
applied
sciences

Article

SoftRec: Multi-Relationship Fused Software
Developer Recommendation

Xinqiang Xie , Bin Wang * and Xiaochun Yang *

School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China;
1610560@stu.neu.edu.cn
* Correspondence: binwang@mail.neu.edu.cn (B.W.); yangxc@mail.neu.edu.cn (X.Y.)

Received: 26 May 2020; Accepted: 18 June 2020; Published: 24 June 2020
����������
�������

Abstract: Collaboration efficiency is of primary importance in software development. It is widely
recognized that choosing suitable developers is an efficient and effective practice for improving
the efficiency of software development and collaboration. Recommending suitable developers is
complex and time-consuming due to the difficulty of learning developers’ expertise and willingness.
Existing works focus on learning developers’ expertise and interactions from their explicit historical
information and matching them to specific task. However, such procedures may suffer low
accuracy because they ignore implicit information, such as (1) developer–developer collaboration
relationships, (2) developer–task implicit interaction relationships, and (3) task–task association
relationships, etc. To that end, this paper proposes a multi-relationship fused approach for software
developer recommendation (termed SoftRec). First, in addition to explicit developer–task interactions,
it considers multivariate implicit relationships, including the three types mentioned above. Second,
it integrates these relationships based on joint matrix factorization and generates forecast results upon
the architecture of deep neural network. Furthermore, we propose a fast update method to address
the cold start issue by making online recommendations for new developers and new tasks. Extensive
experiments are conducted on two real-world datasets, and a user study is conducted in a well-known
software company. The results demonstrate that SoftRec outperforms four state-of-the-art works.

Keywords: developer recommendation; collaboration relationship; joint matrix factorization; deep
neural network; fast model update

1. Introduction

Internet-based software development model has greatly promoted the efficiency of software
development. Such as online developer collaboration platforms (e.g., GitHub (https://github.com/),
StackOverflow (https://stackoverflow.com/), SourceForge (https://sourceforge.net/) and TopCoder
(https://www.topcoder.com/)) have become a prevalent paradigm for software development.
They usually adopt open-collaboration mode [1,2] with a voluntary or competitive mechanism to
facilitate self-organizing collaborative software development, in which the productivity and quality
greatly depends on the efficiency of developers’ collaboration.

For example, in the process of modern code review (MCR) [3], a developer usually submits a code
change to a code review system (e.g., Gerrit (https://www.gerritcodereview.com/), Rietveld (https:
//en.wikipedia.org/wiki/Rietveld_(software)), Crucible (https://www.atlassian.com/software/
crucible)) and recommends a set of suitable developers to review the change. Then, the reviewers
would check the change and give some useful suggestions. Next, the developer will refine the change
according to these suggestions and commit the change to the main branch of the version control system
when the reviewers approve it. For some large open source projects, hundreds of contributors may
attempt to change the code, adding new features or fixing bugs every day. These changes are submitted

Appl. Sci. 2020, 10, 4333; doi:10.3390/app10124333 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/000-0001-6733-4548
https://orcid.org/0000-0002-6184-4771
https://github.com/
https://stackoverflow.com/
https://sourceforge.net/
https://www.topcoder.com/
https://www.gerritcodereview.com/
https://en.wikipedia.org/wiki/Rietveld_(software)
https://en.wikipedia.org/wiki/Rietveld_(software)
https://www.atlassian.com/software/crucible
https://www.atlassian.com/software/crucible
http://dx.doi.org/10.3390/app10124333
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/12/4333?type=check_update&version=2

Appl. Sci. 2020, 10, 4333 2 of 20

as pull-requests [4,5] subject to review by the whole community. However, such a mechanism makes it
very difficult to find suitable developers as reviewers. For example, Thongtanunam et al. found that
4%-30% of the reviews suffer from a code-reviewer assignment problem, and these reviews require an
average of 12 extra days to complete [6], and more than 15% of the complaints were filed the delays
in completing pull requests [7]. Similar problems are encountered in StackOverflow, one of the most
successful question and answering (Q&A) open-collaboration platforms. It has over 9 million users
who has posted more than 16 million questions and answers on programming. However, among those
questions, only about 70% of them can be answered and closed in time and millions of questions have
yet to be answered properly [1]. As a result, an automatic developer recommendation approach is
urgently needed for identifying suitable developers to improve developers’ collaboration efficiency.

In recent years, many efforts have been made for developer recommendation. Typical approaches
such as the expertise-based developer recommendation and the collaborative filtering (CF)-based
developer recommendation. Usually, the expertise-based approaches [2,8] recommend developers
based on the ratings of their explicit expertise (e.g., skills, contributions, activeness, workload).
The CF-based approaches [4,9,10] which make recommendations based on the assumption that
developers with similar historic behaviors or social relationship would behave similarly on future tasks.
For example, some research [11,12] integrate the explicit social information into the recommender
system and recommend developers based on their friendships.

However, due to the difficulty of matching developers’ expertise and willingness, together with
the sparsity of developer–task explicit interactions, previous approaches have not achieved ideal
results. In practice, there are a lot of implicit relationships between developers and tasks that can be
leveraged to help find suitable developers. Take GitHub’s code review as an example, as shown in
Figure 1a–c, where ui denotes the developer, pi denotes the pull-request, dots with blank cells denotes
the developers’ explicit review (or comment) on pull-request, and dots with grey cells denotes the
developers’ implicit interaction (e.g., star, browse). Since u2 has implicit interaction on p6, we can
infer that u2 has potential preferences for p6 (denoted as u2 → p6). Since u1 has a close collaboration
relationship with u2 (u1 ↔ u2), we can infer the potential relationship u1 → p6 (red circles in Figure 1a).
Similarly, since u1 has preferences for p1 (u1 → p1), and p1 has an association relationship with p4

(p1 → p4), we can infer the potential relationship (u1 → p4).

u1
u4

u5
u3

u2

(b) The collaboration relationships

between developers

(a) The interaction relationships

between developers and tasks

u1

u2

u3

u4

u5

p1 p2 p3 p4 p5 p6

(c) The association relationships

between tasks

p2

p3
p4

p5

p6

p1

Figure 1. Illustration of the implicit relationships between developers and tasks based on GitHub’s
code review.

By analyzing GitHub’s code review recommendation, we find that developers are more likely
to accept a recommended pull-request if (1) they have reviewed code or solved issues of the
contributors of the same pull-request (i.e., the collaboration relationships between developers can keep
continuity); (2) they have browsed or stared (besides explicitly reviewed) the pull-request (i.e., implicit
interaction relationships help improve recommendation accuracy); or (3) they have reviewed a similar
pull-request of the recommended one. Such information can be exploited to improve the accuracy of
developer recommendation.

To leverage the above mentioned relationships between developers and tasks, we develop a
novel multi-relationship fused approach for software developer recommendation (SoftRec). The major
contributions of SoftRec are:

Appl. Sci. 2020, 10, 4333 3 of 20

• We formally define the multivariate relationships between developers and tasks, including
three types: (1) developer–developer collaboration relationships, (2) developer–task interaction
relationships, and (3) task–task association relationships.

• We propose a multi-relationship fused approach to recommend developers based on joint matrix
factorization and generate forecast results upon the architecture of deep neural network. To our
best knowledge, this is the first attempt to integrate these three implicit relationships into
developer recommendation.

• We propose a fast approach to update the changes of the model efficiently and improve the
recommendation efficiency, which can address the cold start issue.

• To evaluate the effectiveness of SoftRec, we conduct experiments on two real-world datasets:
One from GitHub with 2517 developers and 9329 tasks, while the other from a well-known
company’s GitLab with 590 developers and 15,632 tasks, and we also conduct a user study in this
company. By comparisons of four state-of-the-art works, the results demonstrate the advantages
of the SoftRec.

The remainder of this paper is organized as follows. We review the related work in Section 2.
In Section 3, we present the proposed multi-relationship fused software developer recommendation
framework. In Section 4, we present and discuss the result of experiments on real-world datasets and
conduct a user study. In Section 5, we discuss the threats to validity of our approach. Concluding
remarks with a discussion of some future work are given in Section 6.

2. Related Work

Among previous approaches, collaborative filtering (CF) [13–17] is the most typical approach
that achieves great success. CF-based developer recommendations share a similar process, that is,
they first calculate the similarity between the given task and other resolved task based on the explicit
interaction relationships. Then, the similarity ratings between the given task and each resolved task are
assigned to the developers of the corresponding resolved tasks. This way, each developer has a rating
to indicate their expertise with respect to the given task. However, CF-based approaches usually suffer
from serious sparsity of the developer–task explicit interactions and the cold start issues. For example,
by analyzing GitHub datasets, the data sparsity of the developer–task explicit interaction matrix is as
low as 0.1351%, which greatly limits the effectiveness of the recommendations.

To address these limitations, previous work incorporated various side information into
CF [3,4,18–28]. For example, Zheng et al. [4] proposed a CF-based approach (PR-CF) that generates
the latent factor models based on the explicit interaction matrix, and then combines the latent factor
models with the tasks’ neighborhoods. Jiang et al. [19] constructed an explicit social relationship
network on GitHub, and then propose a CF-based recommendation approach based on Co-cluster
for developers and tasks. Ma et al. [18] proposed a factor analysis approach called SoRec which was
based on joint matrix factorization. It integrates the social information into the rating matrix and
shares the users’ latent vectors in both the recommender system and the social network. Yu et al. [20]
proposed an approach named IR+CN that mines social relationship from historical comments for
recommend reviewers. Xia et al. [3] proposed a hybrid approach (TIE) which utilizes text mining
and file location to find similar tasks and recommends developers based on conditional probabilities.
Bosu et al. [22,23] analyze the characteristics of different kinds of social interaction networks between
developers and their influence on the impression of developers. They found that the interactions
between developers and tasks can help form an accurate perception of expertise. Its log-joint posterior
probability distribution is given as follows:

ln p(·) = −1
2σ2

R
‖IR � (R− g(UTV))‖2

F −
1

2σ2
C
‖IC � (C− g(QTU))‖2

F + Reg, (1)

where C and R denote the social relationship and rating matrices, Q, U, and V denote the latent
social, users, and item feature matrices, respectively. C, R, U, V, and Q follow Gaussian distributions

Appl. Sci. 2020, 10, 4333 4 of 20

with the means of 0 and variances of σ2
C, σ2

R, σ2
U , σ2

V , σ2
Q, respectively. IR and IC denote the indicator

matrices, � denotes the Hadamard product, g(x) is the logistic function, and Reg is the regularization
term. Parameters U, V, and Q can be learned by maximizing Equation (1). The common limitation of
CF-based developer recommendation approaches is that they usually suffer from low accuracy caused
by the sparsity of explicit developer–task interactions.

In recent years, deep learning approaches have been widely used to build recommender systems
in many fields [13,17,29–32]. For example, He et al. [13] proposed a neural network architecture to
model the latent features of users and items and devise a general framework (NeuCF) for collaborative
filtering. Wang et al. [17] proposed a graph collaborative filtering approach based on graph neural
networks, which explicitly encodes the user–item interaction relationships in the form of high-order
connectivities with embedding propagation. Xue et al. [29] proposed a deep matrix factorization
models (DMF) with a neural network that map the users and items into a common low-dimensional
space with non-linear projections. He et al. [31] proposed a deep learning model (NFM) that unifies
the strengths of factorization machines and deep neural networks for sparse rating modelling.

Despite prevalence and effectiveness, we argue that previous approaches with side information
are insufficient, since they only consider the explicit collaborative similarity (e.g., explicit interactions),
which lacks of rich semantics (e.g., various implicit relationships). In real-world applications,
there are more implicit relationships between developers and tasks (e.g., mentioned in Figure 1),
which particularly help understand developer’s behaviors and preferences. In this paper, we try
to integrate both explicit and implicit relationships among developers and tasks to make accurate
developer recommendations.

3. The Multi-Relationship Fused Software Developer Recommendation

In this section, we propose SoftRec, a novel multi-relationship fused approach for developer
recommendation. Its overall recommendation process is shown in Figure 2, there are three parts:
(1) the input is multi-relationships, in which we define the collaboration relationship matrix C,
the interaction relationship matrix R and the association relationship matrix S in steps 1©, 2© and
3© respectively; (2) the fusion of multi-relationships as shown in step 4©, in which we share the common
developer latent vector Ui in both C and R as well as the common task latent vector Vj in both R and S
based on joint matrix factorization; and (3) the output is the developer prediction in step 5©, in which
we propose to project the vectors Ui and Vj into a latent structured space based on the architecture of
deep neural network. Furthermore, we propose a fast model update approach for SoftRec.

③

④

②

Explicit Collaboration

Matrix (Cexp) Eq.(1)

 sQ

 sU

 sV

t=1,…,n

i=1,…,n

j=1,…,m

l=1,…,m

Cti

Rij

Sjl

Vj

Vl

Qt

 sC

 sR

 sS

Developer-Developer

Collaboration Matrix

Eq.(3)

Task-Task

Association Matrix

Eq.(5)

Implicit Collaboration

Matrix (Cimp) Eq.(2)

· ·

Co-occurrence

Developer Matrix (Scoo)

Similar Matrix (Ssim)

Developer-Task

Interaction Matrix Eq.(4)

C

S

R

·

·

·

·

·
·

·

·

①

Definition of Multi-Relationships Fusion of Multi-Relationships

·
·

·

·
·

·
·

·

·

·
·

· ·

·

·

Developer Prediction

ijŷ
 Inner

product

Ui

…

lay
er 1

V
'
j

…

lay
er 1

U
'
i

Multi-layer non-linear projection

based on deep neural network

⑤

lay
er 2

lay
er 2

lay
er N

lay
er N

ReLU ReLU

Wv1 Wv2 WvN…

Wu1 Wu2 WuN…

…

Joint matrix factorization based on

probability graph model

·

·

Figure 2. Recommendation process of SoftRec.

Appl. Sci. 2020, 10, 4333 5 of 20

3.1. Definition of Multi-Relationships

In this section, we first formally define the developer–developer collaboration relationship,
developer–task interaction relationship and task–task association relationship illustrated in Figure 1.

3.1.1. Developer–Developer Collaboration Relationship

Recent research [33] at Google shows that code review usually depends on close working
relationships between authors and reviewers. Through a study of Neusoft Corporation ’s R&D
teams (Neusoft Corporation (https://www.neusoft.com/) is the largest software service provider in
China, with more than 18,000 developers and tens of thousands of commercial customers all over
the world), we also found that developers usually prefer reviewers that have close collaboration
relationships with them. Therefore, collaboration relationships can be leveraged to improve developer
recommendation accuracy. In this paper, we categorize the collaboration relationship into explicit
collaboration and implicit collaboration. The former refers to direct interaction between developers
and the latter refers to indirect collaboration between developers.

Explicit Collaboration. Suppose O denotes a set of interaction objects between u and u′,
Ao denotes a set of actions which performed on object o ∈ O, the explicit collaboration relationship is
formalized as:

cexp(u, u′) =

 1
|O| ∑

o∈O
∑

a∈Ao

1
|Ao |

s
∑

i=1
ωs−iπ1(u, u′, o, a, i), if exists;

0, otherwise.
(2)

where s denotes the number of interactions while interactive object is o and action is a. ω ∈ [0, 1] is
the decay factor used to weaken the influence of multiple interactions between the same developers.
Here, let π1(·) = interactTime(u,u′ ,o,a,i)−beginTime

endTime−beginTime , which is used to reflect the influence of time locality.
It supposes that the most recent interaction is more important than it was a long time ago.
interactTime(u, u′, o, a, i) denotes the i th occurrence time of the action a which occurred between
u and u′ on object o, i = 1 denotes the first interaction, beginTime and endTime denote the earliest and
latest occurrence time of all interactions in the datasets.

Example 1. Suppose u and u′ have the interactive object O = {o1, o2}, where O may include
many elements (e.g., pull_requests, issue_comments and commit_comments in GitHub dataset).
Suppose o1 = issue_comments, o2 = commit_comments and the performed actions Ao1={a1}, Ao2={a2}.
Suppose a1 = a2 = comment, and the performed number of a1 and a2 are sa1 = 1 and sa2 = 2. Suppose
the occurrence time of a1 and a2 are ta11 and ta21 , beginTime and endTime are tb and te, respectively. We can

calculate: cexp(u, u′) = 1
2{ω0 (ta11−tb)

te−tb
+ ω0 (ta21−tb)

te−tb
+ ω1 (ta22−tb)

te−tb
}.

Implicit Collaboration. Suppose O′ denotes a set of co-occurrence objects (e.g., organization,
project, team) between u and u′. The implicit collaboration relationship is formalized as:

cimp(u, u′) =


∑

o∈O′
I(u,u′ ,o)

∑
o∈O′

I(u,u′ ,o)+ψ
, if exists;

0, otherwise.

(3)

where I(·) is the indicator function. If u, u′ are co-occurred in o, its value is 1, otherwise, its value is 0.
ψ is a constant, used to regularize the results, similar to its use in [4], its default value is 100.

Example 2. Suppose u and u′ participated in a same project p, in addition, they belong to the same technical
organization org. We can get O′ = {p, org}, and cimp(u, u′) = 1+1

1+1+100 .

https://www.neusoft.com/

Appl. Sci. 2020, 10, 4333 6 of 20

Based on Equations (2) and (3), we formalize the final collaboration relationship between u and
u′ as:

c(u, u′) =α · cexp(u, u′) + (1− α) · cimp(u, u′), (4)

where α ∈ [0, 1] is a weight which used to balance the explicit and implicit collaboration. Based on
Equation (2) to Equation (4), we can obtain the explicit collaboration matrix, the implicit collaboration
matrix and the final collaboration matrix, denote as Cimp, Cexp and C respectively.

The strength of the collaboration relationship is measured based on the developers’ interactive
behaviors for the first time. From the viewpoint of quantitative analysis, it not only considers the
influence of the time window for the interactions but also the multiple interactions between the same
developers. From the viewpoint of qualitative analysis, the collaboration relationship might be specific
and targeted to reflect the intimacy between developers in their development process than traditional
generalized social relationships (as shown in Section 4.2.1).

3.1.2. Developer–Task Interaction Relationship

The strength of the interaction relationship reflects the degree of developers’ preferences for tasks.
It means that the closer developer u interacts with task v, the more likely u suits for v (evidences in
recent investigations [10]). Next, we formally define the interaction relationship between developer
and task.

Interaction Relationship. Similar to Equation (2), suppose Av denotes a set of actions (e.g.,
browed, stared, explicitly comment) which performed on task v by developer u, the interaction
relationship r(u, v) is formalized as:

r(u, v) =

 |Av|−1 ∑
a′∈Av

s
∑

i=1
s−1ωs−iπ2(u, v, a′, i), if exists;

0, otherwise.
(5)

where π2(u, v, a′, i) = interactTime(u,v,a′ ,i)−beginTime
endTime−beginTime , and interactTime(u, v, a′, i) is the occurrence time of

the action a′ which performed on task v by developer u, beginTime, endTime and ω are similar to
the definitions in Equation (2). Based on Equation (5), we can calculate the interaction relationship
matrix R.

Example 3. Suppose u has the interactive actions Av = {a1, a2} on task v. Suppose a1 = comment and
a2 = star (e.g., humbs-up) and the performed number of a1 and a2 are sa1 = 2 and sa2 = 1, the occurrence
time of a1 and a2 are ta11 , ta12 and ta21 , beginTime and endTime are tb and te, respectively. We can calculate:

r(u, v) = 1
2{(ω1 (ta11−tb)

te−tb
+ ω0 (ta12−tb)

te−tb
) + ω0 (ta21−tb)

te−tb
}.

Different from the existing methods [17,20], that usually set r(u, v)=1 by default while the
interaction exists. Here, we quantitatively calculate r(u, v) based on the developers’ interactive
behaviors and consider that the strength of the interaction will be affected by the time locality and
interaction numbers. In addition, there may be many interactive objects between developers in
Equation (2), but for Equation (5), the interactive object defaults to task v.

3.1.3. Task–Task Association Relationship

Intuitively, developers are more willing to accept the tasks which are similar to those they
have done before. Therefore, how to measure the similarity relationship between tasks is is an
important issue. Existing item-based collaborative filtering methods [14,16,34] only consider the
collaborative similarity relationship (i.e., the item similarity evidenced by user interactions like ratings
and purchases), which lacks of concrete semantics. In real-world applications, there typically exist
multiple relationships between tasks that have concrete semantics, and they are particularly helpful to
understand developer behaviors. For example, some tasks may have similar titles, file paths or related

Appl. Sci. 2020, 10, 4333 7 of 20

similar source code, and others although have no such explicit similar features, they share the same
contributors or reviewers, etc. In the context of this research, we define two types of similarity: (1)
co-occurrence developer similarity between tasks, and (2) text similarity between tasks. The association
relationship is formalized as:

s(v, v′) = (1− β) · co_dev(v, v′) + β · tex_sim(v, v′), (6)

where co_dev(v, v′) = |Nv∩Nv′ |
|Nv∪Nv′ |

denotes the co-occurrence relationship of developers in v and v′, where

Nv and Nv′ denotes the corresponding developer sets associated with v and v′ respectively. β is
a weight which used to balance the text similarity and the developer co-occurrence relationship.
tex_sim(v, v′) =

et ·et′
‖et‖‖et′‖

denotes the cosine similarity of v and v′, where et and et′ denote the

text vectors of v and v′, here, we learn et and et′ based on Doc2Vec [35], a popular text vector
representations model, which can learn vector representations for variable length of texts such as
sentences and documents. Here, we implement Doc2Vec upon the model of gensim PV-DBOW (https:
//radimrehurek.com/gensim/models/doc2vec.html) due to its simplicity and ease of implementation.
The calculate process is that, for each task, there are some text description (e.g., title, tags, abstract,
content and code file paths), we first concatenate each task’s text description and generate the
concatenated text vectors (i.e., et, et′). Then we calculate the cosine similarity of those concatenated
text vectors. Based on Equation (6), we can calculate the similar relationship matrix S.

3.2. Fusion of Multi-Relationships

In this section, we integrate the collaboration relationship and association relationship with the
interaction relationship based on joint matrix factorization [18].

Suppose Cn×n ∈ Rn×n, Rn×m ∈ Rn×m, Sm×m ∈ Rm×m, Q ∈ Rd×n, U ∈ Rd×n and V ∈ Rd×m

follow Gaussian distributions [18,36] with the means of 0 and variances of σ2
C, σ2

R, σ2
S , σ2

Q, σ2
u and

σ2
v , respectively. Here, Q, U and V denote the latent features of the collaboration relationships, the

developers and the tasks, respectively. d is the vector size.
As shown in Figure 2 middle subfigure, for each developer ui, the latent collaboration feature

vector is denoted by Qt ∈ Rd×1, and the latent developer feature vector is denoted by Ui ∈ Rd×1.
They are calculated by factorizing Cn×n. Similarly, for each task vj, the latent task feature vector is
denoted by Vj ∈ Rd×1, and the latent association feature vector is denoted by Vl ∈ Rd×1. They are
calculated by factorizing Sm×m. Here, Ui is the shared latent developer feature vector, calculated by
factorizing Cti and Rij. Vj is the shared latent task feature vector, calculated by factorizing Rij and Sjl .

To learn U, V and Q, we design a log-joint posterior probability distribution function as shown in
Equation (7):

ln p = −1
2σ2

R
‖IR � (R− g(UTV))‖2

F − 1
2σ2

C
‖IC � (C− g(UTQ))‖2

F

− 1
2σ2

S
‖IS � (S− g(VTV))‖2

F − 1
2 (

1
σ2

U
‖U‖2

F +
1

σ2
V
‖V‖2

F +
1

σ2
Q
‖Q‖2

F) (7)

− 1
2 (ln σ2

R‖IR‖2
F + ln σ2

C‖IC‖2
F + ln σ2

S‖IS‖2
F)− d

2 (mln σ2
U + nln σ2

V + mln σ2
Q),

where IR, IC and IS denote the indicator matrices. � denotes the Hadamard product of two matrices.
g(x) = 1

1+exp(−x) is a logistic function [18] used to limit the predicted value of UT
i Vj to the interval

of [0, 1]. The model parameters U, V and Q can be learned by maximizing the log-joint posterior in
Equation (7) which is equivalent to minimizing the objective function in Equation (8):

L1 = 1
2‖IR � (R− g(UTV))‖2

F +
λC
2 ‖IC � (C− g(UTQ))‖2

F +
λS
2 ‖IS � (S− g(VTV))‖2

F (8)

+ 1
2 (λU‖U‖2

F + λV‖V‖2
F + λQ‖Q‖2

F),

https://radimrehurek.com/gensim/models/doc2vec.html
https://radimrehurek.com/gensim/models/doc2vec.html

Appl. Sci. 2020, 10, 4333 8 of 20

where λC =
σ2

R
σ2

C
, λS =

σ2
R

σ2
S

, λU =
σ2

R
σ2

U
, λV =

σ2
R

σ2
V

, λQ =
σ2

R
σ2

Q
. Based on Equation (8), we calculate the partial

derivative ∂L1
∂Ui

, ∂L1
∂Vj

and ∂L1
∂Qt

as shown in Equation (9):

∂L1

∂Ui
=

m

∑
j=1

IR
ij g′(UT

i Vj)(g(UT
i Vj)− Rij)Vj + λC

n

∑
t=1

IC
it g′(UT

i Qt)(g(UT
i Qt)− Cit)Qt + λUUi,

∂L1

∂Vj
=

n

∑
i=1

IR
ij g′(UT

i Vj)(g(UT
i Vj)− Rij)Ui + λS

m

∑
l=1

IS
jl g
′(VT

j Vl)(g(VT
j Vl)− Sjl)Vj + λVVl , (9)

∂L1

∂Qt
=λC

n

∑
i=1

IC
it g′(UT

i Qt)(g(UT
i Qt)− Cit)Ui + λQQt.

To calculate the feature vectors of Ui, Vj and Qt, we utilize the momentum-based stochastic
gradient descent (MSGD) method [37] to update the parameters of SoftRec to accelerate its convergence
as shown in Equation (10): 

Ûi ← ν · Ûi + η · ∂L1

∂Ui
, Ui ← Ui − Ûi,

V̂j ← ν · V̂j + η · ∂L1

∂Vj
, Vj ← Vj − V̂j,

Q̂t ← ν · Q̂t + η · ∂L1

∂Qt
, Qt ← Qt − Q̂t.

(10)

where ν ∈ [0, 1] is the momentum parameter and η > 0 is the learning rate. According to previous
work [37], the default values of ν and η are usually set to be 0.8 and 0.05, respectively. Ûi, V̂j, and Q̂t

are the temporary variables which used to update the momentum. When the parameters Ui, Vj, and
Qt converge or the number of iterations reaches its maximum, we can obtain the feature vectors Ui, Vj
and Qt.

3.3. Developer Prediction

Next, we present the developer prediction based on the feature vectors Ui and Vj calculated in
Equation (10). Due to the linear inner product might limit the expressiveness of MF [13,31], here,
we project the feature vectors Ui and Vj into a non-linear space upon the architecture of deep neural
network [38].

As shown in Figure 2 right subfigure, for developer ui and task vj, the input feature vectors are Ui

and Vj respectively. Suppose W(t)
U and W(t)

V are the tth (t=1,2,...,N) layer weighting matrices for Ui and
Vj respectively. The developer ui and task vj are finally mapped to a low-dimensional vector space as:U

′
i = f (N)(... f (2)(W(2)

U f (1)(W(1)
U Ui))...),

V
′
j = f (N)(... f (2)(W(2)

V f (1)(W(1)
V Vj))...),

(11)

where f (t)(·) denotes the activation function, we implement f (t)(·) with ReLU, which is formalized as
f (t)(x) = max(0, x). In this paper, we have two multi-layer networks to transform the representations
of u and v respectively. Based on the output vectors U

′
i and V

′
j in Equation (11), we can calculate the

predicted value as follows:

ŷij(ui, vj|Θ) = Ui
′T

V
′
j (12)

where Θ = {W(t)
U , W(t)

V }N
l=1 are the parameters. To learn Θ, we opt for the pairwise BPR loss [39],

which has been widely used in training recommender systems [40]. It assumes that the observed

Appl. Sci. 2020, 10, 4333 9 of 20

interactions, which indicate more user preferences, should be assigned higher prediction values than
unobserved ones. The objective function is as:

L2 = ∑
(i,j,j′)∈R

− ln σ(ŷij − ŷij′) + λ‖Θ‖2
2, (13)

where (i, j) ∈ R+ denotes the set of observed interaction relationships, (i, j′) ∈ R− denotes the set of
unobserved interactions, and σ(·) is the sigmoid function. λ‖Θ‖2

2 is the regularizer used to prevent
the overftting. Similar to Equations (9) and (10), we can calculate the partial derivative of L2 as well
as other model parameters in Equation (13).

3.4. Fast Model Update

How to update the model is a critical problem. Previous update approaches based on large
matrix factorization [4,29,41] usually update the whole system offline and periodically. This approach
is referred to as fullUpdate. However, on developer collaboration platforms, a lot of explicit and
implicit relationships are produced on a daily basis. Frequent full updates are expensive, especially in
recommendation scenarios that involve large-scale matrices and multiple relationships. They limit the
update frequency and, consequently, lower the timeliness of the recommendation results.

However, updating in time may help address the cold start issue (as will be evaluated and
demonstrated in Section 4.2.4), i.e., making recommendations for new developers and new tasks.
In practice, the information about new developers and new tasks are very limited, and timely
update of every new piece of information about new developers and new tasks can improve their
recommendation results significantly. Therefore, in SoftRec, for new developers and new tasks,
the latent feature vectors Ui, Vj and Qt are updated online. Upon the arrival of a new developer or a

new task, SoftRec first updates R, C, and S, i.e., R ← R ∪
{

Rij
}

, C ← C ∪ {Cti}, and S ← S ∪
{

Sjl

}
,

and then performs Ui ← Ui − Ûi, Vj ← Vj − V̂j, and Qt ← Qt − Q̂t with Equations (9) and (10). On the
other hand, for old developers and old tasks, because their historical information plays the dominant
role during the recommendation process, minor updates may hardly affect the recommendation results
within a short period of time. Therefore, SoftRec updates old developers and old tasks’ latent feature
vectors Ui, Vj, and Qt with offline fullUpdate only.

Based on the above principles, we propose a novel fast update approach for new developers and
new tasks, called fastUpdate. Take the update of feature vector Ui as an example, its pseudo code is
presented in Algorithm 1. For developer ui, let φ(ui) = Θ̄(Ri∗) denote ui’ known interaction set in Ri∗,
Θ̄(·) denote the set of known entities. The probability of performing the operation R← R ∪

{
Rij
}

is
defined as follows:

p(update|Rij) = ϕ|φ(ui)|, (14)
where the parameter ϕ ∈ [0, 1] denotes the decay factor. The probability of update will gradually
decrease as |φ(ui)| increases. Then, based on Equations (9) and (10), the update of Ui is described in
Algorithm 1.

Algorithm 1: fastUpdate for Ui

Input: φ(ui), θ, ϕ, ν, η, Rij, L1, R, Ui = [Ui1, Ui2, ..., Uid];
Output: Ui;

1 if p(update|Rij) > θ then
2 R← R ∪

{
Rij
}

; initialize Ûi;
3 for s from 1 to Iter do
4 for j from 1 to d do
5 Ûij←ν · Ûij+η · { ∂L1

∂Ui
}j; Uij←Uij−Ûij;

6 return Ui;

Appl. Sci. 2020, 10, 4333 10 of 20

where θ is the empiric constant and Iter is the number of iterations before an early stop is applied,
its value defaults to 100.

Similar to the update of Ui in Algorithm 1, Qt and Vj can be updated as well. We can see
that the time complexity of fastUpdate approach is O(

{
|Θ̄(C∗i)|+ |Θ̄(Sj∗)|+ |Θ̄(Ri∗)|

}
· d · Iter),

while the time complexity of the traditional fullUpdate approach that updates the entire model is
O(
{
|Θ̄(C)|+ |Θ̄(S)|+ |Θ̄(R)|

}
· d · Iter). This way, the proposed fastUpdate approach as a supplement

to the fullUpdate can address the cold start issue by making online recommendations for new
developers and new tasks (as shown in Section 4.2.4). After updating Ui and Vj, we can calculate the
value of ŷij based on Equations (11) and (12).

4. Experiment and Discussion

We evaluate the proposed approach on two real-world datasets, one is collected from the
GitHub projects, another is collected from Neusoft Corporation. We aim to answer the following
research questions:

RQ1 How does SoftRec perform compared with state-of-the-art CF-based recommendation methods?
RQ2 How does SoftRec perform when tackling different data sparsity?
RQ3 How do developer–developer collaboration relationships and task–task association

relationships (i.e., λC and λS) affect SoftRec?
RQ4 How does SoftRec perform when tackling model update and does it help solve the cold

start issue?
RQ5 Can SoftRec have practical value and be recognized by enterprise users in practice?

4.1. Experimental Settings

4.1.1. Data Collection and Preprocessing

To collect data for our experiments, we crawl five popular GitHub projects with GitHub API (https:
//developer.github.com/v3/), including symfony/symfony, akka/akka, elasticsearch, netty/netty
and ipython/ipython, and the collected data is from March 2015 to Novemaber 2018. These five
projects are highly popular and have 2760 watches, 39,340 stars and 16,860 forks on average on GitHub.
In addition, we select five popular commercial projects from the Neusoft Corporation’s GitLab platform,
including Workflow, DI, DataViz, ACAP and APM, and the collected data is from January 2017 to June
2019. In GitHub projects, we recommend code reviewers for the given pull-requests, and in GitLab
projects we recommend assignees for the given issues.

Next, we filter out the tasks (i.e., pull-requests or issues) with less than two different reviewers or
assignees according to previous works [4]. The statistics of preprocessed data are shown in Table 1,
and the initial data density of the interaction matrix are ρ1 = 3.57% and ρ2 = 6.01%, respectively.

Table 1. Statistics of the collected data.

Datasets Projects Tasks# Developers# Interactions#

GitHub

symfony 1023 1331 23,970
akka 1312 207 12,464

elasticsearch 2751 251 26,272
netty 819 307 5364

ipython 3424 421 19,158

GitLab

Workflow 6210 104 1035
DI 2193 150 19,737

DataViz 2107 108 12,642
ACAP 2311 125 25,421
APM 2811 103 11,244

https://developer.github.com/v3/
https://developer.github.com/v3/

Appl. Sci. 2020, 10, 4333 11 of 20

4.1.2. Relationship Mapping

We calculate the three types of relationships based on the definitions in Section 3.1. Table 2 shows
the mappings of interactive objects and interactive actions in the collected datasets. Take the GitHub
dataset as an example. The collaboration relationship defined in Equation (1) are calculated based
on the interactive object set O={issue_comments, commit_comments, pull_request_comments} in
each GitHub project. The developers’ interactive action set A performed on O is {comment, commit,
reaction}, where the interactive action reaction represents a series of emojis (https://developer.github.
com/v3/reactions/).

Table 2. Relationship mapping

Datasets Relationships Objects Actions

GitHub

developers’
collaboration
relationship

issue_ comments,
commit_ comments,

pull_request_ comments

comment,
reaction,
commit

developer–task
interaction

relationship
pull_requests,

pull_request_comments
comment,
reaction

tasks’ similarity
relationship

pull_requests,
pull_request_comments

-

GitLab

developers’
collaboration
relationship

merge_requests,
issues,

issue_comments

comment,
reaction,
commit

developer–task
interaction

relationship

issues,
issue_comments,

commit_comments
comment,
reaction

tasks’ similarity
relationship

issues,
issue_comments

-

4.1.3. Approaches for Comparison

In this experiment, we compare SoftRec with five state-of-the-art approaches:

• PR-CF [4]: a typical CF-based hybrid approach that generates the latent factor models based on
the developer–task explicit interaction matrix, and then combines the latent factor models with
the tasks’ neighborhoods to capture the similarity between developers and tasks.

• IR+CN [20]: This approach recommends developers based on their social relationships. By mining
historical comments, it constructs a weighted graph called comment network (CN) to model
developers’ social relationships.

• DMF [38]: a typical matrix factorization model with neural network architecture to learn a
common low dimensional space for the representations of users and items.

• NFM [31]: a typical deep learning model that unifies the strengths of factorization machines and
deep neural networks for sparse rating modelling.

4.1.4. Parameter Settings

Similar to [17], we use a grid search for parameters: the decay factor ω ∈ [0, 1] in
Equations (2) and (5) are searched in {0.6, 0.7, 0.8, 0.9}, and α and β in Equations (4) and (6) are searched
in {0.4, 0.5, 0.6, 0.7}. The vector size d is tuned among {16, 32, 48, 64}. λC and λS in Equation (8) are
searched in {1, 5, 10, 20}. λU , λV and λQ in Equation (8) are searched in {0.001, 0.005, 0.01, 0.1, 0.5}.
θ and ϕ in Algorithm 1 are searched in {0.0001, 0.0005, 0.001} and {0.4, 0.5, 0.6, 0.7} respectively. λ in
Equation (13) is tuned among {0.01, 0.03, 0.05}.

https://developer.github.com/v3/reactions/
https://developer.github.com/v3/reactions/

Appl. Sci. 2020, 10, 4333 12 of 20

4.1.5. Scenario Description

To test the performance of SoftRec in tackling the interaction sparsity (i.e., RQ2) and model update
(i.e., RQ4), we design two test scenarios: (1) interaction sparse scenario; (2) new developer cold start
scenario. To simulate the interaction sparse scenario, we design different ratios of data density by
removing the known elements from developer–task explicit interaction matrix Rexp according to their
time slice. To simulate cold-start scenarios with new developers, (1) we first change the developers
to new developers by removing their related information from the initial database tables; (2) second,
we recover the removed information into the corresponding database tables and recalculate various
relationships according to their time slice (i.e., recover one day’s information at a time), in this process,
the fastUpdate is performed online, but the fullUpdate is performed periodically (i.e., performed after
seven day’s recoveries).

4.1.6. Performance Evaluation

We adopt three representative performance metrics: precision @k, recall@k [4], and ndcg@k [42]
for performance evaluation, as shown in Equations (15)–(17). Where precision@k and recall@k are
widely-used metrics that don’t consider the ranking position, ndcg@k is a popular ranking-based
metrics in recent years, which considers the ranking position, where a higher position is assigned
with a higher score. By default, we set k = 5, and randomly divided the datasets into 10 groups,
where 80% as the training set and 20% as the testing set, and the evaluation was conducted based
on cross-validation. We use the task’s actual developers as the ground-truth results and the reported
performance was averaged over 20 repetitions.

precision@k =
|ActualDevelopers ∩ RecommendedDevelopers|

|RecommendedDevelopers| , (15)

recall@k =
|ActualDevelopers ∩ RecommendedDevelopers|

|ActualDevelopers| , (16)

ndcg@k = Zk

k

∑
i=1

2ri − 1
log2(i + 1)

, (17)

where Zk is the normalizer to ensure that the perfect ranking has a value of 1. ri is the relevance of
developer u at position i, if u exists in the test, we set ri = 1, otherwise ri = 0.

4.2. Experimental Results and Discussions

4.2.1. Overall Performance Comparison (RQ1)

Table 3 compares the overall performance of the five approaches. We have the following
observations. First, IR+CN achieves poor performance on both datasets. This indicates that considering
only the explicit social relationships does not suffice to capture the potential interactions between
developers and tasks. Compared to IR+CN, PR-CF generally achieves better improvements in most
cases. This indicates the importance of considering the latent factor similarity between tasks. The reason
we chose PR-CF and IR+CN as the comparison algorithm is that both PR-CF and IR+CN are typical
developer recommendation approaches and similar to our approach. Where PR-CF utilizes the
implicit similarity relationship between tasks to improve the recommendation accuracy, while IR+CN
utilizes the social relationship between developers to improve the recommendation accuracy. Second,
compared to DMF, NFM achieves a better accuracy in most cases. The reason might be that NFM
combines the linearity of a factorization machine in modelling second-order feature interactions and
the non-linearity of neural network in modelling higher-order feature interactions, which is more
expressive than DMF. Third, among all approaches in comparison, SoftRec achieves the highest
accuracy across all different cases. For example, for the GitHub dataset, the precision, recall and ndcg

Appl. Sci. 2020, 10, 4333 13 of 20

obtained by SoftRec are 0.4673, 0.7633 and 0.4727, respectively. It outperforms other state-of-the-art
approaches by an average of 23.26%, 6.69% and 34.56% in precision, recall and ndcg, respectively.
For the GitLab dataset, SoftRec’s precision, recall and ndcg are 0.4929, 0.7701 and 0.5109, respectively,
outperforming other state-of-the-art approache by an average of 29.75%, 5.33% and 23.56%, respectively.
The reasons might be that (1) SoftRec can fully explore the explicit and implicit multi-relationships
which is helpful to improve recommendation accuracy, unlike NMF and DMF which employ the
explicit interactions only; (2) SoftRec can project the feature vectors Ui and Vj into a non-linear space
upon the architecture of deep neural network, which helps capture the non-linear and complex feature
of real-world data, unlike PR-CF and IR+CN model feature interactions into a linear space only.

Table 3. Comparison of different approaches (k = 5).

Methods GitHub Dataset GitLab Dataset

Precision Recall ndcg Precision Recall ndcg

PR-CF 0.3791 0.7154 0.3513 0.3799 0.7299 0.4135

IR+CN 0.3248 0.6411 0.3361 0.3145 0.6377 0.3789

DMF 0.3399 0.6998 0.3205 0.3615 0.6819 0.4106

NFM 0.3413 0.6918 0.3327 0.3369 0.7311 0.3704

SoftRec 0.4673 0.7633 0.4727 0.4929 0.7701 0.5109

4.2.2. Performance in Tackling Data Sparsity (RQ2)

We test SoftRec in scenarios 1) with different sparsity of developer–task interactions (described
in Section 4.1.5 Scenario Description). Figure 3a,b show the compared results of precision, recall and
ndcg for the GitHub and GitLab datasets, where ρ1 and ρ2 denote the initial data density of interaction
matrics in GitHub and GitLab datasets, respectively. We have the following observations.

When the data density decreases from ρ1 and ρ2 to 0, the precision, recall and ndcg values of
all approaches decrease quickly. However, SoftRec significantly and consistently outperforms than
other approaches. For example, for GitHub dataset, when the data density is 0.6 ∗ ρ1 , the values
of precision, recall and ndcg of SoftRec are 43.55%, 47.17% and 28.71% higher than other compared
approaches on average. For GitLab dataset, when the data sparsity is 0.6 ∗ ρ2, SoftRec’s precision, recall
and ndcg are 25.29%, 22.66%, 24.78% higher than other compared approaches on average. Besides,
as the data density gradually decreases, the performance of SoftRec decreases more slowly than other
compared methods. This phenomenon indicates that SoftRec performs better when tackling data
sparsity. Another discussion is that why SoftRec performs better than other compared approaches in
GitHub dataset than in GitLib dataset. The reason might be that the GitHub dataset is more sparse
than the GitLab dataset (e.g., in GitHub dataset ρ1 = 3.75%, in GitLab dataset ρ2 = 6.01%), and the
compared approaches do not fully mine various implicit relationships, making its performance worse
when the interactions becomes more and more sparse. However, SoftRec takes advantage of various
implicit relationships, and this effectively alleviates the sparsity of interaction and improves the
recommendation accuracy.

4.2.3. Effects of the Multi-Relationship (RQ3)

In SoftRec, the parameters λC and λS determined the effects of developer–developer collaboration
relationship and task–task association relationship on the recommendation results. Now let us discuss
how these relationships affect SoftRec and how to determine their values. From Equations (8)–(10)
we can see that SoftRec uses λC and λS to balance the collaboration relationships and the association
relationships with the developer–task interaction relationships. When λC = 0, it is equivalent to
completely ignoring the influence of collaboration relationships. As λC increases, it means that the
collaboration relationships are leveraged to make recommendations with a higher priority. We also

Appl. Sci. 2020, 10, 4333 14 of 20

demonstrate it in our experiments, as shown in Figure 4a,b, as λC and λS increases from 0.01 to 5 and
0.01 to 10, SoftRec’s precision, recall and ndcg values increase, while when λC and λS exceed 5 and 10
respectively, these values decrease gradually.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 0.8 0.6 0.4 0.2 0

p
re

c
is

io
n

the dencity (ρ1)

PR-CF
IR+CN

DMF
NFM

SoftRec

 0

 0.2

 0.4

 0.6

 0.8

 1

1 0.8 0.6 0.4 0.2 0

re
c
a

ll

the dencity (ρ1)

PR-CF
IR+CN

DMF
NFM

SoftRec

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 0.8 0.6 0.4 0.2 0

n
d

c
g

the dencity (ρ1)

PR-CF
IR+CN

DMF
NFM

SoftRec

(a) precision, ndcg and recall for GitHub dataset, k = 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 0.8 0.6 0.4 0.2 0

p
re

c
is

io
n

the dencity (ρ2)

PR-CF
IR+CN

DMF
NFM

SoftRec

 0

 0.2

 0.4

 0.6

 0.8

 1

1 0.8 0.6 0.4 0.2 0

re
c
a

ll

the dencity (ρ2)

PR-CF
IR+CN

DMF
NFM

SoftRec

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 0.8 0.6 0.4 0.2 0

n
d

c
g

the dencity (ρ2)

PR-CF
IR+CN

DMF
NFM

SoftRec

(b) precision, recall and ndcg for GitLab dataset, k = 5.

Figure 3. Comparison of the recommendation accuracy (precision, recall and ndcg) with different
density of developer–task interaction matrix (e.g., the density ranges from 1 ∗ ρ1 to 0 ∗ ρ1 in subfigure
(a)) in GitHub and GitLab datasets.

Furthermore, to compare the performance of SoftRec with and without the multi-relationship,
we set λC = λS = 0. Table 4 shows the compared results, where SoftRec’ denotes the SoftRec without
the multi-relationship. For example, for GitHub dataset, the values of precision, recall and ndcg of
SoftRec with multi-relationship are 50.11%, 32.93% and 59.10% higher than the values of SoftRec
without multi-relationship.

This phenomenon presented in Figure 4 and Table 4 shows that by leveraging of the
developer–developer collaboration relationships and task–task association relationships can help
improve the recommendation accuracy effectively. Because the optimal values for those parameters
are domain-specific, we set the parameters through trial-and-error in the experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.1 1 5 10 50 100 200 300

m
e
tr

ic
s

λC

precision
recall
ndcg

(a) The effect of λC .

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.1 1 5 10 50 200 300

m
e
tr

ic
s

λS

precision
recall
ndcg

(b) The effect of λS.

Figure 4. Take GitHub dataset as an example, analyze the effect of developer–developer collaboration
relationship and task–task association relationship on the performance by adjusting the parameters λC

and λS, where k = 5.

Appl. Sci. 2020, 10, 4333 15 of 20

Table 4. Comparison of the SoftRec with and without the multi-relationship fusion (k = 5).

Methods GitHub Dataset GitLab Dataset

Precision Recall ndcg Precision Recall ndcg

SoftRec 0.4673 0.7633 0.4727 0.4929 0.7701 0.5109

SoftRec’ 0.3113 0.5742 0.2971 0.2935 0.5707 0.3419

4.2.4. Performance in Tackling Model Update (RQ4)

Now let us discuss whether SoftRec can alleviate the cold start issue and its performance in
tackling update. The advantage of SoftRec is that its fastUpdate approach as a supplement to the
fullUpdate can accommodate new developers and new tasks promptly, thus effectively alleviating the
cold start issue. To demonstrate the performance of fastUpdate, we take the new developers cold start
(described in Section 4.1.5 Scenario Description) as an example, as shown in Table 5, with the proposed
fastUpdate, for GitHub dataset, SoftRec’s average precision, recall and ndcg values increase by about
4.25% to 4.1%, 2.88% respectively; for the GitLab dataset, its average precision, recall and ndcg values
increase by about 4.17% to 7.14%, 3.70% respectively. It shows that SoftRec’s fastUpdate can properly
address the cold start issue by making online recommendations for new developers.

Table 5. Compare the performance of model update by analyze the fullUpdate and fastUpdate approaches.

Datasets k precision recall ndcg

fullUpdate fastUpdate fullUpdate fastUpdate fullUpdate fastUpdate

github

1 0.6991 0.7103 0.2801 0.2912 0.2911 0.3133
2 0.6622 0.6819 0.3106 0.3262 0.283 0.3123
3 0.5523 0.5756 0.5344 0.5445 0.4391 0.4423
4 0.4632 0.4911 0.6732 0.6819 0.5057 0.5212
5 0.4301 0.4673 0.6903 0.7433 0.4851 0.4727

gitlab

1 0.7439 0.7811 0.251 0.281 0.6784 0.6903
2 0.6312 0.6624 0.3643 0.3878 0.6701 0.6832
3 0.5782 0.5901 0.5687 0.5911 0.5689 0.5811
4 0.4613 0.4781 0.6433 0.6792 0.391 0.4032
5 0.4697 0.4829 0.7013 0.770 0.4581 0.4909

4.3. User Study and System Design (RQ5)

To further demonstrate the effectiveness of SoftRec, we conduct a user study at Neusoft
Corporation. The scenario is that in Neusoft’s project and process management, hundreds of issues
(e.g., defects or new features) are created by developers (e.g., project managers, software testers or tech
supports) every day. To improve the cooperation efficiency, these issues need to be assigned to the
appropriate developers as soon as possible. Current manual assignments are usually time consuming
and inefficient and automatic assignment mechanism is urgently required.

In this study, we choose five typical projects in Neusoft Corporation, including Workflow, DI,
DataViz, ACAP and APM. For each project, we filter 100 open state issues and try to recommend
developers for them based on the SoftRec framework and evaluate the results by means of
online questionnaires.

4.3.1. Effectiveness of Our Approach

The results of the questionnaires are shown in Figure 5, We can see that for all surveyed
projects, SoftRec’s recommendation results are significantly superior to other approaches. For SoftRec,
The average values of precision, recall and ndcg in these study projects Workflow, DI, DataViz, ACAP
and APM are 0.4721, 0.7868, 0.5102, respectively. Compared with other four approaches, the values of
precision, recall and ndcg of SoftRec are 26.33%, 12.64% and 15.63% higher on average, respectively.

Appl. Sci. 2020, 10, 4333 16 of 20

Because we recommend developers within the scope of each project, the developer–developer
collaboration relationships, developer–task interaction relationships, and task–task association
relationships are very close. This leads to higher recommendation accuracies compared with those
achieved on the sparse datasets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Workflow DI DataViz ACAP APM

p
re

c
is

io
n

project

PR-CF
IR+CN

DMF
NFM

SoftRec

(a) precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Workflow DI DataViz ACAP APM

re
c
a
ll

project

PR-CF
IR+CN

DMF
NFM

SoftRec

(b) recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Workflow DI DataViz ACAP APM

n
d
c
g

project

PR-CF
IR+CN

DMF
NFM

SoftRec

(c) ndcg

Figure 5. User study analysis (in Neusoft Corporation, k = 5).

4.3.2. User Interview

We interviewed 25 developers about their opinions of the recommendations made by SoftRec
versus those made by the conventional expertise-based recommendation approaches tested in our
experiments. The participants of the interview consisted of 20 male developers and 5 female
developers, with an average work experience of 5 years. After inspecting the recommended tasks, 16 of
them felt highly confident that they would accept the recommended tasks, 7 of them felt confident
about the recommended tasks, and the other 2 may or may not have accepted the recommended
tasks. The interview results indicate that more than 92% of the interviewees are satisfied with
the recommendations. These interview results empirically show that SoftRec can improve their
collaboration efficiency by making accurate developer recommendations.

4.3.3. System Design

To facilitate the practice of DevRec in the real environment, we have designed a feasible technical
framework at Neusoft Corporation. As shown in Figure 6, its functions include real-time data collection,
distributed data preprocessing, distributed data indexing, distributed data storage, multi-relationship
computing, model trainning and prediction, etc.

In this technical framework, we exploit the open source tool chains as much as possible.
For example, we collect data through open source technologies, such as Crawler (https://www.
npmjs.com/package/crawler), GitHub API (https://developer.github.com/), Logstash and Beats
(https://www.elastic.co/cn/downloads/beats), etc. To optimize the data transmission efficiency,
we integrate a message queue middleware (Apache Kafka (http://kafka.apache.org/)) into the
framework. The data preprocessing (e.g., data extraction, data transformation, data cleaning)
are implemented based on Logstash. The data indexing and storage are implemented based on
ElasticSearch (https://github.com/elastic/elasticsearch). The multi-relationship computing and model
trainning are based on Spark (http://spark.apache.org/) and Tensorflow (https://www.tensorflow.
org/). The advantages of our technical framework are as follows:

• From the viewpoint of software development, we design the framework based on a series of open
source tool chains as much as possible, which follows the idea of open source software and can
shield the underlying complexity and improve the development efficiency.

• From the viewpoint of system availability, the framework supports distributed data storage and
parallel computing for developer recommendation, which makes it have better performance in
big data environment and provide a valuable technical reference for system practice. As far as we
know, this technical framework has been adopted by Neusoft Corporation and will be integrated

https://www.npmjs.com/package/crawler
https://www.npmjs.com/package/crawler
https://developer.github.com/
https://www.elastic.co/cn/downloads/beats
http://kafka.apache.org/
https://github.com/elastic/elasticsearch
http://spark.apache.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

Appl. Sci. 2020, 10, 4333 17 of 20

into their commercial product (https://platform.neusoft.com/allproducts/acap) as part of their
DevOps tool chains.

...

Data Collection & Preprocessing

Kafka

Data Preprocessing

Extraction

Transfor-

mation

...

Index1

Index2

...

GitHub
API

Crawler

...

Shard1

Shard2

Shardn

Shard1

Shard2

Shardn

...

Logstash

...

Distributed Data Storage & Query

MQ

Task-Task

Similarity Relationship

Distributed Computing & Model Learning

Developer-Task

Interaction Relationship

Developer-Developer

Collaboration Relationship...

q
u
ery

/filter/m
o
d
el u

p
d
ate

Spark

Distributed Index

ElasticSearch

Beats

m
erg

e/red
u
ce/ag

g
reg

atio
n

GitHub

GitLab

TensorFlow

SO

Topcoder

Top-k

...

Q1

Qn

Q2
M

u
lti-relatio

n
sh

ip

F
u
sio

n

N
o
n
-lin

ear P
ro

jectio
n
s

M
o
d
el

T
rain

n
in

g
&

u
p
d
ate

D
ev

elo
p
er P

red
ictio

n

D
a
ta

 so
u

rce

Figure 6. Overall technical framework design for DevRec at Neusoft Corporation.

5. Threats to Validity

First, our experiments are performed on five popular projects in GitHub dataset and five large
commercial projects in Neusoft Corporation. We cannot claim that the same results would be achieved
with other projects or other periods of time. Moreover, the results of the application of SoftRec to other
platforms, e.g., Bitbucket, StackOverflow, TopCoder, might not be exactly the same. As future work,
we plan to extend our evaluation on more universal open-source and industrial projects.

Second, SoftRec is a relationship-aware developer recommendation approach aiming to
recommend suitable developers based on the idea of collaborative filtering. We use the actual
developers of tasks as the ground truth and do not consider their expertise, reputation and workloads,
etc. Thus, there is a risk that the recommended developers might not be the best ones of all. To mitigate
this threat, we plan to extend our framework by measuring the developers’ abilities (e.g., skills,
expertise, reputation, contribution and workload).

6. Conclusions and Future Work

In this paper, we proposed SoftRec, a novel multi-relationship fused approach for developer
recommendation. In SoftRec, three types of implicit relationships are utilized, including the
collaboration relationships between developers, the interaction relationships between developers
and tasks, the association relationships between tasks. Furthermore, a novel fast model update
approach was proposed to address the cold start issue. To our best knowledge, this is the first
attempt to systematically integrate the developers’ collaboration relationships and tasks’ association
relationships into developer recommendation.

Form the viewpoint of theory innovation, we propose to utilize joint matrix factorization to
project developers’ and tasks’ features and their relationships into a low dimensional latent vector
space. It leverages not only the common developer latent vectors in both the interaction matrix and
the developer collaboration matrix, but also the common task latent vectors in both the interaction
matrix and the task association matrix, and we refine the latent vectors based on deep neural network.
It effectively solves the issues of interactive sparseness and cold start in traditional collaborative
filtering. From the viewpoint of practice, we conduct extensive experiments on two real-world datasets
and we also conduct a user study in a well-known software company. The results demonstrate the
high performance of SoftRec. Furthermore, we design a feasible technical framework and exploit
the open source tool chains as much as possible, which helps to facilitate the practice of SoftRec in
real environment.

In the future, we will extend SoftRec in three ways. The first one is to employ deep learning to solve
the multiple implicit relationship fusion for developer recommendation. The second one is to further
solve the boundary of the fast update for SoftRec through the theoretical or experimental analysis.
The third one is to further investigate the usefulness of SoftRec and consider integrating the developers’

https://platform.neusoft.com/allproducts/acap

Appl. Sci. 2020, 10, 4333 18 of 20

abilities (e.g., skills, expertise, reputation, contribution and workload) into SoftRec. Moreover, we plan
to provide a set of developer recommendation tools that can be used in real environments. We hope to
provide free plugins or service APIs for websites such as GitHub, StackOverflow and Topcoder, etc.

Author Contributions: Conceptualization, X.X.; Data curation, X.X.; Investigation, X.X.; Writing–original draft,
X.X.; Writing–review and editing, B.W. and X.Y.; Resources, X.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: The work is partially supported by the National Natural Science Foundation of China (Nos. U1736104,
61991404, 61532021), Ten Thousand Talent Program (No. ZX20200035), Liaoning Distinguished Professor
(No. XLYC1902057).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gousios, G.; Storey, M.A.; Bacchelli, A. Work practices and challenges in pull-based development: the
contributor’s perspective. In Proceedings of the IEEE/ACM 38th International Conference on Software
Engineering (ICSE), Austin, TX, USA, 14–22 May 2016; pp. 285–296.

2. Hannebauer, C.; Patalas, M.; Stünkelt, S.; Gruhn, V. Automatically recommending code reviewers based on
their expertise: An empirical comparison. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE), Singapore, 3–7 September 2016; pp. 99–110.

3. Xia, X.; Lo, D.; Wang, X.; Yang, X. Who should review this change?: Putting text and file location analyses
together for more accurate recommendations. In Proceedings of the 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Bremen, Germany, 29 September–1 October 2015; pp. 261–270.

4. Xia, Z.; Sun, H.; Jiang, J.; Wang, X.; Liu, X. A hybrid approach to code reviewer recommendation
with collaborative filtering. In Proceedings of the IEEE International Workshop on Software Mining
(SoftwareMining), Urbana, IL, USA, 3 November 2017; pp. 24–31.

5. Liu, Z.; Xia, X.; Treude, C.; Lo, D.; Li, S. Automatic Generation of Pull Request Descriptions. In Proceedings
of the 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), San Diego,
CA, USA, 11–15 November 2019; IEEE: New York, NY, USA, 2019; pp. 176–188.

6. Thongtanunam, P.; Tantithamthavorn, C.; Kula, R.G.; Yoshida, N.; Iida, H.; Matsumoto, K.I. Who should
review my code? A file location-based code-reviewer recommendation approach for modern code
review. In Proceedings of the IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Montreal, QC, Canada, 2–6 March 2015; pp. 141–150.

7. Alami, A.; Cohn, M.L.; Wasowski, A. Why does code review work for open source software communities?
In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
Montreal, QC, Canada, 25–31 May 2019; IEEE: New York, NY, USA, 2019; pp. 1073–1083.

8. Yan, J.; Sun, H.; Wang, X.; Liu, X.; Song, X. Profiling developer expertise across software communities
with heterogeneous information network analysis. In Proceedings of the Tenth Asia-Pacific Symposium on
Internetware, Beijing, China, 16 September 2018; pp. 1–9.

9. Ye, L.; Sun, H.; Wang, X.; Wang, J. Personalized teammate recommendation for crowdsourced software
developers. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, Montpellier, France, 3–7 September 2018; pp. 808–813.

10. MirsaeediFarahani, S. Mitigating Turnover with Code Review Recommendation: Balancing Expertise,
Workload, and Knowledge Distribution. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2019.

11. Li, R.; Lin, H.; Shi, Y.; Wang, H. SocialST: Social Liveness and Trust Enhancement Based Social
Recommendation. In Proceedings of the 2019 IEEE International Conference on Web Services (ICWS),
Milan, Italy, 8–13 July 2019; pp. 139–145.

12. Ye, B.; Wang, Y. Crowdrec: Trust-aware worker recommendation in crowdsourcing environments.
In Proceedings of the 2016 IEEE international conference on web services (ICWS), San Francisco, CA,
USA, 2–7 July 2016; pp. 1–8.

13. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.-S. Neural collaborative filtering. In Proceedings of the
26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.

Appl. Sci. 2020, 10, 4333 19 of 20

14. Kabbur, S.; Ning, X.; Karypis, G. Fism: factored item similarity models for top-n recommender systems.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Chicago, IL, USA, 11–13 August 2013; pp. 659–667.

15. Koren, Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV,
USA, 24–27 August 2008; pp. 426–434.

16. Xin, X.; He, X.; Zhang, Y.; Zhang, Y.; Jose, J. Relational collaborative filtering: Modeling multiple item
relations for recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 125–134.

17. Wang, X.; He, X.; Wang, M.; Feng, F.; Chua, T.S. Neural Graph Collaborative Filtering. arXiv 2019,
arXiv:1905.08108.

18. Ma, H.; Yang, H.; Lyu, M.R.; King, I. Sorec: social recommendation using probabilistic matrix factorization.
In Proceedings of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, CA,
USA, 26–30 October 2008; pp. 931–940.

19. Jiang, J.; Yang, Y.; He, J.; Blanc, X.; Zhang, L. Who should comment on this pull request? Analyzing
attributes for more accurate commenter recommendation in pull-based development. Inf. Softw. Technol.
2017, 84, 48–62. [CrossRef]

20. Yu, Y.; Wang, H.; Yin, G.; Wang, T. Reviewer recommendation for pull-requests in GitHub: What can we
learn from code review and bug assignment? Inf. Softw. Technol. 2016, 74, 204–218. [CrossRef]

21. Ahmed, T.; Bosu, A.; Iqbal, A.; Rahimi, S. SentiCR: A customized sentiment analysis tool for code review
interactions. In Proceedings of the 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), Urbana, IL, USA, 30 October–3 November 2017; IEEE: New York, NY, USA, 2017;
pp. 106–111.

22. Bosu, A.; Carver, J.C. How do social interaction networks influence peer impressions formation? a case
study. In IFIP International Conference on Open Source Systems; Springer: Berlin, Germany, 2014; pp. 31–40.

23. Bosu, A.; Carver, J.C. Impact of peer code review on peer impression formation: A survey. In Proceedings
of the 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
Baltimore, MD, USA, 10–11 October 2013; pp. 133–142.

24. Ouni, A.; Kula, R.G.; Inoue, K. Search-based peer reviewers recommendation in modern code review.
In Proceedings of the 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME),
Raleigh, NC, USA, 2–7 October 2016; pp. 367–377.

25. Liao, Z.; Wu, Z.; Li, Y.; Zhang, Y.; Fan, X.; Wu, J. Core-reviewer recommendation based on Pull Request topic
model and collaborator social network. Soft Comput. 2020, 24, 5683–5693. [CrossRef]

26. Shin, D. How do users interact with algorithm recommender systems? The interaction of users, algorithms,
and performance. Comput. Hum. Behav. 2020, 26, 106344. [CrossRef]

27. Shin, D.; Zhong, B.; Biocca, F.A. Beyond user experience: What constitutes algorithmic experiences? Int. J.
Inf. Manag. 2020, 52, 102061. [CrossRef]

28. Lin, P.; Song, Q.; Wu, Y. Fact checking in knowledge graphs with ontological subgraph patterns. Data Sci. Eng.
2018, 3, 341–358. [CrossRef]

29. Zhang, S.; Yao, L.; Sun, A. Deep learning based recommender system: A survey and new perspectives. arXiv
2017, arXiv:1707.07435.

30. Xie, F.; Chen, L.; Ye, Y.; Zheng, Z.; Lin, X. Factorization machine based service recommendation on
heterogeneous information networks. In Proceedings of the 2018 IEEE International Conference on Web
Services (ICWS), San Francisco, CA, USA, 2–7 July 2018; pp. 115–122.

31. He, X.; Chua, T.S. Neural factorization machines for sparse predictive analytics. In Proceedings of the 40th
International ACM SIGIR conference on Research and Development in Information Retrieval, Tokyo, Japan,
7–11 August 2017; pp. 355–364.

32. Wang, S.; Li, C.; Zhao, K.; Chen, H. Context-aware recommendations with random partition factorization
machines. Data Sci. Eng. 2017, 2, 125–135. [CrossRef]

33. Sadowski, C.; Söderberg, E.; Church, L.; Sipko, M.; Bacchelli, A. Modern code review: a case study at google.
In Proceedings of the 40th International Conference on Software Engineering (ICSE): Software Engineering
in Practice, Gothenburg, Sweden, 27 May–3 June 2018; pp. 181–190.

http://dx.doi.org/10.1016/j.infsof.2016.10.006
http://dx.doi.org/10.1016/j.infsof.2016.01.004
http://dx.doi.org/10.1007/s00500-019-04217-7
http://dx.doi.org/10.1016/j.chb.2020.106344
http://dx.doi.org/10.1016/j.ijinfomgt.2019.102061
http://dx.doi.org/10.1007/s41019-018-0082-4
http://dx.doi.org/10.1007/s41019-017-0035-3

Appl. Sci. 2020, 10, 4333 20 of 20

34. He, X.; He, Z.; Song, J.; Liu, Z.; Jiang, Y.G.; Chua, T.S. NAIS: Neural attentive item similarity model for
recommendation. IEEE Trans. Knowl. Data Eng. 2018, 30, 2354–2366. [CrossRef]

35. Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the
International Conference on Machine Learning, Bejing, China, 22–24 June 2014; pp. 1188–1196.

36. Mnih, A.; Salakhutdinov, R.R. Probabilistic matrix factorization. In Advances in Neural Information Processing
Systems; MIT Press: Cambridge, MA, USA, 2008; pp. 1257–1264.

37. Srinivasan, V.; Sankar, A.R.; Balasubramanian, V. ADINE: an adaptive momentum method for stochastic
gradient descent. In Proceedings of the ACM India Joint International Conference on Data Science and
Management of Data, Goa, India, 11–13 January 2018; pp. 249–256.

38. Xue, H.J.; Dai, X.; Zhang, J.; Huang, S.; Chen, J. Deep Matrix Factorization Models for Recommender
Systems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence
(IJCAI-17), Melbourne, Australia, 19–25 August 2017; pp. 3203–3209.

39. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian personalized ranking from
implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
Montreal, QC, Canada, 18–21 June 2009; pp. 452–461.

40. He, X.; He, Z.; Du, X.; Chua, T.S. Adversarial Personalized Ranking for Recommendation. In Proceedings
of the SIGIR’18 41st International ACM SIGIR Conference on Research and Development in Information
Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; Association for Computing Machinery: New York, NY, USA,
2018; pp. 355–364. [CrossRef]

41. Huang, Y.; Cui, B.; Jiang, J.; Hong, K.; Zhang, W.; Xie, Y. Real-time video recommendation exploration.
In Proceedings of the ACM International Conference on Management of Data, San Francisco, CA, USA, 26
June–1 July 2016; pp. 35–46.

42. He, X.; Chen, T.; Kan, M.Y.; Chen, X. Trirank: Review-aware explainable recommendation by modeling
aspects. In Proceedings of the 24th ACM International on Conference on Information and Knowledge
Management, Melbourne, Australia, 19–23 October 2015; pp. 1661–1670.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TKDE.2018.2831682
http://dx.doi.org/10.1145/3209978.3209981
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Multi-Relationship Fused Software Developer Recommendation
	Definition of Multi-Relationships
	Developer–Developer Collaboration Relationship
	Developer–Task Interaction Relationship
	Task–Task Association Relationship

	Fusion of Multi-Relationships
	Developer Prediction
	Fast Model Update

	Experiment and Discussion
	Experimental Settings
	Data Collection and Preprocessing
	Relationship Mapping
	Approaches for Comparison
	Parameter Settings
	Scenario Description
	Performance Evaluation

	Experimental Results and Discussions
	Overall Performance Comparison (RQ1)
	Performance in Tackling Data Sparsity (RQ2)
	Effects of the Multi-Relationship (RQ3)
	Performance in Tackling Model Update (RQ4)

	User Study and System Design (RQ5)
	Effectiveness of Our Approach
	User Interview
	System Design

	Threats to Validity
	Conclusions and Future Work
	References

