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Abstract: This paper presents a multi-state adaptive early warning method for mechanical equipment
and proposes an adaptive dynamic update model of the equipment alarm threshold based on a
similar proportion and state probability model. Based on the similarity of historical equipment,
the initial thresholds of different health states of equipment can be determined. The equipment status
is divided into four categories and analyzed, which can better represent its status and provide more
detailed and reasonable guidance. The obtained dynamic alarm lines at all levels can regulate the
operation range of equipment in the different health states. Compared to the traditional method of a
fixed threshold, this method can effectively reduce the number of false alarms and attains a higher
prediction accuracy, which demonstrates its effectiveness and superiority. Finally, the method was
verified by means of lifetime data of a rolling bearings. The results show that the model improves the
timely detection of the abnormal state of the equipment, greatly reduces the false alarm rate, and even
overcomes the limitation of independence between the fixed threshold method and equipment state.
Moreover, multi-state division can accurately diagnose the current equipment state, which should be
considered in maintenance decision-making.

Keywords: fault early warning; similar proportion; adaptive threshold; kernel density estimation

1. Introduction

With the rapid development of high-tech, modern machinery and equipment are becoming more
complex in structure and abundant in functions. The operating status of key components is directly
related to the performance of machinery and equipment, so the failure in the timely detection of
abnormalities of components may cause the malfunction of the entire system [1]. To ensure long-term
efficient operation, online monitoring of the entire equipment is usually replaced by monitoring
key components, which benefits normal equipment operation under full load and helps improving
production efficiency. Therefore, monitoring and evaluation of key equipment components is of great
importance for maintaining safe operation and reducing asset losses [2].

At present, fault diagnosis is the most commonly used method for health management of
mechanical equipment. As the “afterwards maintenance technique,” fault diagnosis needs to
conduct classified diagnosis on the fault type and position after the equipment breaks down [3,4].
This post-examination technique requires disassembling the equipment to verify the fault location
and damage degree. On the one hand, the components in equipment during the disassembly
will be manually damaged; on the other hand, the disassembly and verification process will
also increase enterprise time and maintenance costs [5]. Many researchers have studied in the
field of fault diagnosis [6–15], and published the research results in detail from qualitative and
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quantitative perspectives. However, a few researchers have studied the fault early warning problem
for mechanical equipment.

Fault early warning is a kind of detection technology involving prediction in advance, which needs
to identify the possible symptom of equipment in the next stage according to the historical operation rule
of the equipment and data change. Fault early warning can help operators in the field determine early
signs of equipment failure and implement corresponding measures to prevent further failure [16,17].
The existing warning methods mainly adopt the method based on a fixed threshold. Generally,
a benchmark value is set according to the normal state of equipment or its factory index. The equipment
is periodically monitored to determine whether it will fail or not, according to whether the observed
value exceeds the benchmark value. Through field investigation, it is found that the false alarm and
missing alarm rates of this method are directly related to the setting of the alarm threshold to a great
extent, and there are notable shortcomings in practical applications:

(A) Threshold value is fixed and independent of the actual running state. The fixed threshold value
of the existing method mainly depends on the factory index of the equipment or the experience
of professionals in the enterprise and does not depend on the current actual operating conditions
or changes in the field environment of the equipment. A reasonable alarm threshold should
consider these changes and apply dynamic adjustments.

(B) State demarcation is not clear. After the equipment monitoring value exceeds the fixed threshold,
this can only indicate that the current equipment may be operating abnormally, but it cannot
explain the current state of the equipment or the level of failure from the perspective of physical
meaning, which inhibits field operators from performing more detailed repair operations.
In practical applications, in addition to identifying equipment abnormalities, the current state of
the device should be determined, rather than simply the dichotomy [18] (normal or fault).

(C) Unreasonable division standard. At the factory site, different types, different working loads,
and the historical application of equipment will affect the equipment itself. It is clearly
unreasonable to set the same threshold based on approximate standards or experience without
considering the equipment status.

From the perspective of fault warning, many researchers have performed relevant
research. The fault warning is mainly studied from four aspects: sensitive feature [19–21],
probability model [22,23], state classification [24–29], and time series prediction [30]. For example,
Rostek et al. [31] realized early detection and prediction of fluidized bed boiler leakage with the use
of the artificial neural network (ANN) method. Chen et al. [16] conducted an early warning study
of power plant failure based on the evidential k-nearest neighbor (EKNN) rule. Wang et al. [32]
proposed an early warning method for transmission line galloping based on the support vector machine
(SVM) and AdaBoost bi-level classifiers. Feng et al. [33] recommended an improved autoregressive
integrated moving average (ARIMA) model, which can identify abnormal events earlier in the light
curve obtained from ground-based wide-angle camera arrays (GWACs). Zhang et al. [26] applied the
improved multi-state estimation technology of the process memory matrix to provide an early warning
of failure of auxiliary equipment in power plants. However, although these methods study the setting
of the warning value from the perspective of the algorithm, they are still essentially dichotomy-based
methods with a fixed threshold and still possess the above disadvantages. In actual factory applications,
in addition to identifying whether the equipment is operating abnormally, its state also needs to be
determined, and different dynamic warning values should be set for its different states.

To develop a more effective equipment alarm technology, an adaptive warning method for
equipment based on the similar proportion and probability model is proposed to solve the fixed
and single-alarm threshold. First, the equipment state is divided into four categories in accordance
with closely related sensitive features, and the alarm threshold in a specific state is then obtained
by inputting historical equipment data into the kernel density estimation model. Second, a similar
ratio function is defined, and the initial threshold for online operation of the device is accordingly
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determined. Third, the warning value of the multi-state equipment is instantly updated by combining
the probabilistic neural network and the dynamic-σ method. Finally, the proposed method is verified
by means of the lifetime data of a rolling bearing.

The rest of this paper is arranged as follows: In Section 2, the self-adaptive early warning method
and dynamic early warning line drawing method are described in detail. In Section 3, the proposed
method is verified by specific experimental data. Section 4 summarizes the article and outlines future
research directions.

2. Algorithm Theory and Method

According to the established model and sensitive features of historical equipment and online
equipment, real-time adaptive dynamic early warning can be conducted for online equipment. The
corresponding calculation process is shown in Figure 1.
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The specific calculation steps are as follows:

(1) Process the historical device signal, including preprocessing and sensitive feature extraction.
(2) Apply the K-means method to identify the operating state of the equipment and divide it into K

operating states.
(3) According to historical equipment data and kernel density estimation methods, obtain the

thresholds of different states.
(4) Collect dynamic data of online equipment and analyze the similar proportion between the data

of the normal state of online equipment and historical equipment to obtain the initial alarm
threshold for each state of the current equipment.

(5) Input the data into the probabilistic neural network for analysis, construct the probabilistic model
of the equipment state, and update the warning value according to the dynamic-σ update method
to obtain the dynamic early warning lines at all levels of the equipment.

2.1. Pretreatment and Feature Extraction

Before clustering the original data, it is necessary to perform preprocessing, including data
cleaning, noise reduction, and normalization. Data cleaning needs to identify and remove outliers and
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fill in missing values. Noise reduction aims to remove environmental noise in the data as much as
possible and to smooth the data.

2.1.1. Wavelet Denoising

If a signal f (t) becomes s(t) after being polluted by noise, then the basic noise model can be
expressed as:

s(t) = f (t) + σ× n(t) (1)

where n(t) is noise and σ is the noise intensity. Wavelet denoising tries to attenuate the noise component
n(t) so as to achieve the purpose of noise reduction.

In general, the wavelet denoising process of a one-dimensional signal can be divided into three
steps as follows:

(1) Wavelet decomposition of the signal: select the wavelet basis function, determine the appropriate
number of wavelet decomposition layers, and then perform n-layer wavelet decomposition of the
original signal s(t).

(2) Threshold quantization of the wavelet decomposition coefficients: for the wavelet coefficients from
the first layer to the Nth layer, the appropriate threshold is selected for threshold quantization.

(3) Signal reconstruction by inverse wavelet transform.

The result of wavelet denoising depends on the following two points:

(a) The denoised signal should have the same smoothness as the original signal, namely, the correlation
ρ between the two columns of data should be high;

(b) The smaller the root mean square error (RMSE) and the larger the signal to noise ratio (SNR)
between the processed signal and the original signal are, the better the attained effect is.

The calculation equations of SNR, RMSE, and ρ for the evaluation indexes of noise reduction are
as follows:

SNR = 10lg[
N∑

t=1

f (t)
/ N∑

t=1

( f (t) − n(t)) ] (2)

RMSE =

√√√
1
N

N∑
t=1

[ f (t) − n(t)] (3)

ρ =
N

∑N
t=1 f (t)n(t) −

∑N
t=1 f (t) ×

∑N
t=1 n(t)√

N(
∑N

t=1 f 2(t)) − (
∑N

t=1 f (t))
2
×

√
N(

∑N
t=1 n2(t)) − (

∑N
t=1 n(t))

2
(4)

According to analysis of the steps of wavelet denoising, the types of wavelet bases, the number
of decomposition layers, and the threshold quantization method all impact the final denoising effect.
This paper also analyzes these three aspects and selects the most suitable wavelet denoising method.

2.1.2. Normalization

Because of the different dimensionality levels of the data, the larger-scale dimensional data
will overwhelm the smaller-scale data and affect the clustering speed. To eliminate this effect,
each variable needs to be normalized such that different variables can be analyzed and compared
equally. The corresponding equation is as follows:

qq
i =

qi − qmin

qmax − qmin
i = 1, 2, . . . , N (5)

where qi is the measured value of the variable at the i-th moment, qmax is the maximum value of the
variable in this period, qmin is the minimum value, and qi

q is the normalized value.
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2.1.3. Selection of Feature Variables

The extraction of feature variables has a direct impact on the accuracy and reliability of early fault
warning. It is not better to select more fault features, and the increase in invalid features may lead to an
increase in the complexity of the early warning process and a decrease in the accuracy of the diagnosis
results. Therefore, it is necessary to select sensitive features that contain as much fault information as
possible as input to the model. In this paper, the PCA-WLE method proposed in the literature [1] is
adopted to extract and select sensitive features.

2.2. Operating State Identification

During the whole service life of the equipment, when it traverses the evolution process from
normal to abnormal to the fault state, the historical data collected must include extensive data in the
normal state, some data in the abnormal state, and little data in the fault state. Therefore, it is necessary
to identify the different operating states of the equipment.

The K-means algorithm adopts the distance as the judgement index to divide the data set into K
categories, based on the largest data difference among different categories and the highest degree of
data similarity within the same category.

The historical data set is recorded as X = [X1, X2, . . . , Xn], wherein X1, X2, . . . , Xn are the n
data objects corresponding to n sensors; and the dimension of each group of data objects is N, i.e.,
Xi = [xi1, xi2, . . . , xiN]. Let K be the number of cluster centres, and select K initial points as centroids,
and the set of corresponding cluster centers is C = [C1, C2, . . . , CK], for C j =

[
c j1, c j2, . . . , c jn

]
.

J(C, X) = min(
K∑

j=1

n j∑
i=1

d(C j, Xi)) (6)

where n j is the number of points of the data object of category C j, and d
(
C j, Xi

)
is the Euclidean distance

between the centre of the category and the data object, which is used to measure the similarity between
the data. The smaller the calculated value is, the greater the similarity is, which is defined as follows:

d
(
C j, Xi

)
=

√(
c j1 − xi1

)2
+ · · ·+

(
c jn − xin

)2
(7)

2.3. Threshold and Similarity Proportion of Each State

2.3.1. State Thresholds for Historical Equipment

According to the clustering results, the time series data in the different states of historical
equipment can be obtained. The probability distribution of the different states and the corresponding
state thresholds can also be obtained.

Kernel density estimation is a nonparametric probability density estimation method that is mainly
applied to directly reflect the distribution of characteristic parameters of different states. In the actual
production process, the probability density function of the collected data is often unknown, and the
specific distribution form cannot be determined, so the kernel density estimation method is adopted to
analyze the distribution law that is not known in advance. In this data processing approach, the data
to be analysed are one-dimensional data, and the one-dimensional kernel density estimation equation
is adopted:

f̂ (x) =
1
n

n∑
i=1

K
(x− xi

h

)
(8)

where h is the bandwidth for h > 0, and K is a non-negative function called the kernel function. Here,
the Gaussian function is used as the kernel function, namely, K(x, h) ∝ exp

(
−x2/2h2

)
; f̂ (x) is the kernel
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density estimation of density function f (x). Bandwidth H can be selected as the minimum of the mean
integrated square error (MISE).

hM = min

E
[∫ +∞

−∞

(
f̂ (x) − f (x)

)]2

dx

 (9)

The initial threshold value of the alarm is defined as ω0 when the value of the probability
distribution function reaches 99%.

2.3.2. Similar Proportion Function

For historical equipment and online equipment, although they operate under the same processing
conditions and the external environment is basically the same, there will still be different degrees of
deviation due to the component itself. To quantitatively express the deviations among the variables, a
similar proportion function needs to be constructed to truly express the online devices.

In this paper, the Euclidean distance [34] between two groups of data and the mean are selected to
construct a similar proportion function. The Euclidean distance between each data point can represent
a similar proportion from the local point of view, while the mean represents the same from the overall
point of view. The feature vector X obtained from the historical equipment and the feature vector Y
obtained from the online equipment are selected for comparison.

η = w1η1 + w2η2 = w1 ×
1

1 +
√∑N

i=1(Xi −Yi)
2
+ w2 ×

X̃

Ỹ
(10)

where η is the similar proportion function, η1 is the distance similar proportion, and η2 is the overall
similar proportion. w1 and w2 are the distance weight and overall weight, respectively, and both
belong to [0,1], for w1 + w2 = 1. X̃ and Ỹ are the means of the historical and online equipment data,
respectively. The larger the η value is, the higher the similarity between the two is.

2.4. Dynamic Warning Lines at All Levels

2.4.1. State Probability Model of the Equipment

The online monitoring data are input into the probabilistic neural network for analysis, and
the equipment state probability model is constructed according to the sum result. A probabilistic
neural network is a neural network that can be used for pattern recognition based on the Bayesian
minimum risk criterion. The calculation method of the conditional probability is mainly expressed by
the Parzen method:

P(X|ωi) =
1

(2π)l/2σ̂lNi

∑
xi∈ fk

exp
[
−‖X − xi‖

2σ̂2

]
(11)

where X is the sample vector to be identified, ωi is the category, l is the sample vector dimension, Ni
is the number of samples of category ωi, {xi} is the training sample vector, and σ̂ is the smoothing
parameter. To simplify the model, the input feature indexes are all one-dimensional vectors, so the
above equation can be simplified as follows:

P(x|xi) =
1

√
2πσ̂N

N∑
i=1

exp
[
−‖x− xi‖

2σ̂2

]
(12)

where x is a feature of the state to be identified, N is the total number of training samples, and xi is the
i-th training sample value.
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2.4.2. Dynamic Adaptive Threshold Update Method

During the normal operation of the equipment, because of the change in field signal transmission
and environment, the data are subject to constant dynamic fluctuations. The traditional fixed
threshold method will cause false alarms or missing alarms, which will affect the early warning results.
The dynamic-σ method is adopted to update the thresholds.

According to the Chebyshev inequality, the normal interval of any random variable with finite
expectations and a finite variance is [µ− λσ, µ+ λσ], where µ and σ are the mean and variance of the
random variable, respectively, and the bandwidth coefficient λ is related to the error detection rate α,
i.e., α = 1/λ2.

µ =
1
n

n∑
i=1

zi (13)

σ =

√√
1
n

n∑
i=1

(zi − µ)
2 (14)

where zi is the measured value of the variable at the i-th moment. To reflect the dynamic nature of
the data, it is necessary to input the data at each subsequent time point into the above equation for
updating purposes. The mean value and variance are subsequently derived to further reduce the
calculation amount and reduce the data storage space:

µM+1 = µM +
1

M + 1
(zM+1 − µM) (15)

σM+1 =

√
M− 1

M
(σM)2 +

1
M + 1

(zM+1 − µM)2 (16)

according to the calculation of the mean value µM+1 and variance σM+1 at time M + 1, only the mean
value U and the variance Q at time M and the measured value zM+1 at time M + 1 need be considered.

3. Experiment and Analysis Results

3.1. Experimental Data Description

With the full life cycle data of XJTU-SY rolling bearings as the test basis for analysis [35], the relevant
parameters of the bearings are listed in Table 1. Two PCB-352C33 unidirectional acceleration sensors
are fixed in the horizontal and vertical directions of the test bearing, and the DT9837 dynamic signal
collector is applied to collect its vibration signal. The bearing test stand is shown in Figure 2. The bearing
test platform can change the working conditions by adjusting the equipment parameters, including the
rotational speed and radial force. An acceleration sensor is adopted to collect the vibration signal of
the equipment. The sampling frequency is 25.6 kHz, the sampling interval is 1 min, and the sampling
time is 1.28 s. Python was chosen as the software for writing and verifying the model in this article.

Table 1. Tested bearing parameters.

Bearing
Type

Inside
Diameter

Outside
Diameter

Bearing
Mean

Diameter

Ball
Diameter

Number
of Rollers

Contact
Angle

LDK
UER204 29.30 mm 39.80 mm 34.55 mm 7.92 mm 8 0◦
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3.2. Analysis Results

The historical data of similar equipment under the working conditions of a rotational speed of
2100 r/min and radial force of 12 kN are selected for study, and the original vibration data are cleaned.

Different wavelet bases have different time-frequency characteristics, so different wavelets can
obtain different results in denoising the same signal. Since a compact support and smoothness of the
wavelet cannot be achieved at the same time, various factors must be considered comprehensively,
and an eclectic method must be adopted to select the wavelet basis to better process the noisy signal.
Thirty-seven kinds of commonly used wavelet bases are selected to reduce the noise of the signal,
labelled 1–37, and the corresponding serial numbers are listed in Table 2. The signal to noise ratio
(SNR), root mean square error (RMSE) and correlation coefficient of the noise-reduced signal are
analyzed, as shown in Figure 3.

Table 2. Commonly used wavelet bases and corresponding sequence numbers.

Serial Number Wavelet Base

1 haar
2–11 db1, db2, db3, db4, db5, db6, db7, db8, db9, db10

12–18 sym2, sym3, sym4, sym5, sym6, sym7, sym8
19–23 coif1, coif2, coif3, coif4, coif5
24–36 bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8

37 dmey
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Generally, the higher the SNR of the signal is, the closer the noise reduction signal is to the energy
of the real signal. The smaller the RMSE is, the smaller the deviation between the denoising signal
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and the actual signal is, the better the smoothness and denoising effect are. The closer the correlation
coefficient is to 1, the better the similarity between the noise filtering signal waveform and the actual
signal waveform is and the lower the distortion degree is. Through analysis of these 37 kinds of
wavelets, it is found that the db10, sym8, coif5, and dmey wavelets attain better noise reduction effects
on the signals used in this case.

The number of layers of wavelet decomposition also affect the noise reduction effect. The original
signal is denoised by 2- to 8-layer wavelets, as shown in Figure 4. According to the analysis, when the
number of decomposed layers is small, the SNR of the signal is high, the RMSE is small, and the
correlation coefficient is high. Numerically speaking, the denoising effect is the best, but from the
waveform point of view, the signal still contains much noise after denoising with a small number of
layers. With the increase in the number of decomposition layers, the waveform of the denoising signal
is smoother, but the distortion degree is higher. As shown in Table 3 and Figure 5, three layers are the
optimal number of decomposition layers, which not only effectively eliminates noise but also retains
the information in the signal as much as possible. Therefore, it is important to choose the number of
decomposition layers properly to reduce noise when wavelet decomposition is performed.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 15 
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The soft threshold, hard threshold, and fixed threshold are also compared and analyzed,
as summarized in Table 4. Four kinds of wavelet basis functions are adopted to reduce noise,
among which the hard threshold method is the best, the fixed threshold method attains the second best
effect, and the soft threshold method performs the worst. Finally, the hard threshold denoising method
of dmey wavelet 3-layer decomposition is applied to denoise the signal.

Table 4. SNR and RMSE of the four wavelet bases after noise reduction with three layers.

Wavelet Base Threshold Method SNR RMSE Correlation Coefficient

dmey
hard threshold 6.799 0.969 0.889
soft threshold 5.730 1.096 0.857

fixed threshold 6.697 0.980 0.887

db10
hard threshold 6.677 0.983 0.886
soft threshold 5.616 1.110 0.852

fixed threshold 6.569 0.995 0.883

sym8
hard threshold 6.664 0.984 0.886
soft threshold 5.588 1.114 0.851

fixed threshold 6.554 0.997 0.883

coif5
hard threshold 6.718 0.978 0.887
soft threshold 5.653 1.106 0.853

fixed threshold 6.718 0.978 0.887

A total of 52 features are extracted from the noise-reduced signal, as shown in Table 5.
Among them, wavelet packet energy and energy entropy are decomposed through dmey wavelet
4-layer decomposition. According to the PCA-WLE [1] feature selection method, the root mean square
value RMS, wavelet packet total energy ET and node 1 wavelet packet energy entropy S1 are selected
as sensitive features. Meanwhile, the obtained features are normalized. The RMS of the signal can
describe the vibration energy and reflect the wear degree of the bearings, while the wavelet packet
energy and its entropy have a high noise resistance, and the higher the energy in the sub-band is,
the more notable the fault information is.

Table 5. Relevant features of bearings.

Time-Domain Features Frequency-Domain
Features

Wavelet Packet
Energy

Wavelet Packet
Energy Entropy

Mean Kurtosis Mean Frequency
(MF) Total energy of

wavelet packet
(ET)

Total energy
entropy of wavelet

packet
(ST)

Root Mean Ssquare
(RMS) Kurtosis Factor Center Frequency

(CF)
Absolute Mean Form Factor Root Mean Square

Frequency (RMSF)Amplitude of RMS Pulse Factor Node i wavelet
packet energy

(ei)
I = 1, 2 . . . 16

Node i wavelet
packet energy

entropy
(si)

I = 1, 2 . . . 1 6

Peak-to-peak
Value Margin Factor

Peak Factor Skewness Standard Deviation
Frequency (STDF)Standard Deviation Skewness Factor

The running state of the bearings is divided into four types: normal operation, mild anomaly,
moderate anomaly, and severe anomaly, namely, K = 4. With the selected sensitive features as clustering
parameters, according to the historical data, the K-means clustering method is applied to obtain the
clustering centre of the operating conditions, as summarized in Table 6. The results of K-means
clustering are shown in Figure 6.
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Table 6. Historical data clustering centres and thresholds.

Clustering Centre (Normalization)
Threshold(RMS) Classification

RMS ET S1

0.0143 0.0009 0.9998 0.7281 Normal operation
0.2743 0.0616 0.9563 2.9079 Mild anomaly
0.4046 0.1259 0.8903 3.8243 Moderate anomaly
0.9263 0.6173 0.1734 7.7653 Severe anomaly
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probability distribution diagram is obtained. When the value of the probability distribution function 
reaches 99%, it is used as the initial alarm threshold to realize early warning. The results are shown 
in Figure 7, and the initial threshold is summarized in Table 6. The part above the threshold of the 
severe anomaly is considered to be in the state of complete failure. 
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Figure 6. Results of k-means clustering analysis: (a) spatial representation of clustering results;
(b) temporal variation of different categories.

The kernel density of the fault data in the four states is estimated, and the corresponding probability
distribution diagram is obtained. When the value of the probability distribution function reaches 99%,
it is used as the initial alarm threshold to realize early warning. The results are shown in Figure 7,
and the initial threshold is summarized in Table 6. The part above the threshold of the severe anomaly
is considered to be in the state of complete failure.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 
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Then, the vibration signal of the online running bearings is collected. The experiment is performed
at a speed of 2100 r/min and a radial force of 12 kN. The time series data of the online running bearings
in the normal running state are Y = [Y1, Y2, . . . , Yn], and n is the number of data points in the sampling
period. The normal data of the historical equipment and online equipment in the same time period are
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selected for similar proportion analysis, and the Euclidean distance and cluster centre of the two sets
are calculated.

Through correlation calculation, the similarity proportions are η1 = 0.8491 and η1 = 0.8491.
The distance weight w1 and center weight w2 are both set to 0.5. Finally, the similarity ratio η = 0.8014
is obtained. Based on this ratio, the initial thresholds of the different states of the online devices under
the same working environment conditions can be derived, as listed in Table 7.

Table 7. The initial threshold of the online equipment in each state.

Equipment State Normal Operation Mild Anomaly Moderate Anomaly Severe Anomaly

RMS (mm/s) 0.5834 2.3382 3.0751 6.2441

The online monitoring data are input into the one-dimensional probabilistic neural network model,
from which the probabilistic neural network can establish the probabilistic model of the running state
of the equipment. According to the calculation method of the dynamic early warning value mentioned
above, the data of each additional 10 cycles (i.e., 8000 sampling points) are input into the model for
updating purposes, and each alarm value is linked to obtain dynamic early warning lines at all levels,
as shown in Figure 8a.
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Selecting the normal state data as an example, Figure 9 shows the early warning method based on
a fixed threshold [36] and the early warning line of the early warning method proposed in this paper.
It is clear that the warning line obtained with the warning method based on the fixed threshold will
clearly cause many over-limit alarms. However, the dynamic adaptive early warning line can adjust
the threshold value fittingly according to the environment fluctuation when the data do not produce
large anomalies, which can greatly reduce the number of false positives. From the dynamic warning
diagram, it is evident that the dynamic warning lines at all levels can regulate the operation range
of the equipment in the different health states. When the detection features exceed a certain range,
the current equipment has deviated from its existing state. Field staff can further process the equipment
according to its state, such as strengthening monitoring or directly shutting down for maintenance.
When the detection features fluctuate above and below the threshold line or even drop, the equipment
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is considered to be in the unstable state, which is the run-in period rather than a fault. When the
detection features exceed the level-4 warning line and keep rising, the equipment is considered to be in
the fault state and needs to be shut down for maintenance in this case.
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For the two methods, the result when the actual value exceeds the warning line is recorded as 1 at
a certain time and as 0 below the warning line. The result is shown in Figure 10. Through comparative
analysis of the two methods in Figure 10a,b, it can be seen that for the normal state data, both early
warning methods exhibit over-limit behavior in the early stage, but the data quickly recede, indicating
that at this time, only data fluctuation occurs within the normal range. The data after the 3000th
instance are considered to be developing toward the abnormal state, namely, it is regarded as the
correct early warning behaviour for any method. Before the 3000th instance, the method based on the
fixed threshold issued 69 false alarms, while the method based on dynamic adaptive warning only
issued 7 false alarms, indicating that the latter greatly reduced the number of false alarms in the online
detection of equipment.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 15 
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Based on the dynamic adaptive early warning method, after the equipment leaves the abnormal
state, it can make adaptive adjustments for the different abnormal states and issue early warnings for
the more serious abnormal states or even complete faults in the next stage, providing more detailed
guidance and maintenance strategies for the field staff.
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4. Conclusions

This paper introduces a new flexible multi-state adaptive early warning method for mechanical
equipment and proposes an adaptive dynamic update model of the equipment alarm threshold based
on the similar proportion and state probability model. In the case of early warning of rolling bearings,
this method is compared to the traditional fixed threshold method, which verifies the superiority of this
method. According to the experimental and analytical results, the following conclusions can be drawn:

1. Based on the similarity of historical equipment, the initial thresholds of the different health states
of online equipment can be determined, which can intuitively reflect the current state of the
equipment, provide an early warning of sudden failures, and offer a certain reference guidance
for online equipment under the same working conditions.

2. The monitoring data of online equipment change with the interference of external factors such
as environment and working conditions, and when the equipment is in the abnormal state,
its abnormal degree changes accordingly. In this paper, the equipment status is divided into four
categories and analyzed, which can better represent its status and provide more detailed and
reasonable guidance.

3. The obtained dynamic alarm lines at all levels can regulate the operation range of the equipment
in its different health states, which makes the method proposed in this paper not only attain a
high sensitivity by alarming when abnormal or even when a fault occurs in the equipment but
can also tolerate the data fluctuation caused by the equipment in the run-in period to a certain
extent to prevent false positives.

4. Compared to the traditional method of a fixed threshold, this method can effectively reduce
the number of false alarms and realizes a higher prediction accuracy, which demonstrates its
effectiveness and superiority.

The early warning of online equipment from the perspective of the similar probability and
proportion model can be applied not only to bearing monitoring but also to the early warning of other
online equipment. However, there are still many unsolved problems that need to be addressed in
future research, such as how to determine the failure type during maintenance based on early warning
of the equipment and how to settle data volatility and intervals in data updating.
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