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Abstract: The retina is a highly organized structure that is considered to be “an approachable
part of the brain.” It is attracting the interest of development scientists, as it provides a model
neurovascular system. Over the last few years, we have been witnessing significant development
in the knowledge of the mechanisms that induce the shape of the retinal vascular system, as well
as knowledge of disease processes that lead to retina degeneration. Knowledge and understanding
of how our vision works are crucial to creating a hardware-adaptive computational model that
can replicate retinal behavior. The neuronal system is nonlinear and very intricate. It is thus
instrumental to have a clear view of the neurophysiological and neuroanatomic processes and to
take into account the underlying principles that govern the process of hardware transformation
to produce an appropriate model that can be mapped to a physical device. The mechanistic and
integrated computational models have enormous potential toward helping to understand disease
mechanisms and to explain the associations identified in large model-free data sets. The approach
used is modulated and based on different models of drug administration, including the geometry
of the eye. This work aimed to review the recently used mathematical models to map a directed
retinal network.

Keywords: retina; drug delivery; retinal behavior; neuroscience; computational models;
mathematical models
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1. Introduction

Anatomically, the eye can be compartmentalized into a fibrous tunic layer (sclera, cornea,
and conjunctiva), vascular tunic or uvea (choroid, ciliary body, and iris), and an inner coat (retina) [1-3].
The retina, which is made of photoreceptor cells, is a light-sensitive layer of nervous tissue, and is
known to be one of the most metabolically active tissues in the human body. The retina is the organ
that is responsible for the interpretation and control of our vision, it converts light energy into electrical
impulses, which is then transmitted to the brain by the optic nerve [4,5]. The outer retina (OR) is
the innermost layer of the light-sensitive eye and it is in this structure that the first stage of visual
processing occurs [6]. The photoreceptor (PR) cells are anatomical and functional neurons specialized
in photon capture and are responsible for the release of electrical responses [7]. The retinal pigment
epithelium (RPE), located on the external side of the PR cells, is primarily responsible for supporting
the primary visual functions, such as the phagocytosis of the external segments of the PR, retinal
recycling (vitamin A), absorption of scattered light, and bidirectional transepithelial transport between
the retina and the choriocapillaris, choroid, and the systemic blood circulation [8,9]. These cells have
specialized functions in supporting cells and tissue homeostasis, as well as maintaining a healthy retina.
Although the retina is a highly specialized and optimized system, organisms do not depend on it for
immediate survival, and therefore, it is prone to failure when invaded [10].

For the treatment of eye diseases, the optimal route for drug administration depends on the target
tissue, duration of contact, and the disease itself. Diseases of the anterior eye (glaucoma, inflammations,
and infections) are treated with eye drops, but due to the complex anatomy and dynamic physiological
defense mechanism of the eye, it is known that less than 5% of the eye drop reaches the posterior
chamber of the eye, and negligible penetration is seen through the anterior chamber [11-13]. The eye
drops for topical ocular drug delivery have limited success because the drug concentration that hits
these tissues is too low. This route has been less explored for treating diseases occurring at the back of
the eye [14-17]. For this reason, novel routes and innovative drug delivery systems for intraocular
drug delivery injection or transscleral implants have been investigated to reduce the pre-corneal loss.
However, it is necessary to consider that both intraocular injections and transscleral implantation are
invasive and involve a high risk of side effects.

The parenteral administration via the subconjunctival route delivers the drug underneath the
conjunctival membrane, allowing the dose to reach the retina. The first drug delivery route across the
transmembrane is via subconjunctival injection. There is thus a growing interest in new ocular drug
delivery systems that facilitate the access of the drug to its target, or that can extend its duration of
action. However, frequent injections can lead to adverse events, such as intraocular bleeding, infection,
and retinal detachment. Transscleral drug delivery has been exploited as an alternative approach over
intravitreal injection for drug delivery to the posterior segment of the eye.

For the development of ophthalmic medicines, it is crucial to know how to design the drug release
profile, absorption, distribution, metabolism, and excretion kinetics [18]. Drug delivery systems that
use polymers or lipids are capable of releasing a drug in a controlled manner based on the physiology
and pharmacokinetics of the eye. Since the eye has many membranes, tissues, and fluid flows, it is
difficult to quantitatively estimate its effect on drug administration.

Nowadays, intravitreal implants for controlled drug delivery, such as Ozurdez™ (dexamethasone
0.7 mg), lluvien™ (fluocinolone acetonide 0.19 mg), and Retisert'™ (fluocinolone 0.59 mg), as well as
intraocular injection, such as Acastin™ (bevacizumab 1.25 mg) and Lucentins™ (ranibizumab 2.3 mg),
are the dosage forms offering improved management of the drug bioavailability and safety profile via
the ocular route for the treatment of retinal diseases. However, these drugs are costly and not available
for most of the population worldwide. In countries with social inequality, pharmaceutical care is
restricted such that quality pharmaceutical care does not reach 90% of the population. Furthermore,
most of the worldwide population will never receive any treatment for intraocular diseases. As such,
the traditional model for rethinking new drugs and new strategies of treatment must be overcome.
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New, innovative, and smart scientific strategies need to be put at the forefront of the global science
agenda for rethinking outcomes and advance in the knowledge of degenerative retinal diseases.

Due to the complexity and the high level of tissue specialization, the retina is vulnerable to
changes that promote its degeneration; therefore, ocular degenerative diseases, such as retinopathies,
need to be considered as part of network neuroscience. The linking of empirical and computational
developments allows for the opening of new scientific investigations, which include network dynamics,
brain network manipulation and control, and the integration of network processes into spatiotemporal
domains [19]. Network neuroscience seeks to find new ways to map, record, analyze, and model
the elements and interactions of neurobiological systems, taking into account the brain structure and
function from an explicitly integrative perspective.

The retinal waves propagate retinal activity that arises from the junction of synaptic intrinsic
single-cell properties, excitability, long refractoriness, and network interactions in various vertebrate
species, and perform a fundamental role in forming the visual system and retinal circuit [20,21].
The recognition of a biophysical approach taking place at the retina is critical for the identification of
neuronal elements, transmission capacity for healthy vision, vision in the presence of a disorder, and
more recently, for remote development therapies to treat diseases in the posterior and hidden sections
of the eyeball.

In brief, the retinal circuitry transforms photoreceptor signals at every synapse [20,22].
Table 1 summarizes the impact of each junction and synaptic transmission on retinal networking.
Three successive stages are involved in the formation, development, and maturation of the complex
retinal cellular system that makes up the retina. Different classes of synaptic transmissions characterize
these three stages, namely, gap junctions, acetylcholine, and glutamate.

Table 1. Impact of the junctions and synaptic transmission on retinal networking.

Synaptic Transmission Main Action Mediated By Effect

Electrical synapse coding Dynamic interactions
ON-OFF directionally between electrical and
selective ganglion cells chemical synapses

Activity-dependent

Gap junctions regulation and plasticity

Transient network

To held under a current neuron with an Ecy (<70

clamp (I, = 0) when a

Acetylcholine . mV) manipulation, and Elicits retinal waves
voltage is pulsed from ASAR up-reeulate SACS’
~70 mV to 15 mV. 20" ubes
presynaptic waves.
Glutamate Ultra-fast response of P8 and P22 retinas Restores bursting activity

photoreceptors synapse

In: holding cation current, Ecj: membrane potential, Ay AR: adenosine A(2A) receptor, SACs: starburst amacrine
cells, P8/P22: postnatal days.

Stage I or gap junctions are subjected to activity-dependent regulation and plasticity that controls
signal spread through neural networks to keep the postsynaptic membrane close to the membrane
potential (E¢y ) [20,22]. During stage II of retina development, retinal waves are triggered by starburst
amacrine cells (SACs), which are transient networking neurons. SACs have a particular asymmetric
synaptic distribution of excitatory and inhibitory synapses, and are therefore involved in steering the
selectivity in a mature retina. It is a commons sense that SAC activities disappear with maturation.
However, Huang et al. described the role of adenosine A(2A) receptor (A AR) in up-regulating the
frequency of retinal waves (stage II) via the presynaptic SAC route. This result provides an important
target for the manipulation of retinal waves and new insights into development simulation studies
of ocular drug administration based on biophysical approaches [23,24]. In brief, the specific stage II
development of waves induced by SACs and mediated by the neurotransmitter acetylcholine is made
of a transitory network of autonomous busters that improve the opportunistic local synchrony via
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cholinergic coupling, which can improve wave propagation, depending on the conditions. However,
it must be noted that some of these parameters can be pharmacologically controlled [25].

In stage 11, the later waves appear to be spatially bound and more localized than stage II waves.
These localized activity patterns could potentially have a link to how receptive fields are formed
before vision becomes functional [24,26]. The light adaptation phenomenon allows the cone response
to dominate over rod responses at high illumination. Then, dark-adaptation and light-adaptation
processes are related to the rate of regeneration of photopigments and the intracellular concentration
of calcium. The photoreceptor synapse, in turn, exhibits a high basal release of glutamate from its
axon terminal and affects the activity of the bipolar and horizontal cells. Then, the bipolar cells
form a synapse with amacrine and retinal ganglion cells. However, the glutamate-mediated synaptic
activity of the retinal bipolar and ganglion cells affects the transmission of visual information via
the ganglion cells. Zheng et al. showed that bursting activity in the photoreceptor synapse can be
reinitiated pharmacologically in postnatal day P8 (stage III) and postnatal day P22 retinas with chemical
agents upon blocking all synaptic connections by applying an antagonist [21,27].

In the developing retina, waves evolve in consecutive stages based on different types of synaptic
transmission (gap junctions (stage I), acetylcholine (stage II), and glutamate (stage III)), and are
mediated by transient networks of specific cell types [28].

SACs have a special asymmetric synaptic distribution of excitatory and inhibitory synapses,
and therefore they are involved in steering the selectivity in the mature retina but they have a different
role during early development [29]. Due to autonomous intrinsic cellular mechanisms, these cells
exhibit a spontaneous rupture behavior and trigger stage II retinal waves but this activity disappears
with maturation [21]. SACs are made of a transitory network of autonomous busters that produce
opportunistic local synchrony via cholinergic coupling during stage II, which can form to propagate
waves depending on the conditions.

There is a great deal of theoretical information and experimental modeling studies that are
available regarding stage Il retinal waves but there are still crucial issues that are not addressed in
these studies [20]. The models studied so far do not explain the influence of biophysical parameters
(conductance) on the activity of SACs during this stage. It is important to consider this point as some
of these parameters evolve during development or can be pharmacologically controlled, hence causing
effects on SACs [21].

It is known that stage Il retinal waves are ubiquitous but some studies have found large variations
in the bursting period of SACs across species [30]. Matzakos-Karvouniari et al. proposed that SACs
burst because at stage II, they are close to a bifurcation (saddle node) and are triggered by small
variations in membrane potential (noise or action of other cells), causing the cell to shift from a resting
state to fast oscillations. Following this bifurcation, they remain in the rapid repetitive firing regime,
activating the calcium-dependent slow potassium channels and generating a slow hyperpolarization
current (SHP) that leads the cell to a homoclinic bifurcation, returning to its resting state and allowing
for a long period of hyperpolarization [20]. The authors identified fast voltage-gated potassium
channels as the rapid channels responsible for their high activation origin and the fast closure kinetics
for rupture, and identified them as Kv3-type K* channel subunits. The voltage-dependent Kv3 channels
play an essential role in this recognition process that reduces the neuron’s refractory period [30,31].
The presynaptic function of Kv3 channels remains to be investigated. Potassium conductance variation
of the Kv3 channels acts on the transient intrinsic properties of SAC excitability during development.
Matzakos-Karvouniari et al. proposed that this bifurcation influences the interval between SAC
bursts [20]. They observed a wide range of interburst periods between species, which can be
explained by the high variability or by an external current. Thus, in cholinergically coupled SACs, the
rupture period exhibits intrinsic variability due to simple bifurcation arguments without the need for
external mechanisms.

A total of 637 genes responsible for visual impairment or even blindness have been described
in the literature and are related to inherited and age-related retinal degenerations. In these
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situations, computational modeling of OR regarding retinal degeneration allows us to understand how
these genetic dysfunctions cause process failures, understand their quantitative interdependencies,
and discover the pathways that lead to cell death [32].

Regarding vision and eye diseases, there are several in vivo studies available in the literature
(including those exploring various imaging modalities and functional assessment), comprehensive
genotype-phenotype studies, and histopathological and anatomical studies. Due to the complex
interrelationships and limitations of in vitro retinal systems, this theme is not entirely clear and
computer modeling thus offers a way to address these challenges [33,34].

The underlying principles of retinal cell biology are very similar to those of other tissues; therefore,
this data can be exploited in reusable computational structures. However, it is known that the retina has
a special structure involving a laminar organization and high metabolic demands. These constraints
reduce the solutions of computer simulations, making this structure attractive to whole-cell and
tissue models. Thus, vision-forming retinas have been highly studied by utilizing a set of knowledge
and resources in the field of computational biomodeling [33]. Available computational models relate
biophysical precision and hardware-adaptable implementation methodologies [35].

Obtaining clinical notes is an expensive process; therefore, the possibility of generating synthetic
medical visual data is quite attractive and has been explored. However, for today's computer vision
methods, the realistic generation of high-quality medical images is still a challenge [36,37]. The initial
methods for medical imaging were based on simplified mathematical models of human anatomy,
and over time, they evolved into more complex models that involved the most important aspects
of acquisition devices. Thus, the most realistic images are produced by combining anatomical and
physiological medical knowledge [38]. These images have many applications, including validating
image analysis techniques, medical training, and therapy planning, among others [36,37,39].

The traditional top-down approach is the means used to check available data and draw
mathematical models that explain it via image simulation. This approach models complex natural
laws through inevitable simplifying assumptions. However, there is a new view in the field of medical
imaging, where a bottom-up approach is used to directly derive the most important information
from that data. This new approach involves machine learning systems that automatically learn the
internal variability of training data [40]. This system, based on the general idea of contradictory
learning, is capable of synthesizing natural images, which led to an advance in computer vision.
Hardware adaptative optics (HAO) has pushed the limits of optical imaging, which when combined
with the optical coherence tomography associated with HAO, has enabled a detailed three-dimensional
visualization of photoreceptor distributions and individual nerve fiber bundles in the living human
retina [33].

Several models have been created to recreate retinal waves but none can reproduce the autonomous
rhythmic disruption of individual SACs and explain the change in intrinsic properties of these cells
during development [20]. Based on current vision restoration modes, algorithmic models exhibit
a greater correlation between stimuli and the affected neural network; however, the practicality of
physical hardware hinders development.

By adapting current processing methods, it is possible to complement large-scale circuit design
techniques, which allows for the better physical construction of the artificial retina [35]. To restore vision
in patients with degenerative diseases, retinal prosthetic devices have been developed, which through
electrical stimulation of the local regions of retinal tissue, bring together spatiotemporal patterns to
represent the patient-facing image. These devices have proven to be effective, which has led to the
design of various types of devices, many of which are in trials and some are already in the market [41].
For example, Argus II by Second Sight Medical Products Inc. (Sylmar, CA, USA) is already in clinical
trials and has been shown to provide patients considerable visual perception to the extent that subjects
can recognize objects and differentiate letters. Nevertheless, based on safety limits, 45% of individual
electrodes failed to elicit light perception. Thus, adjacent electrodes are required to locally stimulate
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the cells [42]. These findings allow for a considerable increase in functional vision in blind individuals
but new strategies to improve vision have yet to be studied [43,44].

Some tests have already been done to decrease the magnitude of the current required or recreate
the desired peak rates in retinal ganglion cells such that the efficiency and effectiveness of the stimulus
waveform can be improved [45-47]. Whole-cell simulation is still recent, particularly in mammalian
cells, and is therefore considered in biology as one of the challenges of the 21st century.

Whole-cell modeling emerged from developments in proteomics, structural biology,
and cryoelectronic microscopy, as well as from trying to understand the dynamic behavior of cells
and how the genotype expresses itself in the phenotype. Software development that can simulate
whole-cells (E-Cell) or constraint-based genome-scale metabolic network modeling (COBRA toolbox)
has been utilized in these fields [48,49]. The characteristic anatomy and interaction of the cellular and
extracellular compartments means that the manipulation and robust testing using in vitro cell models
and OR computational models is crucial [50-52]. Studies of the gene expression profile of RPE and PR
cells have shown that most genes expressed in the back of the eye are also expressed in most cells,
such that the cell biology is similar to other cell types or tissues and can be placed in a whole-cell model
of the OR. There is a huge amount of cellular data available in the literature that can be transposed
into computational language, allowing for understanding through membranes (disk membranes in
0OS), cilia, transporters, and organelles, as well as to verifying the location and movement of proteins,
metabolites, and other molecules that perform functions in the external retina. Thus, a reduction in the
solution space of computational simulations is expected.

Therefore, understanding and modeling visual system map formation are significant challenges
in neurobiology. The approach is modular and is based on different modes of drug administration.
There are several different classes of mathematical models of the retina. However, in the first decade of
the 21st century, those mathematical models that best respond to the challenges of neurobiology are
used to tune single-cell transcription, front-end retinal models for computer vision tasks, and models
based on detailed retinal circuits [53]. In this work, we have revised the recently used mathematical
models to map the directed retinal network.

2. Biological Signalling Process of Retina

The retina is used to study neurosensory processes because it is seen as the organ that gives access
to the brain. It is considered a good experimental system because of its anatomical organization (layers
of different cell types and extracellular compartments), as well as its easy visualization [6,54]. PR cells
detect light that passes through the internal retina and reaches the PRs of the OR. The internal retina
has bipolar cells, horizontal cells, Mueller glial cells, and retinal ganglion cells, whose function is to
process visual information and to transmit it to the brain. Light is focused onto the photoreceptors that
are present on the surface of the retina, then retinal circuits process these signals and convert them into
a neural pulse code.

The different photoreceptors contact each other through electrical synapses and contact the
bipolar cells through chemical synapses, which in turn communicate with amacrine cells or divert
them to ganglion cells for transmission to the occipital lobe of the brain, which finally interprets the
neural impulses as a flow of images. In the retina, the information flow traverses a direct path (from
photoreceptors to bipolar cells to ganglion cells) and an indirect path (where the AIl amacrine cells
are interposed between bipolar and ganglion cells). Furthermore, the horizontal and amacrine cells
stimulate lateral connectivity among the different pathways [35].

RPE, which is a support cell layer, is next to the PRs. There is a link between the physiology of RPEs
and RPs, and therefore vision depends on suitable communication between these two cell types [55].
RPEs are responsible for recycling the visual cycle components, cleaning the PR membrane fragments
that were generated in the daily PR renewal, transporting nutrients from the circulation to the subretinal
space, and expelling retinal debris [8]. This epithelium belongs to the Bruch basement membrane
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(BBM), which is known to be highly organized and rich in elastin and collagen, which separates the
epithelium from fenestrated choroid capillaries [56].

The maturation of RPEs, the BBM, and choroidal blood vessels allows for the creation of the
outer blood-retina barrier (0BRB), which is a feature of retinal development. This barrier has as its
function the exchange of nutrients, fluids, and residues between the neural retina and the choroid
circulation, and is therefore crucial for light transduction in PRs [8,57]. In the formation of the oBRB,
the fully mature RPE tight junctions (T]s) are formed, which have the role of limiting the paracellular
movement of ions and water through the RPE monolayer and maintain the apical-basal distribution of
the RPE transporters [57]. These features are crucial for maintaining retinal homeostasis since they
allow for the formation of gradients that lead to directional fluid transport from the neural retina to the
choroid [58]. Recent studies have shown that choroid endothelial cells (ECs) act as blood conduits,
forming instructive niches for the differentiation, regeneration, and function of parenchymal cells,
and may thus intervene in the regulation of ECs [59].

The radial orientation of blood vessels and ganglion cell axons, as well as the planar capillary
plexuses, precisely align with the horizontal neural and astrocytic laminae and clearly demonstrate the
connection between the vascular and neural structures of the retina. In addition, it is known that the
human central retina (fovea) has no vessels. On the other hand, abnormal retinal angiogenesis creates
vessels that are not properly oriented and physiologically deformed, and therefore do not adapt to
neuronal histology, in turn leading to vision-threatening exudation and bleeding [54].

In humans, the formation or development of vessels in the retina occurs in its most superficial
layers and spreads outward from the optic nerve head (center point), reaching the nasal side of the
uvea between the retina and the ciliary body before birth [60]. Therefore, from the nascent internal
vascular layer, there is the formation of other capillaries in the deeper retinal layers. The choroid is
the posterior part of the uvea, which is essentially is a layer of vessels and connective tissue pressed
between the retina and sclera. This angiogenic onset is the most common mode of retinal vascular
growth but there are other types [61]. Through the concatenation of vascular precursor cells in the
form of solid cords that lumenize, new vessels are also formed through vasculogenesis. While studies
in this area are lacking, it is thought that this process contributes to superficial plexus growth [62—-64].

Michaelson was the forerunner in the use of dye perfusion techniques to reveal embryonic and
perinatal retinal vasculature and found that capillaries adjacent to nascent venules grow abundantly
and more irregularly around the arteries [65]. Oxygen is known to regulate the growth of blood
vessels in the retina and this theory is reinforced by the fact that: (i) Pathological retinal angiogenesis
occurs in various diseases marked by retinal ischemia. (ii) Retinal vascularization coincides with
developmental processes that indicate local oxygen tension. In late embryogenesis, centrifugal waves
of differentiation and proliferation and synaptic connectivity and electrical activity start in the central
retina and then diffuse. This pathway is followed by the extension of the superficial vascular plexus,
suggesting that metabolic demand and "physiological hypoxia" favor vascular growth. (iii) Oxygen is
still responsible for several angiogenic and angioinhibitory factors.

Vascular endothelial growth factor (VEGF) hypoxia-induced cytokine is involved in the formation
and development of retinal blood vessels [54]. To create the vascular pattern, VEGF acts in restricted and
versatile spatial bands [66]. Retinal capillaries are carefully pruned, which correlates with the reduced
production of VEGF messenger RNA (mRNA), as well as endothelial cell apoptosis in these areas.

Hyperoxia next to the arteries is supposed to negatively regulate VEGF production, reducing
its actions as a survival factor for endothelial cells [67,68]. As the remodulation happens in the
retinal perinatal explants, there are other mechanisms of retraction of vessels that are independent of
systemically supplied oxygen or immune cells [69].

There are several mechanisms for vascular patterning because VEGF and its receptors are expressed
in a non-overlapping manner during retinal vascularization. VEGF is expressed in the developing
retina and its receptors (FLK1, FLT1, and neuropilins 1 and 2) are expressed at a different time and
in a different spatial form [70,71]. Proliferation, migration, orientation, survival, and permeability
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occur due to these receptors, which allows their actions to be delimited by the emergence of receptors
through the availability and subtype of ligands. In addition, the same receptor initiates signals that
may have different effects on different endothelial cells [72]. Thus, only one growth factor sculpts the
developing retinal vasculature through spatiotemporal changes in VEGF and VEGEFR distributions.

Differential effects of VEGF isoforms, a distinct spatial range of action, and orientation functions
of VEGF isoforms produce alternative transduction of VEGFR activation in different endothelial cells.
The relationship between VEGF and other angiogenic or angioinhibitory factors also contributes to the
creation of complex vascular networks [73-76].

The study of retinal disorders improves the research and development of new models for
retinal angiogenesis, as well as improving the investigation of neurovascular relationships and the
development of new antiangiogenic therapies. These studies have determined oxygen to be the main
"actor" in retinal angiogenesis, together with metabolic, immune, glial, neuronal, gene expression,
and perivascular and progenitor cell factors [54].

Angiogenesis is known to be responsible for tissue growth, development, and repair. Thus,
understanding how the various cell types interact to control angiogenesis makes it possible to
understand the occurrence of proliferative vascular diseases, such as diabetic retinopathy [77].
Therefore, the retina is seen as a model of the neurovascular system. In recent years, there has
been growing interest from scientists, with considerable progress being made in determining the
mechanisms that induce and standardize the retinal vascular system, as well as understanding disease
processes leading to its disintegration [54].

3. Computational Modeling of the Retina

It is necessary to understand how our vision works such that we can create a good
hardware-adaptive computational model that properly mimics retinal behavior. An insight into
neurophysiological and neuroanatomic processes is required for understanding the nonlinearities
and related complexities of neuronal systems. These processes should be considered along with the
principles that guide the hardware transformation process to a successful model that can be mapped to
a physical device [78,79].

Some simulation studies of the ocular administration of medicines that consider the geometry
of the eye are available in the literature. Tojo et al. described models in which the eye was modeled
as a cylinder and the partial differential equations were solved using the line method [80,81]. In the
Wyatt model, anterior chamber drug transport was considered using a self-fabricating finite element
algorithm [82].

Balachandran and Barocas [83] and Narasimhan and Vishnampet [84] have considered transscleral
drug delivery. In the first study, the calculations were done using the finite element method, and in the
second study, the commercial software Fluent was used to apply the finite volume method. Both studies
accounted for drug loss via choroid blood flow. Friedrich et al. used the finite element method to
model a drug distribution in a rabbit eye after an intravitreal injection [85]. In turn, Haghjou et al. also
used Fluent software to model the drug distribution in a rabbit eye after an intravitreal injection [86].

GastroPlus software, which is based on the finite difference method, is being developed for human
eye simulations [18]. Kotha et al. developed a virtual pharmacokinetic 3D model of the human eye
based on the finite element method (FEM) that is built using Comsol Multiphysics software. This model
considers the release of the drug after a polymer adhesive is placed on the sclera [18].

The computational model presented in the research by Eshraghian et al. provides a model that
predicts effects on the retina quickly and accurately, gives an extensive understanding of neural
responses to visual stimulation, and provides an architecture that can be truly transformed into a
hardware device. To obtain the optimal speed and precision, implicit (or semi-implicit) ordinary
differential equations ODE were used [35]. The authors present an approach in which they recommend
the effective integration of different dynamic time scales into a unified neural response structure,
where the stem, cone, amacrine, bipolar, and ganglion cells represent the implemented pathways.
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Using this model, they showed that in comparison to traditional ODE solvers, the adoption of numerical
integration accelerates retinal pathway simulations by more than 50%. Thus, they can show a more
achievable solution for hardware implementation of retinal predictive models [35].

Wohrer and Kornprobst used a three-layer model with (i) an outer plexiform layer (OPL), (ii) bipolar
cells, and (iii) an inner plexiform layer. The OPL accepts data based on experimental recordings that
are different from the model of Eshraghian et al. by including recent experimental data, which take
into account features that would otherwise not be explained (e.g., bandwidth filtering of electrical
signals at the photoreceptor level) [35].

In comparison to the conventional use of ODE solvers, the authors systematically analyzed the two
common integral resolution methods to improve the retinal model path simulation performance [87].
To simulate the cellular network in the retina, this model is scalable through lateral connectivity [88].
Transforming a nonlinear system of integral equations uses a numerical technique for the rapid solution
of integral equations, achieving the level of computational efficiency required by bio-systems for the
evolution and progression of numerical solutions from one step to the next. The model can adapt to
the emergence of new data since the parameters and formulations are gathered from the publication of
experimental and modeling studies [35].

Venhuizen et al. used a convolutional neural network (CNN) for total retinal segmentation in
optical coherence tomography (OCT) to develop an automated system that is resistant to the presence
of severe retinal pathology. To explain retinal changes, a generalized U-net network architecture was
introduced in this model [89]. The algorithm proposed by the authors was shown to be qualitatively
and quantitatively superior compared with the available algorithms because it calculated the macular
thickness with an error smaller than the error obtained in the other algorithms. Thus, this study
showed that the proposed algorithm can model a wide variability in retinal appearance, with robust
and reliable retinal segmentation in any type of pathology.

Real-world irradiation values involve a large range of magnitudes that need to be processed by
bionic systems to capture a snapshot of the visual scenes with an exceptional optical sensitivity.

To capture high dynamic range (HDR) images, cameras capable of capturing them are required,
where most standard cameras implement the method proposed by Debevec and Malik [90].

Because standard monitors have a low dynamic range (LDR), problems arise in the later viewing
of images. Two solutions are proposed: the technical solution, where HDR monitors are used but these
are not yet available to the public; and the algorithmic solution, where methods are used to reduce the
intensity from HDR to LDR [91]. These methods are known as tone-mapping operators (TMOs) and
are designed for still scenes and videos. Over time, there has been intense research on still images
according to retinal principles, where the studied approaches combine brightness adjustment and local
contrast improvement [92].

There has been a growing interest and development regarding video tone mapping [90].
In neuroscience, it has been shown that comparable TMOs take place at the retina through adjustment
mechanisms, which are indispensable once the retina has to preserve contrast sensitivity over this
extensive luminance spectrum in ordinary scenes [92].

Benzi et al. developed an innovative TMO based on the strength of an interactive model of the
retina [92]. They departed from the Virtual Retina simulator (VRS) that was developed to model the
main layers and cell types found in the primate retina. It is grounded in biology and it has been
validated using neurophysiological data [93]. This model is considered to be a good example of
synergistic model construction since it explores an indispensable interaction between neuroscience
and computer vision [53].

Itis also interesting for a TMO since it includes a non-trivial contrast gain control (CGC) mechanism,
which improves the local contrast in images and even improves coherence in the temporal luminousness.
However, VRS still cannot solve the tone-mapping task because it is not designed to handle color or
HDR images since there is no photoreception adapter or reading mechanism to produce data regarding
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the multiple retinal responses supplied from different complex cell layers. In this approach, these issues
enrich the VRS model, preserve its bio-plausibility, and tests it on standard tone mapping images [92].

Rahman et al. developed a TMO derived from the Retinex algorithm [94]. This yielded a
restricted non-linear operator based upon the framework model by Land and McCann, whose study
established the interdependence between the eye and brain in color processing, namely, the color
constancy effect [95]. The proposed TMO developed by Rahman et al. using the Retinex algorithm
processes each color channel independently, which is further unified with the color restoration
method [94]. This method has two modes of operation: (1) Single scale, where each color channel is
convolved into small Gaussian clusters of different sizes. Each pixel is nonlinearly combined with the
surrounding image by defining different pixel interactions at different spatial scales. (2) Multi-scale,
where the resulting pixel/surrounding interactions are weighted and summed to obtain the equalized
output image. The assignment of the weights is based on a set of rules regarding undersized or
oversized surroundings [92].

Reinhard and Devlin developed a TMO motivated by the driveline system adaptation set
up in photoreceptors. This model depicts the automatic brightness arrangement that colored
photoreceptors have.

The kernel of their algorithms is the evolution of a photoreceptor model and their TMO is based
on the overall image adaptation by adjusting the Naka—Rushton computer address in a comprehensive
manner (using the average luminousness of the scene) or a specific form (using the average luminousness
of the color). This arrangement lacks luminousness coherence over time due to its static formulation,
i.e., each piece of the framework is processed individually [92].

Benoit et al. [96,97] and Hérault [98] proposed a front-end retina-like model for computer vision
tasks and applied it to tone-mapping images and videos. They modeled the retina in adaptation
layers, i.e., the first layer is linked to photoreceptor adaptation and the other is related to ganglion cells.
In the middle of these layers, there is a permanent spatial-temporal filter that models the synaptic
OPL, which allows for communication between photoreceptors and horizontal retinal cells. The
authors present a non-linear specific process where the photoreceptor action mode depends on the
luminousness received within a nearby region. The OPL layers were thus employed as spectral
lightening and contrast upgrading. In the same way, the ganglion cell layer again uses one non-linear
mechanism for photoreceptor adaptation with different parameters. To calculate the average luminosity,
the authors considered a small region close to each pixel

Color processing is done using a see-through layer color sampling multiplexing/demultiplexing
network (commonly found in cameras). They use the temporal characteristic of the OPL filter to
implement a temporal consistency throughout the color sequence [92]. Benoit et al. directly connected
the OPL output-to-input ratio with the intended non-linearity in the ganglion cell layer and the virtual
retina (VR), where the OPL enters a contrast gain control platform before the ganglion cell layer [96].

Zhang et al. introduced a method for dehazing static images [99]. This method relies on a complete
retinal model, i.e., from photoreceptors to retinal ganglion cells. Photoreceptors, bipolar, amacrine,
and ganglion cells were modeled as a cascade of Gaussian signals that is a difference of Gaussian filters,
which represents the complex associations between colors and the full or specific adaptation.

Matzakos-Karvouniari et al. introduced a mathematical model based on biophysics, where they
reproduced the rupture activity of the SACs, proposing a plausible, generic, and robust mechanism for
its production [20]. Based on the bifurcation analysis, they provide some biophysical parameters for
regulating calcium and potassium activity through burst control.

All models known in the literature describe wave activity, though so far, no models describe the
dynamics of individual SACs. In these models, there is no description of the biophysical mechanisms
of SAC bursting activity or the role played by biophysical parameters since the models were based on
the “simple” description of cellular activity by using a small number of adjustable parameters [20].
The authors based their model on the model proposed by Hennig et al., where the biophysical analysis
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of slow after hyperpolarization (sSAHP) dynamics leads to equations and parameter values present in
their model [20,100].

Costa et al. proposed a method where they synthesize ocular background images directly from
the data [37]. Using the vessel segmentation technique, they combined true images of the fundus
with their vessel trees. Thus, the use of these pairs allows for a mapping of a binary vessel tree to a
retinal image. For this propose, they used a recent technique of image-to-image translation based on
the idea of contradictory learning. The results showed that while the original and generated images
shared the same pot tree, they were visually different in overall appearance. Quantitative analysis of
the quality of retinal synthetic images has further confirmed that the images produced retained a high
proportion of the true quality of the image set [37].

To improve rehabilitation techniques, it is important to include the properties of neural
degeneration in these computational approaches [88]. Stimulation thresholds have been well
documented in clinical trials involving patients with severe retinal degeneration. It was concluded
that the location of the electrode (epi- or subretinal) and the severity of neural degeneration affect the
response resulting from electrical stimulation in the pacing range and threshold [101].

In vivo studies have observed increases in stimulation thresholds for indirect, presynaptic
activation to retinal ganglion cells but the retina remains responsive if ganglion cells are directly
stimulated [102-106].

In a study evaluating the electrophysiological findings of degenerate retinas, it was found that
it is possible to alter the spontaneous activity in retinal ganglion cells through pharmacologically
inhibiting synapses [107]. In clinical trials, Weitz et al. demonstrated that the use of an enhanced pulse
duration stimulates the internal neural circuitry to achieve a higher level of focus on the resulting light
response [108].

Computational models represent the death of photoreceptors by considering direct stimulation
of ganglion cells or indirect stimulation of ganglion cells through stimulation of presynaptic
circuits [88,109,110]. Nevertheless, it must be kept in mind that photoreceptor death does not mean the
end of the disease since it occurs early and has electrophysiological effects beyond photoreceptors,
and light-induced entry into the retinal circuits does not occur. With the progression of the disease,
there is a possibility that patients will be completely blind, and therefore there is extensive retinal
remodeling, where cell migration and spontaneous neural activity are observed [111,112].

During degeneration remodeling, spontaneous firing and oscillatory behavior were observed in
the surviving neural networks. Therefore, removing the entry of light-sensitive cells does not remove
neural activity in the retina; in fact, it becomes altered [113,114]. The lack of presynaptic entry of
degenerate photoreceptors leads to an oscillatory membrane voltage in the cells and thus leads to
phasic disruption in the ganglion cells. Some studies have shown that blocking gap junctions can
eliminate this activity [115,116].

Previous studies have shown that there are changes in the response to electrical stimulation
through these alterations in ganglion cell physiology in degenerating retina and spontaneous activity
rates, which can disrupt attempts at systematic electrical stimulation to restore vision [117-119].
Given this information, Loizos et al. proposed a computational model of electrical retinal stimulation
to investigate the waveforms used in prosthetic devices to restore lost vision [88]. In this model,
there is an association with a connection-based neural network model, which is characterized by
precise morphological and synaptic properties, with an admittance method model of bulk tissue and
prosthetic electronics. The retina degeneration was modeled by considering cell death and anatomical
changes that occur at the onset of the disease, as well as the altered neural behavior that develops
throughout neurodegeneration. The authors presented an analysis resulting from the stimulation
range and threshold of healthy retinal ON ganglion cells in the early stages of degeneration, which was
compared to the currently used stimulation waveforms, and proposed an asymmetric biphasic current
stimulation to subdue the spontaneous firing to allow for increased control over the ganglion cell firing
patterns in the degenerate retina [88].
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The development of a good prosthesis depends on the improvement of predictive models based
on the natural signal flow in the retinal network and a better understanding of neural responses to
electrical stimulation. Experimental evidence is available in the literature showing that spike timing is
needed to explain neural computation, motivating the use of spiking neuron models. This requires
detailed biophysical representations of neurons, which use the Hodgkin-Huxley (HH) model [120].

There has been a greater focus on modeling different visual processing pathways in terms of the
biophysics of their neuronal activity rather than the construction of image sensors [35]. Recent retinal
models simulate neural behaviors, their physiological operations, and reproduce individual neuronal
functions or can be combined to replicate a network of neurons. It also considers object-sensitive
cells as a function of ganglion cells based on the movement of objects in a scene and the product of
self-movement (movements of head and eyes) [121].

Other computational models of retinal ganglion cells include asynchronous or event-controlled
algorithms, where faster executions occur because of less wasted time in neuronal behavior calculations
without consequent events [35].

Non-instantaneous synaptic interactions exploit the delay structure to speed up simulations,
where they present a unique solution for processing spikes in a priority queue in a programmable
algorithm [122,123]. However, in hardware translation, buffers and transmission delays are
introduced, which in turn removes the advantage it has in theoretical computing. These simulation
tools aim to achieve a balance between speed efficiency, memory consumption, and precision in the
numerical treatment of the system of equations, as well as create a hardware conversion driven by a
very large scale integrated (VLSI) circuit. Several models are expressed using a system of ODEs and
continue in differential form without further transformation [124].

All these reasons make mapping into hardware difficult but study into the development of models
is still ongoing based on the old mechanistic and integrated computational models to thus provide
frameworks to facilitate understanding of disease mechanisms.

4. Metadata Analysis

The eye is a very complex organ, for which building a comprehensive model is very challenging.
In this section, we have reviewed the recent mathematical models for mapping the retina network.

4.1. Virtual Pharmacokinetic 3D Model of the Human Eye by Kotha et al. Based on the FEM Using Comsol
Multiphysics Software

This model is based on the retina, focuses on the back of the eye, and contains choroidal
blood flow, tissue division, and active transport of the drug at the RPE—choroid limit. It uses the
finite element mesh to obtain reliable simulation results, giving no relevance to the step-in time.
The concentration of the drug and its average value are given as a function of time in various points
of the retina by varying the parameters of the model [18]. Pharmacokinetic modeling is performed
with Stella software, where organs are described as dummy boxes and their relationships are defined
by reaction or transport equations. The Stella model has previously determined the values of the
pharmacokinetic parameters of molecules. However, this model has limitations because it assumes
that each organ/computational unit is homogeneous and ignores the distribution of concentrations
and the geometry of the sectors under study. Spatial distribution is taken into account when the
physical size of an organ is large and chemical processes are controlled by mass transfer. The authors
aimed to improve the FEM modeling methodology for initial calculations. For this, it proposes a
3D pharmacokinetic model of the back of the human eye, in which they ignore the cornea, anterior
chamber, and lens. In this model, the drug is delivered from a patch placed on the sclera, where the
amount that is released that reaches the retina is also calculated as a function of time. Metabolism
or protein binding is not included in this model such that it is easier to ensure mass balance at
all times, but this inclusion is possible. Thus, this model is built on version 4.3b of the Comsol
Multiphysics software [18], as well as the previous Femlab, which is most commonly used in biological
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systems, such as heat distribution in the human eye, transdermal drug delivery, and modeling the
oxygen distribution in human heart tissues [125,126]. Comsol Multiphysics creates simulations for a
researcher with basic calculation skills and focuses on creating a model rather than taking into account
technical FEM issues or solution algorithms. It considers a polymer implant below the conjunctiva,
remaining in the sclera [18]. It is known that in the choroid, the velocity distribution of blood flow
has a parabolic profile in the inlets (arteries) that depends on the Poisseulle flow. In this case, the
drug is partitioned into the choroid, where some of the drug is flushed out by blood flow in the
veins. Thus, for a correct total mass balance to be made, the drug removed from the simulation
because of blood circulation must be calculated and integrated as a function of time. To make a
quantitative assessment of the drug distribution in the eye, three different points on the retina were
selected, i.e., below the drug patch, opposite to the patch, and one point in the "bottom" of the eye.
To calculate the average retinal concentration, the total amount of drug in the retina was integrated
and divided by the retinal volume. Metabolism is not considered in this model and there is still a
lack of information on drug penetration properties in the different membranes of the human eye.
However, the authors argue that importing an accurate CT scan image from an eye into Comsol
would not alter the simulation results. This model still needs to take into account the modeling of the
choroid as a homogeneous domain through which blood flows, as well as modeling the blood veins
and pulsation due to cardiac pumping; however, in the Comsol Conference in 2003, blood flow was
already considered in artificial flow canals. For a complete treatment of blood veins, a complex model
would be required to include all the moving contour elements and conditions in the expanding and
contracting vein walls. Therefore, in this simplification, a large error is incurred but the drugs usually
have a wide therapeutic window. However, caution should be exercised when using this model for
drugs with a narrow therapeutic window [18].

4.2. Simulation Platform for Neural Computation in the Retina by Eshraghian et al.

Eshraghian et al. presented a new simulation platform for retinal neural computation based
on the transformation of the system of nonlinear ODEs into a set of nonlinear integral equations,
which is consistent with the top-down VLSI design methodology [35]. From a mathematical point
of view, an ODE system and a system of integral equations are equivalent, where these systems of
equations describe identical phenomena. From an algorithmic and circuit perspective, this model
has the advantages of higher velocity efficiency of numerical ODE calculations in neural systems
without sacrificing accuracy when compared to conventional methods, and features the mapping of
neural models derived from biology in VLSI technology and modeling systematic biophysics of the
retina at the cellular level. It should be noted that compared to derivatives, integrals are more feasible
for mapping in a circuit device since the hardware mapping of integrals only requires sums and
derivatives require the use of memory and a delay line to implement them correctly. Implementing
good hardware has as challenges the neural algorithms and non-optimal computational behavior
of neurons and synapses that apply analog circuits in weak inversion regions [127]. This system
mimics the natural flow of signals in the retinal network; therefore, it is better suited for the hardware
encoding of retinal networks. In this study, learning is expanded to include amacrine cells and
considers the different retinal pathways: (i) rod cell — bipolar cell — ganglion cell, (ii) cone cell —
bipolar cell = amacrine cell — ganglion cell, and (iii) a combination of the two to form a dual pathway
(Figure 1) [35].
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Figure 1. Schematic representation of the bio-flow from photocurrent progression to the ganglion exit.
The dual rod and cone pathways are mapping, in which the light signals are transformed into electrical
signals that flow from the rod and cone cells through the individual pathways until these signals are
integrated into the ganglion cells. Modified after Eshraghian et al. [35].

4.3. CNN Approach for Retina Segmentation in OCT Volumes

Venhuizen et al. developed and evaluated a CNN approach for retina segmentation in OCT
volumes (Figure 2) [89]. The innovative benefits of this system are its robustness and reliability in
the presence of severe retinal pathology, as existing methods have been shown to perform poorly at
this level [128]. In cases where the pathology is severe, the correct segmentation of the total retina
needs a segmentation algorithm that does not overvalue the retinal structure and shape but takes
into account its broad spatial context. Therefore, to meet these requirements, a CNN architecture was
proposed in this study. The proposed algorithm performs a semantic segmentation, where each pixel is
classified as belonging to the retina or background, rather than directly setting a segmentation boundary.
This indirect method of segmenting the retina adds the flexibility needed to properly distinguish retinas
as either healthy or pathological. Compared to other pixel classification algorithms, the variability
in retinal structure and shape is easily captured by a large number of free parameters present in
a typical CNN. To deal with large changes in the retina, it is necessary to include spatially distant
information when determining the probability of a retinal pixel. If we consider only a small window
around each pixel, the hypo-reflective content of a fluid-filled space can be confused with vitreous
fluid or choroidal tissue. Thus, this study introduced the generalized U-net architecture that can
include a large spatial context and provides a large receptive field, maintaining location accuracy [89].
The original U-net provides a 140 x 140 pixels receptive field. In this network, segmentation errors
occur for certain pixels with large abnormalities since they do not have sufficient contextual information
to differentiate them from the vitreous fluid or choroidal tissue [89,129]. Briefly, the authors note
that for the original network, with a receptive field of 140 x 140 pixels, segmentation errors occur
within the fluid-filled abnormality because the lower/upper retina is not included in the receptive field,
which gives the network the impression that the pixel is part of the choroid tissue or the vitreous fluid.
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They found that when increasing the receptive field to 572 x 572 pixels, this error did not occur because
all abnormalities in the receptive field were included and enough contextual information was included
to make a correct classification. The algorithm proposed in this study was compared to two reference
algorithms, one provided by an OCT camera manufacturer and the other widely used in research
environments, which is based on the segmentation of individual retinal layers to delimit the retina and
obtain related measurements. Therefore, a large deviation in this layered structure (e.g., a fluid-filled
space) results in errors in the segmentation outputs obtained by these algorithms [89].
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Figure 2. Schematic representation of a U-net architecture. Left-hand side box indicates the
basic down-sample and right-hand side box indicates the up-sampled units. Modified after
Venhuizen et al. [89].
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4.4. Tone Method Operators Supported by a Synergistic Model of the Retina

Benzi et al. provided a complete TMO supported by a synergistic retinal system from the Virtual
Retina simulator that was designed to model the key layers and kind of cells found in the primate
retina (Figure 3) [92]. The Virtual Retina has been developed to be an implementable retinal model that
enables large scale and complex mathematical operations with proper data processing in an appropriate
biological time. The proposed model involves an inseparable spatiotemporal linear filtering of the
external plexiform layer, bipolar cell-level deviation feedback, and a peak generation process through
noisy leakage integration and neuron electricity pulses to produce RGC patterns. This TMO has the
following stages: (1) Pre-processing stages, where there is a change to HDR-RGB input color image
to luminousness area and the calibration of the lightness data such that these values are mapped to
the full luminousness of the real scenery. (2) An elaborate retinal process, where there is complete
photoreceptor adaption that considers the incorporated contractile aperture in the center of the iris
of the eye (pupil), which adapts to the input level of the following the VR design. (3) The image
editing process, where the definition of the reading provides for significant amounts of retina data
of the VR and is accompanied by colorization and gamma correction to achieve an LDR-RGB image,
which allows for the adaption of frame-by-frame photoreceptors and luminousness consistency using
temporal filtering on the contrast gain control layers. This approach has advantages in comparison
to general video tone mapping because this process does not require a prior optical flux evaluation.
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In these methods, the optical flow has been used to steady small movements in a scene, with the
limitation of producing artefacts in scenes with more sweeping motions. In addition, this model takes
into account the specific contrast information in space that best maintains spatial details [92].

HDR-RGB
Image
Pre-processing l Retinal model Post-processing
HDR Calibration Non-linear adaptation Convergence of
multiple layers
Virtual retina i
Change detection Gamma
| correction
v
Temporal adaptation J’
(+) 0 LDR-RGB
Contrast Contrast
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Figure 3. Schematic description of the pre-processing, retina model using Virtual Retina,
and post-processing general operator. HDR: high dynamic range, RGB: Red, Green, Blue color
model, OPL: outer plexiform layer, CGC: contrast gain control, LDR: low dynamic range. Modified
after Benzi et al. [92].

4.5. Adversarial Retinal Image Synthesis

Costa et al. proposed a method that synthesizes the eye bottom’s images directly from the data.
In this model, a random noise generator synthesizes the images and an auxiliary discriminator system
trained in real data identifies the reality of the generated data [37]. During the training process,
the generator learns to produce images that present a classification problem that increases the difficulty
for the discriminator. Although adverse techniques are very successful in natural imaging, their
application to medical imaging is still incipient due to the lack of significant amounts of training
data and the difficulty of properly controlling the output of the opposing generator. In the work
by Costa and his collaborators, they applied the adversarial learning framework to retinal images.
Instead of generating images from scratch, the authors generated plausible new images from binary
retinal vessel trees [37]. Thus, the task of the generator remains achievable, where it is only necessary
to learn to generate part of the retinal content (e.g., optical disk or background texture). The visual
and quantitative results demonstrated in the paper prove the feasibility of learning how to synthesize
new retinal images from a data set of retinal vessel tree pairs and the corresponding retinal images
by applying current-generating contradictory models. Moreover, the size of the images produced
(512 x 512) was even larger than the images commonly generated in general computer vision problems.

4.6. Computational Model of Electrical Stimulation of the Retina

Loizos et al. proposed a computer model of electrical retinal stimulation to investigate waveforms
already used in prosthetic devices to restore partial vision lost by retinal degenerative diseases [41].
To understand the degenerate retinal response to electrical stimulation used and to develop new
electrode geometries and stimulus waveforms, the authors provided a simulation framework for
increasing the effectiveness of electrical stimulation. Based on previous work, the framework was
developed as a multi-scale and multiphysics simulation platform where the Admittance Method
is used to compute the electric field within a tissue model and NEURON is used to simulate the
resulting response in a neural network [130]. The Admittance Method is assumed to be a quasi-static
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electromagnetic field solver, where a voxelized model that is discretized by tissue/material dielectric
properties is constructed first. It takes as data the input between each node in the model and a set
of current sources, where a set of linear equations is constructed and an iterative solver is used to
calculate the voltage at each node in the model [131]. Based on a connectivity dataset, a model of a
ganglion cell network with a realistic cell morphology and synaptic type, distribution, and weight
is built on NEURON [132]. In the study by Loizos et al. [41], the biophysical data available in the
literature were incorporated into each cell and a script was also written to apply the extracellular
electric field from Admittance Method simulations to observe the resulting network and cellular
behavior at a given input. The intrinsic properties of AIl amacrine cells within this model were altered
(following Choi et al.) to produce an oscillatory membrane potential and induce spontaneous neural
activity that mimics a degenerated retina [116]. For this study, translating a connectome dataset
into a computational model is a uniquely qualified approach since it is composed of a real image
morphology and observed connections that allow for greater precision in the representation of a retinal
neural network and the resulting network behavior, which reduces the need for assumptions about
interconnectivity. Thus, it allows for the representation of cell death within the internal plexiform layer
by "degenerating" the computational retina and decreasing the strength of individual synapses or gap
junctions and the number of cells. A bulk tissue and prosthetic electronics model were constructed
on a larger spatial scale using the Admittance Method to calculate the extracellular electric field due
to anatomical changes in the early stages of degeneration. Connecting the extracellular space model
of the Admittance Method model to the connectome-based NEURON model combines the ability to
alter the anatomical structure of the retina, integrate implant electronics, and alter the biophysical
properties of cells and interconnectivity to virtually degenerate the retina.

The detailed study from Loizos et al. [41], of degenerated retinal electrical stimulation includes
knowledge gained through electrophysiological studies of cellular behavior, the comprehensive maps
of connections, geometric and electrical characteristics of prosthetic electrode arrays, and clinical and
experimental data on degeneration, as well as computational electromagnetism, all in one simulation
platform (Figure 4). In this study, the stimulation threshold and interval were calculated for varying
degrees of degeneration and complexity of the neural network, and a stimulation waveform that
reduces spontaneous activity within a degenerate retina is created, which provides more effective
control over ganglion cell stimulation. The results showed that retinal ganglion cell stimulation
thresholds do not vary much after the early stages of retinal degeneration. The simulation of the
proposed asymmetric waveforms also showed the ability to improve the control of the ganglion cell
firing via electrical stimulation [41].
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Figure 4. Diagram of the timeline of retina degeneration. PR: Photoreceptor.

5. Conclusions

The data sets relevant to the retina, eye, and vision offer numerous opportunities but it is still
difficult to understand and develop new interventions that improve human visual health. There is
a large amount of development of mechanistic and integrated computational models that provide
frameworks to facilitate the understanding of disease mechanisms and to explain patterns identified in
model-free data sets. Exploring current research on retinal processing may be considered a promising
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approach to addressing the challenges of computer photography. Kotha et al. created a 3D Comsol
Multiphysics model of the human eye that simulates the spatiotemporal distribution of a drug in
the eye that is delivered from an adhesive placed on the sclera. This model studies the effect of
drug concentration on the retina through transport and equilibrium parameters. The accuracy of the
simulations was validated by calculating the total mass balance, ensuring no artificial accumulation
or disappearance of the drug. Thus, by using Comsol modeling, one can easily study the effect of
various model parameters on the distribution of a drug. In the model, the computational efficiency,
the ease of implementation in VLSI technology, and the simplicity of a systematic biophysical model
were shown. For this set of simulations, better performance was demonstrated using an integration
approach compared with a more sophisticated implicit ODE method. Numerical errors evolve within
neural systems and between the two pathways in the presence and absence of electrical synapses as
gap junctions. They also provide an assessment of how timescales within dynamic systems influence
the signal flow transformation and numerical errors through nonlinear neural systems. In this model,
only one computational block is the complete retinal architecture, which must be mapped directly to
all components of the cell. The authors presented a hardware-adaptive computational retina model
that involved promoting the intermediate step that allows humans to retrieve meaningful sensory
information based on limited information. This provides future insight into the development of 3D
chip architecture. The CNN that has been shown to model variability in retinal appearance resulted
in robust retinal segmentation. This method also supports reliable clinical measurements based on
retinal segmentation (CMT measurements). The use of this model in clinical studies, where manual
correction of segmentation limits is undesirable, requires a segmentation algorithm that produces
reliable clinical measurements. Thus, in clinical retinal practice, an automated system performing
in this range is considered a reliable alternative to time-consuming subjective measurements of
retinal thickness. As the CGC layer is the one that ensures temporal coherence, the use of TMO
video inspired by the retina properties, which provides local luminance information as a supervisory
signal in the video, could improve the performance of recognition tasks. However, this TMO had
limitations regarding videos that consisted of the current coloring method and generated color flickers
in the output. This was justified by the fact that the original model of the virtual retina is monochrome.
Therefore, this model contains factors linked to the different stages of full and specific adaptation of
the data luminousness image. However, for a detailed analysis, the complementary contributions of
each stage of computing, i.e., bringing together the best aspects of TMOs into a single TMO, is still
under study. Costa et al. proposed a method that synthesizes ocular background images directly from
the data by using an image-to-image translation technique that is based on contradictory learning and
achieved good resolution. In this method, retinal images show a repetitive geometry, where high-level
structures (field of view, optical disc, or macula) are present in the image and act as a guide for the
model to learn how to produce new textures and background intensities. However, this method relies
on a pre-existing vessel tree to generate a new image. Furthermore, if the vessel tree comes from
applying a segmentation technique to the original image, the potential weaknesses of the segmentation
algorithm will be inherited by the synthesized image. Finally, Loizos et al. proposed a multiscale
multiphysics computational framework to model the electrical stimulation of the degenerate retina.
Through this structure, they investigated the effects of the cellular network connectivity, anatomical
changes, and spontaneous activity observed in the degenerate retina during attempts at electrical
stimulation. They proposed a more effective waveform on the degenerate retina that applies asymmetric
biphasic pulses to reduce spontaneous neural activity and allow for greater control over time of the
action potentials of the ganglion cells. With the development of the integrative computational tools,
their limitations will be alleviated. Regarding the human retina, data on cell types are still incomplete
and there is controversy regarding the connectivity of different cells. It is also necessary to understand
the functioning of systemic phenomena and their interaction with local retinal processes, as well as the
long period in which vision diseases develop, making the relevance of many acute experimental data
(in vivo and in vitro) uncertain. Thus, it is necessary to improve the monitoring of disease progression
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and capture aging in quantitative ways to improve model construction. Successful prospects are
foreseen due to the current diversity of data generated, the increasing sophistication of modeling
approaches, and the increased available computing power. The knowledge presented in this review
may result in the future development of better and more efficient visual prostheses that enables better
brain imaging for visually impaired people.
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BBM Bruch basement membrane
CGC Contrast gain control

CNN Convolutional neural network
ECs Choroid endothelial cells

FEM Finite element method

HAO Hardware adaptative optics
HDR High dynamic range

HH Hodgkin-Huxley

LDR Low dynamic range

mRNA Messenger RNA

oBRB Outer blood-retina barrier
OCT Optical coherence tomography
ODEs Ordinary differential equations
OPL Outer plexiform layer

OR Outer retina

0os Outer segments

PR Photoreceptor

RPE Retinal pigment epithelium
SACs Starburst amacrine cells

SHP Slow hyperpolarization current
TJs Tight junctions

TMOs Tone mapping operators
VEGF Vascular endothelial growth factor
VLSI Very large scale integrated

VR Virtual Retina
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