents
the position errors of the five scenarios with respect to time. dE, dN, dU are the errors in the East,
North and Vertical components of the user’s position estimates.

In Figure 3, the red curve pertains to scenario #1 with GPS data only. The black curve represents
scenario #2 with Galileo data only. The cyan curve is related to scenario #3 with GLONASS data only.
It can be seen that the position errors of GPS and Galileo data are small and stable whereas those from
GLONASS data are large and unstable. The blue curve represents for scenario #4 with combination of
GPS, Galileo, and GLONASS data. The position accuracy from the combination improves compared to
the use of GLONASS data only. However, the errors still remain unsteady and large in the East axis.
In particular, the positions are not determined around the times 22 h, 23 h, and 24 h, because of the
large HPL (in Figure 4). Consequently, the robust-EKF method is applied to enhance the accuracy of
user position in scenario #5 and the obtained position errors are represented in the green curve. They
are more stable and more accurate than the other scenarios.

Figure 2. Number of visible satellites.
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Figure 3. Position errors of the five scenarios at station ABMF.

Figure 4. HPLs of combined GPS, Galileo and GLONASS data at station ABMF.

Figure 4 represents the HPLs of combined GPS, Galileo and GLONASS data as a function of time.
HPL is represented to check an assured zone of the estimated position. If the HPL is bigger than the
HAL, the failure signals are detected and affect the position accuracy. After applying robust-EKF
method, HPLs of robust GPS, Galileo and GLONASS data are recalculated in Figure 5 and the large
HPLs are reduced.

Figure 5. HPLs of robust GPS/GAL/GLO data at station ABMF.

For more insights about the position accuracy obtained for the five scenarios, Table 2 presents a
comparison of the corresponding position errors.
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Table 2. RMS Errors in Position for the five scenarios at station ABMF in 24 h.

RMS Error (m) GPS GAL GLO GPS/GAL/GLO Robust-EKF GPS/GAL/GLO

RMS-E 1.42 1.34 31.00 8.11 0.74

RMS-N 1.46 1.2 6.65 2.74 0.75

RMS-U 3.94 3.08 25.7 9.50 1.82

3D-RMS 4.43 3.56 40.81 12.73 2.1

According to the RMS (Root Mean Square) error values listed in Table 2, the robust combination
of GPS, Galileo, and GLONASS data improves the position accuracy by about 53 %, 41%, and 95%
compared to the use of GPS data only, Galileo data only, and GLONASS data only, respectively. It is also
improved by about 84% compared to the non-robust combination of GPS, Galileo, and GLONASS data.

In the introduction section, it has been stated that the robust-EKF can be better than the Weighted
Least-Squares Estimation (WLSE) to improve the position accuracy. To give tangible evidence on that,
we compared the two methods and the results are illustrated in Figure 6.

Figure 6. Comparison of position errors between robust-EKF and WLSE.

The Figure 6 presents the position errors obtained from the two methods using the combined
GPS, Galileo and GLONASS data. This WLSE method was developed in our previous work in [8],
where the weight matrix is defined using the "Exponential model". The position errors of WLSE are
wavering; In particular, the positions around 23h-24h are unavailable because of high HPLs. On the
other hand, the position errors of robust-EKF are stable and small.

Although the robust-EKF can greatly improve the position accuracy, its outputs might contain
errors that cannot be estimated. Therefore, an algorithm that can predetermine the errors of robust-EKF
behaviour is needed. For this purpose, a de-noising filter method is presented in Section 5.

5. De-Noising Filter Method and Experimental Results

The recent developments in the “Deep learning” field have allowed the use of its algorithms
for GNSS applications [24,25,27,34]. In [34], an intelligent hybrid scheme consisting of an Artificial
Neural Network (ANN) and Kalman Filter (KF) has been proposed to improve the accuracies of
positional components as well as orientation components in real time. This scheme is able to overcome
the limitations of KF. In [25], a “deep learning” algorithm was proposed to denoise the MEMS IMU
output signals. The used algorithm is a Long Short Term Memory (LSTM) that was employed to
filter the MEMS gyroscope outputs, in which the signals were treated as time series. LSTM is an
artificial recurrent neural network (RNN) architecture that is useful for classifying, processing and
making predictions based on time series data. Therefore, with a combination of the works presented
in [25,34], LSTM is implemented in this paper to learn and compensate for the residual errors of
robust-EKF in order to improve the position accuracy. Hence, the rEKF-LSTM hybrid schemes are
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proposed as a method capable of learning how the state vector behaves based on the dynamic of
the filter. The details of rEKF-LSTM hybrid schemes and the experimental results for GNSS data are
detailed in the upcoming Sections 5.1 and 5.2.

5.1. De-Noising Filter Model

Figure 7 presents the LSTM layered architecture. This design demonstrates the flow of a time
series X (inputs) with N features of length S through an LSTM layer. The outputs are a time series
“h” with H hidden units of length S. In the design, hk and ck denote the output (hidden state) and the
“cell state” at time step tk, respectively. The first LSTM block uses the initial state of the network to
calculate the first output (h1) and the “updated cell state” (c1) at the first time. At the tk, the block uses
the previous state ( hk−1, ck−1) to compute the output (hk) and the “updated cell state” (ck). A LSTM
unit is composed of a cell, an “input gate”, an “output gate” and a “forget gate”. The basic structure of
an LSTM unit is shown in Figure 8 illustrating the flow of data at instant tk. This diagram highlights
the three parts: forget gate, input gate and output gate.

Figure 7. LSTM layered Architecture (source: mathworks/lstm).

Figure 8. Basic structure of an Long Short Term Memory Unit.
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A LSTM layer has the learnable weights and bias: the input weights Wlstm, the recurrent weights
Rlstm and the bias blstm. The matrices Wlstm, Rlstm, and blstm are the union of the input weights,
the recurrent weights, and the bias of each part, respectively. These matrices are grouped as follows:

Wlstm =


Wf
Wi

Wc

Wo

 ; Rlstm =


Rf
Ri

Rc

Ro

 ; blstm =


bf
bi

bc

bo

 (76)

where f , i, c, and o denote the forget gate, input gate, cell state, and output gate, respectively.
In each LSTM block, the objective is the calculation of the output (hidden state) and the cell state

through three parts: forget gate, input gate and output gate. As shown in Figure 8, the “forget gate” is
presented in the first part of the LSTM, which is used to decide what information will be kept in the
cell state. The decision is made by a sigmoid layer called “forget gate layer”. hk−1 and xk are inputs to
the sigmoid function, and the output is a value ranging from 0 to 1 for each number in the cell state
Ck−1. If the output is “1”, the information is “completely kept” in the cell state. When the output is
“0”, the information is “completely cleared”. The forget gate’s activation vector fk is written as:

fk = σ(W f xk + R f hk−1 + b f ) (77)

where σ(.) is the sigmoid function, hk−1 is the hidden state at time tk−1, and xk is the input vector at
time tk.

The second part is the “input gate”, which is employed to decide which new information should
enter the previous cell state. This gate is composed of two parts: (1) a “sigmoid” layer to decide
what values will be updated. The output values ik for this layer ranging from 0 to 1. “0” means “not
important” and “1” represents “important”; (2) another part is “tanh” layer which creates a vector of
new candidate values C̃k between −1 and 1 to help regulate the network. The input gate’s activation
vector ik and the new candidate vector C̃k are calculated as follows:

ik = σ(Wixk + Rihk−1 + bi) (78)

C̃k = tanh (Wcxk + Rchk−1 + bc) (79)

where “tanh” is the hyperbolic tangent function.
The new cell state Ck is updated from the old cell state Ck−1 as follows:

Ck = fk ∗ Ck−1 + ik ∗ C̃k (80)

In the last part, the “output gate” will decide the output. First, a sigmoid layer is used to determine
what parts of the cell state will be output. After that, the cell state is passed through a “tanh” function
and the ranging of the cell state values is from −1 to 1. Finally, the results are multiplied by the output
of the sigmoid gate, and the output parts are decided. The output gate’s activation vector and hidden
state vector are given by:

ok = σ(Woxk + Rohk−1 + bo) (81)

hk = ok ∗ tanh Ck (82)

The above Equations (77)–(82) are the steps to compute the output and the cell state of a LSTM
unit. LSTM network can be applied for classification or regression tasks with sequence and time series
data. In this paper, we make use of it for the regression task. From Figure 7, we obtain outputs “h” with
the dimensions (H × S), while we want have predicted results “Y” with dimesions (M× S); therefore
we need a weight matrix with dimension (M× H) to tranforme “h” to “Y”. As a result, we have the
full architecture of the LSTM network with one LSTM layer for regression as the Figure 9.
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Figure 9. Architecture of LSTM network for regression.

Applying this LSTM network, the inputs data (X) are the positions estimated by robust-EKF in
Section 3, and the outputs data (Y) are the errors on the estimated positions.

For training and testing our model, we should divide our data into three distinct sets: training,
validation and prediction. For the “training part”, Figure 10 presents the rEKF-LSTM training
architecture. We determine the estimated position by robust EKF using the combination of GPS, Galileo
and GLONASS data. The ENUrEKF is the East, north, and up positions by robust EKF. Before the
estimated positions enter the LSTM model, we need to standardize them to have zero mean and unit
variance. As a result, the standardized estimated positions are now the training inputs of the LSTM
model. The target outputs are the errors of the estimated positions by robust-EKF (δENU). The errors in
the estimated positions are the difference between the true and the estimated (robust-EFK) positions.
Similarly, we standardize the target outputs to have zero mean and unit variance and the standardized
target outputs are now the training target outputs of the LSTM model. The model is trained on the
training dataset using supervised learning with optimization methods such as: stochastic gradient
descent, Adam or RMSProp. Each time, the LSTM model is run with the training inputs and returns
the training outputs, which are then compared with the targeted ones. Based on the results of the
comparison, the parameters of the model (weights and biases) are adjusted. The training process
works until the training errors reach the error threshold and the inferred LSTM model is referred to as
the “fitting LSTM model”.

Figure 10. rEKF-LSTM training architecture.

The subsequent part is the “validation part” for which the architecture is illustrated in Figure 11.
Firstly, we standardize the estimated east, north, and up positions. After, we use the “fitting LSTM
model” from the “training part” to predict the standardized ENU errors. Then, we unstandardize
them to obtain the predicted ENU errors. Following that, we compare the predicted ENU errors with
the true ENU errors. Based on the comparison, we can see how well the LSTM model is generalizing
in the training part. If the model is overfitting or underfitting, it is necessary to go back to the training
part to tune the model’s hyperparameters (the number of layers, the number of hidden units in each
layer etc.). We can return to the training part many times until we get the best LSTM model to ensure
confidence on our model performance.
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Figure 11. rEKF-LSTM Validation architecture.

After obtaining the best LSTM model, this model is used in the “prediction part”. Figure 12
presents the prediction architecture of rEKF-LSTM. First, we standardize the estimated east, north,
and up positions similarly to the validation part. After, we use the “best LSTM model” previously
validated in the "validation part", to predict the standardization ENU errors. Then, we unstandardize
them to obtain the predicted ENU errors. Finally, we obtain the estimated positions by rEKF-LSTM,
which are computed as the difference between the estimated positions by robust-EKF and the predicted
errors following Equation (83).

Figure 12. rEKF-LSTM Prediction architecture.

The estimated positions by rEKF-LSTM are written as follows:

ENUrEKF−LSTM = ENUrEKF − δENU (83)

5.2. Experimental Results

In this section we aim at comparing the position estimation performance of the two methods : the
robust-EKF and the rEKF-LSTM.

A total of 20 hidden layers were set up for the LSTM in this paper. The LSTM set up to H = 20
hidden layers, N = 3 inputs features (positions), S = 1440 number of timesteps and M = 3 outputs
features (errors positions). The data used are still from ABMF station recorded on the 1 January 2019
(as in Section 4.2). Figure 13 represents the position errors with respect to time for the two methods:
robust-EKF and rEKF-LSTM. The period of data is from 12 h to 24 h, since data from 0 h to 12 h is used
to train the model.

In Figure 13, the green curve represents the position errors for the robust-EKF method, whereas
the purple curve represents the errors produced by the rEKF-LSTM method. It can be seen that the
position accuracy of rEKF-LSTM method largely improves and remains stable. To have more insights,
Table 3 summarizes the RMS position errors of the two methods.

As shown in Table 3, the position accuracy improves by about 74.0 % using rEKF-LSTM compared
to the robust EKF. To have a more general view, the five scenarios in Section 4.2 and two scenarios in
this section are combined. As a result, six scenarios are considered since the scenario pertaining to
robust-EKF is in common. The underlying results are summarized in Table 4.
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Figure 13. Comparison of position errors between robust-EKF and rEKF-LSTM.

Table 3. RMS Errors in position for the two methods using data from ABMF station in late 12h.

RMS Error (m) Robust-EKF rEKF-LSTM

RMS-E 0.82 0.39

RMS-N 0.83 0.32

RMS-U 2.04 0.36

3D-RMS 2.35 0.62

Table 4. RMS Errors in Position for the six scenarios at station ABMF in late 12 h.

RMS Error (m) GPS GAL GLO GPS/GAL/GLO Robust-EKF GPS/GAL/GLO rEKF-LSTM

RMS-E 1.43 1.21 30.71 7.08 0.82 0.39
RMS-N 1.58 1.19 6.18 2.27 0.83 0.32
RMS-U 3.32 3.07 21.10 8.18 2.04 0.36
3D-RMS 3.95 3.50 37.76 11.05 2.35 0.62

As shown in Table 4, the position precision is improved by about 95% using the rEKF-LSTM
compared to the non-robust data combination. This result proves that applying LSTM method can
greatly improve the position accuracy. In order to assess more thoroughly the rEKF-LSTM method,
other base station data are tested and the results are summarized in Table 5.

Table 5. RMS Errors in Position at the three AJAC, GRAC LMMF stations in late 12 h.

Base Station
RMS Error

(m) GPS GAL GLO GPS/GAL/GLO
Robust-EKF

GPS/GAL/GLO rEKF-LSTM

RMS-E 1.12 1.36 17.76 3.40 0.72 0.73
AJAC RMS-N 1.65 1.25 9.30 4.57 0.88 0.46

RMS-U 2.52 2.42 3.40 4.75 1.33 0.45
3D-RMS 3.21 3.04 20.33 7.42 1.75 0.97

RMS-E 1.14 1.38 17.39 3.42 0.67 0.75
GRAC RMS-N 1.58 1.28 11.87 5.85 0.91 0.54

RMS-U 2.89 3.02 12.74 4.76 2.29 1.66
3D-RMS 3.49 3.56 24.6 8.28 2.55 1.89

RMS-E 1.59 1.07 33.12 6.62 0.68 0.51
LMMF RMS-N 1.36 0.96 11.81 1.82 0.63 0.30

RMS-U 3.38 2.20 4.32 8.17 1.80 0.47
3D-RMS 3.96 2.63 35.43 10.67 2.02 0.76

Table 5 gives the RMS errors in position for three other base stations: AJAC, GRAC and LMMF.
The position precision is enhanced by about 87%, 77% and 93% using the rEKF-LSTM compared
to non-robust data combination from the three base stations AJAC, GRAC and LMMF in France
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on 1 January 2019, respectively. This corroborates the conclusion that the rEKF-LSTM method can
significantly improve the position precision.

6. Conclusions and Perspectives

In this paper, the SPP technology is applied to determine the user position calculated by GPS,
Galileo and GLONASS data fusion. Data fusion may be containing outliers which negatively impact
the final results. To address this issue, the MM-Estimation method is used to eliminate the outliers and
IRWLS method is used to optimize the estimated results. Although the MM-Estimation and the IRWLS
are effective, a method to detect the positioning errors is needed. The RAIM algorithm was used for this
purpose to detect positioning errors exceeding the alert limit. As a result, the proposed robust Extended
Kalman Filter is built by combining the Extended Kalman Filter, the MM-Estimation, the IRWLS and the
RAIM method to improve the position accuracy. Robust GPS, Galileo and GLONASS data fusion using
the robust-EKF increases the position precision by about 84.0% compared to non-robust estimation
using data of ABMF base station. Furthermore, the position precision is significantly enhanced using
the rEKF-LSTM method by about 95% compared to non-robust data combination. To prove the
power of rEKF-LSTM, the approach is used for data from three other base stations: AJAC, GRAC and
LMMF. The position accuracy is significantly improved by about 87%, 77% and 93% compared to the
non-robust data combination, respectively.

In this work, the emphasis is laid on the improvement of the positioning accuracy for a slowly
moving receiver. Only data from base stations are used, for which velocities are almost equal to
zero and helps enhancing the performance of the LSTM model. A perspective of our work could be
assessing the performance and limitations of the method on data from a user in motion and adapting
or potentially developing a new method taking into account additional velocity information. While
considering data from moving users, sensor noise levels are not constant and the challenge is to
estimate an adapted LSTM modeling. Moreover, an additional challenge concerns the GNSS signal
blockages. A suggested solution is to combine GNSS and INS (Inertial Navigation System) data. Along
these lines, the perspective for this work is to use an adapted rEKF-LSTM model for combining GNSS
and INS data from users in motion.
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