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Abstract: Non-orthogonal multiple access (NOMA) is considered a potential technique in
fifth-generation (5G). Nevertheless, it is relatively complex when applying NOMA to a massive
access scenario. Thus, in this paper, a hybrid NOMA/OMA scheme is considered for uplink wireless
transmission systems where multiple cognitive users (CUs) can simultaneously transmit their data
to a cognitive base station (CBS). We adopt a user-pairing algorithm in which the CUs are grouped
into multiple pairs, and each group is assigned to an orthogonal sub-channel such that each user in
a pair applies NOMA to transmit data to the CBS without causing interference with other groups.
Subsequently, the signal transmitted by the CUs of each NOMA group can be independently retrieved
by using successive interference cancellation (SIC). The CUs are assumed to harvest solar energy
to maintain operations. Moreover, joint power and bandwidth allocation is taken into account at
the CBS to optimize energy and spectrum efficiency in order to obtain the maximum long-term data
rate for the system. To this end, we propose a deep actor-critic reinforcement learning (DACRL)
algorithm to respectively model the policy function and value function for the actor and critic of
the agent (i.e., the CBS), in which the actor can learn about system dynamics by interacting with the
environment. Meanwhile, the critic can evaluate the action taken such that the CBS can optimally
assign power and bandwidth to the CUs when the training phase finishes. Numerical results validate
the superior performance of the proposed scheme, compared with other conventional schemes.

Keywords: NOMA; energy harvesting; deep actor-critic reinforcement learning; power allocation;
user-pairing

1. Introduction

Recently, fourth-generation (4G) systems reached maturity, and will evolve into fifth-generation
(5G) systems where limited amounts of new spectrum can be utilized to meet the stringent
demands of users. However, critical challenges will come from explosive growth in devices
and data volumes, which require more efficient exploitation of valuable spectrum. Therefore,
non-orthogonal multiple access (NOMA) is one of the potential candidates for 5G and upcoming
cellular network generations [1–3].

According to NOMA principles, multiple users are allowed to share time and spectrum resources
in the same spatial layer via power-domain multiplexing, in contrast to conventional orthogonal
multiple access (OMA) techniques consisting of frequency-division multiple access (FDMA) and time
division multiple access (TDMA) [4]. Interuser interference can be alleviated by performing successive
interference cancellation (SIC) on the receiver side. There has been a lot of research aimed at sum
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rate maximization, and the results showed that higher spectral efficiency (SE) can be obtained by
using NOMA, compared to baseline OMA schemes [5–8]. Zeng et al. [5] investigated a multiple-user
scenario in which users are clustered and share the same transmit beamforming vector. Di et al. [6]
proposed a joint sub-channel assignment and power allocation scheme to maximize the weighted
total sum rate of the system while adhering to a user fairness constraint. Timotheou et al. [7] studied
a decoupled problem of user clustering and power allocation in NOMA systems in which the proposed
user clustering approach is based on exhaustive search with a high required complexity. Liang et al. [8]
studied solutions for user pairing, and investigated the power allocation problem by using NOMA in
cognitive radio (CR) networks.

Nowadays, energy consumption for wireless communications is becoming a major social and
economic issue, especially with the explosive amounts of data traffic. However, limited efforts have
been devoted to the energy-efficient resource allocation problem in NOMA-enabled systems [9–11].
The authors in [9] maximized energy efficiency subject to a minimum required data rate for each
user, which leads to a nonconvex fractional programming problem. Meanwhile, a power allocation
solution aiming to maximize the energy efficiency under users’ quality of service requirements
was investigated [10]. Fang et al. [11] proposed a gradient-based binary search power allocation
approach for downlink NOMA systems, but it requires high complexity. NOMA was also applied
to future machine-to-machine (M2M) communications in [12], and it was shown that the outage
probability of the system can be improved when compared with OMA. Additionally, by jointly
studying beamforming, user scheduling, and power allocation, the system performance of millimeter
wave (mmWave) networks was studied [13].

On the other hand, CR (one of the promising techniques to improve SE), has been extensively
investigated for decades. In it, cognitive users (CUs) can utilize the licensed spectrum bands
of the primary users (PUs) as long as the interference caused by the CUs is tolerable [14–16].
Goldsmith et al. in [17] proposed three operation models (opportunistic spectrum access, spectrum
sharing, and sensing-based enhanced spectrum sharing) to exploit the CR technique in practice. It is
conceivable that the combination of CR with NOMA technologies is capable of further boosting the SE
in wireless communication systems. Therefore, many studies on the performance of spectrum-sharing
CR combined with NOMA have been analyzed [18,19].

Along with the rapid proliferation of wireless communication applications, most battery-limited
devices become useless if their battery power is depleted. As one of the remedies, energy harvesting
(EH) exploits ambient energy resources to replenish batteries, such as solar energy [20], radio frequency
(RF) signals [21], and both non-RF and RF energy harvesting [22], etc. Among various kinds of
renewable energy resources, solar power has been considered one of the most effective energy sources
for wireless devices. However, solar power density highly depends on the environment conditions,
and may vary over time. Thus, it is critical to establish proper approaches to efficiently utilize harvested
energy for wireless communication systems.

Many early studies regarding NOMA applications have mainly focused on the downlink scenario.
However, there are fewer contributions investigating uplink NOMA, where an evolved NodeB (eNB)
has to receive different levels of transmitted power from all user devices using NOMA. Zhang et al.
in [23] proposed a novel power control scheme, and the outage probability of the system was derived.
Besides, the user-pairing approach was studied in many predefined power allocation schemes in
NOMA communication systems [24] in which internet of things (IoT) devices first harvest energy from
BS transmissions in the harvesting phase, and they then utilize the harvested energy to perform data
transmissions using the NOMA technique during the transmission phase. The pricing and bandwidth
allocation problem in terms of energy efficiency in heterogeneous networks was investigated in [25].
In addition, the authors in [20] proposed joint resource allocation and transmission mode selection to
maximize the secrecy rate in cognitive radio networks. Nevertheless, most of the existing work on
resource allocation assumes that the amount of harvested energy is known, or that traffic loads are
predictable, which is hard to obtain in practical wireless networks.
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Since the information regarding network dynamics (e.g., harvested energy distribution, primary
user’s behavior) is sometimes unavailable in the cognitive radio system, researchers usually
formulate optimization problems as the framework of a Markov decision process (MDP) [20,22,26,27].
Reinforcement learning is one of the potential approaches to obtaining the optimal solution for an MDP
problem by interacting with the environment without having prior information about the network
dynamics or without any supervision [28–30]. However, it is a big issue for reinforcement learning
to have to deal with large-state-space optimization problems. For this reason, deep reinforcement
learning (DRL) is being investigated extensively these days in wireless communication systems where
deep neural networks (DNNs) work as function approximators and are utilized to learn the optimal
policy [31–33]. Meng et al. proposed a deep reinforcement learning method for a joint spectrum sensing
and power control problem in a cognitive small cell [31]. In addition, deep Q-learning was studied for
a wireless gateway that is able to derive the optimal policy to maximize throughput in cognitive radio
networks [32]. Zhang et al. [33] proposed an asynchronous advantage, deep actor-critic-based scheme
to optimize spectrum sharing efficiency and guarantee the QoS requirements of PUs and CUs.

To the best of our knowledge, there has been little research into resource allocation using deep
reinforcement learning under a non-RF energy-harvesting scenario in uplink cognitive radio networks.
Thus, we propose a deep actor-critic reinforcement learning framework for efficient joint power and
bandwidth allocation by adopting hybrid NOMA/OMA in uplink cognitive radio networks (CRNs).
In them, solar energy-powered CUs are assigned the proper transmission power and bandwidth to
transmit data to a cognitive base station in every time slot in order to maximize the long-term data
transmission rate of the system. Specifically, the main contributions of this paper are as follows.

• We study a model of a hybrid NOMA/OMA uplink cognitive radio network adopting energy
harvesting at the CUs, where solar energy-powered CUs opportunistically use the licensed
channel of the primary network to transmit data to a cognitive base station using NOMA/OMA
techniques. Beside that, a user-pairing algorithm is adopted such that we can assign orthogonal
frequency bands to each NOMA group after pairing. We take power and bandwidth allocation
into account such that the transmission power and bandwidth are optimally utilized by each CU
under energy constraints and environmental uncertainty. The system is assumed to work on a
time-slotted basis.

• We formulate the problem of long-term data transmission rate maximization as the framework
of a Markov decision process (MDP), and we obtain the optimal policy by adopting a
deep actor-critic reinforcement learning (DACRL) framework under a trial-and-error learning
algorithm. More specifically, we use DNNs to approximate the policy function and the value
function for the actor and critic components, respectively. As a result, the cognitive base station
can allocate the appropriate transmission power and bandwidth to the CUs by directly interacting
with the environment, such that the system reward can be maximized in the long run by using
the proposed algorithm.

• Lastly, extensive numerical results are provided to assess the proposed algorithm performance
through diverse network parameters. The simulation results of the proposed scheme are shown
to be superior to conventional schemes where decisions on transmission power and bandwidth
allocation are taken without long-term considerations.

The rest of this paper is structured as follows. The system model is presented in Section 2.
We introduce the problem formulation in Section 3, and we describe the deep actor-critic reinforcement
learning scheme for resource allocation in Section 4. The simulation results and discussions are in
Section 5. Finally, we conclude the paper in Section 6.

2. System Model

We consider an uplink CRN that consists of a cognitive base station (CBS), a primary base station
(PBS), multiple primary users, and 2M cognitive users as illustrated in Figure 1. Each CU is outfitted
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with a single antenna to transmit data to the CBS, and each is equipped with an energy-harvesting
component (i.e., solar panels). The PBS and PUs have the license to use the primary channel at will.
However, they do not always have data to transmit on the primary channel. Meanwhile, the CBS
and the CUs can opportunistically utilize the primary channel by adopting a hybrid NOMA/OMA
technique when the channel is sensed as free. To this end, the CBS divides the set of CUs into pairs
according to Algorithm 1 where the CU having the highest channel gain will be coupled with the CU
having the lowest channel gain, and one of available channels will be assigned to these pairs. More
specifically, the CUs are arranged into M NOMA groups, and the primary channel is divided into
multiple subchannels to apply hybrid NOMA/OMA for the transmissions between the CUs and the
CBS, with G = {G1, G2, G3, ..., GM} denoting the set of NOMA groups. Additionally, M NOMA groups
are assigned to M orthogonal subchannels, SC = {SC1, SC2, SC3,..., SCM}, of the primary channel such
that the CUs in each NOMA group can transmit on the same subchannel and will not interfere with
the other groups. In this paper, successive interference cancellation (SIC) [34] is applied at the CBS for
decoding received signals, which are transmitted from the CUs. Moreover, we assume that the CUs
always have data to transmit, and the CBS has complete channel state information (CSI) of all the CUs.

Algorithm 1 User-pairing Algorithm

1: Input: channel gain, number of groups, M, number of CUs, 2M.
2: Sort the channel gain of all CUs in decending order: g1 ≥ g2 ≥ ... ≥ g2M

3: Define set of channel gains U = {g1, g2, ..., g2M}
4: for j = 1 : M
5: Gj = {∅}
6: Gmax = max {U} , Gmin = min {U}
7: Gj = Gj ∪ Gmax ∪ Gmin

8: U = U\Gmax\Gmin

9: end for
10: Output: Set of CU pairs.
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Figure 1. System model of the proposed scheme.

The network system operation is illustrated in Figure 2. In particular, at the beginning of a time
slot, with duration τss, all CUs concurrently perform spectrum sensing and report their local results to
the CBS. Based on these sensing results, the CBS first decides the global sensing result as to whether
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the primary channel is busy or not following the combination rule [35,36], and then allocates power
and bandwidth to all CUs for uplink data transmission. As a consequence, according to the allocated
power and bandwidth of the NOMA groups, the CUs in each NOMA group can transmit their data to
the CBS through the same subchannel without causing interference with other groups within duration
τTr = Ttot − τss, where Ttot is the total time slot duration. Information regarding the remaining energy
in all the CUs is updated to the CBS at the end of each time slot. Each data transmission session of the
CUs may take place in more than one time slot until all their data have been transmitted successfully.
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Figure 2. Time frame of the cognitive users’ operations.

During data transmission, the received composite signal at the CBS on subchannel SCm is given by

ym (t) =
√

P1m (t)x1m (t) h1m +
√

P2m (t)x2m (t) h2m + ωm, (1)

where Pim (t) = etr
im (t)/

τTr
|i ∈ {1, 2} , m ∈ {1, 2, ..., M} is the transmission power of CUi in NOMA

group Gm, in which etr
im (t) is the transmission energy assigned for CUim in time slot t; xim (t) denotes

the transmit signal of CUim in time slot t,
(
E{|xim(t)|2}= 1

)
; ωm is the additive white Gaussian noise

(AWGN) at the CBS on subchannel SCm with zero mean and variance σ2; and him is the channel
coefficient between CUim and the CBS. The overall received signal at the CBS in time slot t is given by

y (t) =
M

∑
m=1

ym (t). (2)

The received signals at the CBS on different sub-channels are independently retrieved from
composite signal ym(t) using the SIC technique. In particular, the CU’s signal with the highest channel
gain is firstly decoded, and then it will be removed from composite signal at the CBS, in a successive
manner. The CU’s signal with the lower channel gain in the sub-channel is treated as noise of the
CU with the higher channel gain. We assume perfect SIC implementation at the CBS. The achievable
transmission rate for the CUs in NOMA group Gm are

R1m (t) = τTr
Ttot
× bm (t)× log2

[
1 + P1m(t)g1m

P2m(t)g2m+σ2

]
R2m (t) = τTr

Ttot
× bm (t)× log2

[
1 + P2m(t)g2m

σ2

]
,

(3)

where bm (t) is the amount of bandwidth allocated to subchannel SCm in time slot t, gim = |him|2 is the
channel gain of CUim on subchannel m, and g1m ≥ g2m. Since the channel gain of CU1m, g1m, is higher,
CU1m has a higher priority for decoding. Consequently, the signal of CU1m is decoded first by treating
the signal of CU2m as interference. Next, user CU1m is removed from signal ym (t), and the signal of
user CU2m is decoded as interference-free. The sum achievable transmission rate of NOMA group Gm

can be calculated as:
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Rm (t) = R1m (t) + R2m (t) . (4)

The sum achievable transmission rate at the CBS can be given as follows:

R (t) =
M

∑
m=1

Rm (t). (5)

Energy Arrival and Primary User Models

In this paper, the CUs have a finite capacity battery, Ebat, which can be constantly recharged by
the solar energy harvesters. Therefore, the CUs can perform their other operations and harvest solar
energy simultaneously. For many reasons (such as the weather, the season, different times of the
day), the harvested energy from solar resources may vary in practice. Herein, we take into account
a practical case, where the harvested energy of CUi in NOMA group Gm (denoted as eh

im) follows a
Poisson distribution with mean value ξavg, as studied in [37]. The arrival energy amount that CUim can

harvest during time slot t can be given as eh
im (t) ∈

{
eh

1 , eh
2 , ..., eh

υ

}
where 0 < eh

1 < eh
2 < ... < eh

υ < Ebat.
The cumulative distribution function can be given as follows:

F
(

eh
im (t) ; ξavg

)
=

eh
im(t)

∑
k=0

e−ξavg

(
ξavg

)k

k!
. (6)

Herein, we use a two-state Markov discrete-time process to model the state of the primary channel,
as depicted in Figure 3. We assume that the state of the primary channel does not change during the
time slot duration, Ttot, and the primary channel can switch states between two adjacent time slots.
The state transition probabilities between two time slots are denoted as Pij |i, j ∈ {F, B} , in which F
stands for the free state, and B stands for the busy state. In this paper, we consider cooperative spectrum
sensing, in which all CUs collaboratively detect spectrum holes based on an energy detection method,
and they send these local sensing results to the CBS. Subsequently, the final decision on the primary
users’ activities is attained by combining the local sensing data at the CBS [36]. The performance of the
cooperative sensing scheme can be evaluated based on probability of detection Pd and probability of
false alarm Pf . Pd is denoted as the probability that the PU’s presence is correctly detected (i.e., the
primary channel is actually used by the PUs). Meanwhile, Pf is denoted as the probability that the
PU’s is detected to be active, but it is actually inactive (i.e., the sensing result of the primary channel is
busy, but the primary channel is actually free) .

 !

 
BF BB
P P= −

 
FB FF
P P= −

BB
P

FF
P

Figure 3. Markov chain model of the primary channel.

3. Long-Term Transmission Rate Maximization Problem Formulation

In this section, we aim at maximizing the long-term data transmission rate for uplink
NOMA/OMA. The 2M users in the CRN can be decoupled into pairs according to their channel



Appl. Sci. 2020, 10, 4236 7 of 19

gain, as described in Algorithm 1. After user pairing, the joint power allocation and bandwidth
allocation problem can be formulated as follows:

a∗ (t) = arg max
a(t)

∞
∑

k=t

M
∑

m=1
Rm (k)

s.t.0 ≤ etr
im ≤ etr

max
M
∑

m=1
bm (t) = W

, (7)

where a (t) = {b (t), ε (t)} represents the action that the CBS assigns to the CUs in time slot t; b (t)
indicates a vector of the allocated bandwidth portions assigned to the corresponding sub-channel,

where b (t) = {b1 (t) , b2 (t) , ...., bM (t)}
∣∣∣∣ M

∑
m=1

bm (t) = W is the assigned bandwidth amount for mth

sub-channel; ε (t) =
[

etr
11 (t) , etr

21 (t) , , etr
12 (t) , etr

22 (t) , ..., etr
1M (t) , etr

2M (t)
]

refers to a transmission energy

vector of the CUs, where etr
im (t) ∈

{
0, etr

1 , etr
2 , ..., etr

max
}

is the transmission energy value for CUim,
and etr

max represents the upper-bounded value of transmission energy for each CU in time slot t.

4. Deep Reinforcement Learning-Based Resource Allocation Policy

In this section, we first reformulate the joint power and bandwidth allocation problem, which
is aimed at maximizing the long-term data transmission rate of the system as the framework of an
MDP. Then, we apply a DRL approach to solve the problem, in which the agent (i.e., the CBS) learns to
create the optimal resource policy via trial-and-error interactions with the environment. One of the
disadvantages of reinforcement learning is that the high computational costs can be imposed due to the
long time learning process of a system with high state space and action space. However, the proposed
scheme requires less computation overhead by adopting deep neural networks, as compared to
other algorithms such as value iteration-based dynamic programming in partially observable Markov
decision process (POMDP) framework [20] in which the transition probability of the energy arrival is
required for obtaining the solution. Thus, the complex in formulation and computation can be relieved
regardless of the dynamic properties of the environment by using the proposed scheme, as compared
to POMDP scheme.

Furthermore, the advantage of a deep reinforcement learning scheme as compared with the
POMDP scheme is that the unknown harvested energy distribution can be estimated to create the
optimal policy by interacting with the environment over the time horizon. In addition, the proposed
scheme can work effectively in a large-state-and-space system by adopting deep neural networks.
However, other reinforcement learning schemes such as Q-learning [38], actor-critic learning [39]
might not be appropriate to large-state-and-space systems. In the proposed scheme, a deep neural
network was trained to obtain the optimal policy where the reward of the system converges to optimal
value. Then, the system can choose an optimal action at every state according to that policy learned
from the training phase without re-training. Thus, deep actor-critic reinforcement learning can be
more applicable to the wireless communication system.

4.1. Markov Decision Process

Generally, the purpose of reinforcement learning is for the agent to learn how to map each system
state to an optimal action through a trial-and-error learning process. In this way, the accumulated sum
of rewards can be maximized after a number of training time slots. Figure 4 illustrates the traditional
reinforcement learning via agent–environment interaction. In particular, the agent observers the
system state and then chooses an action at the beginning of a time slot. After that, the system receives
the corresponding reward at the end of the time slot, and transfers to the next state based on the
performed action. The system will be updated and will then go into the next interaction between agent
and environment.
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Figure 4. The agent–environment interaction process.

We denote the state space and action space of the system in this paper as S and A,
respectively; s (t) = {µ (t) , ere (t)} ∈ S represents the state of the network in time slot t, where
µ (t) is the probability (belie f ) that the primary channel is free in that time slot, and ere (t) =[

ere
11 (t) , ere

21 (t) , ere
12 (t) , ere

22 (t) , ere
1M (t) , ere

2M (t)
]

denotes a vector of remaining energy of CUs, where
0 ≤ ere

im ≤ Ebat represents the remaining energy value of CUim. The action at the CBS is denoted as
a (t) = {b (t) , ε (t)} ∈ A. In this paper, we define the reward as the sum data rate of the system,
as presented in Equation (5).

The decision-making process can be expressed as follows. At the beginning of time slot t,
the agent observes the state, s (t) ∈ S, from information about the environment, and then chooses
action a (t) ∈ A following a stochastic policy, π (a |s ) = Pr (a (t) = a |s (t) = s ), which is mapped
from the environment state to the probability of taking an action. In this work, the network agent
(i.e, the CBS) determines the transmission power for each CU and decides whether to allocate the
bandwidth portion to the NOMA groups in each time slot. Then, the CUs perform their operations
(transmit data or stay silent) according to the assigned action from the CBS. Afterward, the instant
reward, R (t), which is defined in Equation (5), is fed back to the agent, and the environment transforms
to the next state, s (t + 1). At the end of the time slot, the CUs report information about the current
remaining energy level in each CU to the CBS for network management. In the following, we describe
the way to update information about the belief and the remaining energy based on the assigned actions
at the CBS.

4.1.1. Silent Mode

The global sensing decision shows that the primary channel is busy in the current time slot,
and thus, the CBS trusts this result and has all CUs stay silent. As a consequence, there is no reward
in this time slot, i.e., R (t) = 0. The belief in current time slot t can be calculated according to Bayes’
rule [40], as follows:

µ (t) =
µ (t) Pf

µ (t) Pf + (1− µ (t)) Pd
. (8)

Belief µ (t + 1) for the next time slot is updated as follows:

µ (t + 1) = µ (t) PFF + (1− µ (t)) PBF. (9)

The remaining energy of CUim for the next time slot is updated as

ere
im (t + 1) = min

(
ere

im (t) + eh
im (t)− ess, Ebat

)
, (10)

where ess is the consumed energy from the spectrum sensing process.
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4.1.2. Transmission Mode

The global sensing decision indicates that the primary channel is free in the current time slot,
and then, the CBS assigns transmission power levels to the CUs for transmitting their data to the CBS.
We assume that the data of the CUs will be successfully decoded if the primary channel is actually free;
otherwise, no data can be retrieved due to collisions between the signals of the PUs and CUs. In this
case, there are two possible observations, as follows.

Observation 1 (Φ1): All data are successfully received and decoded at the CBS at the end of the
time slot. This result means the primary channel was actually free during this time slot, and the global
sensing result was correct. The total reward for the network is calculated as

R (s (t) |Φ1 ) =
M

∑
m=1

Rm (t), (11)

where the immediate data transmission rate of NOMA group Gm, Rm (t), can be computed with
Equation (4). Belief µ (t + 1) for the next time slot is updated as

µ (t + 1) = PFF. (12)

The remaining energy in CUim for the next time slot will be

ere
im (t + 1) = min

(
ere

im (t) + eh
im (t)− ess − etr

im (t) , Ebat

)
, (13)

where etr
im (t) denotes the transmission energy assigned to CUim in time slot t.

Observation 2 (Φ2): The CBS can not successfully decode the data from the CUs at the end of time
slot t due to collisions between the signals of the CUs and the PUs. It implies that the primary channel
was occupied, and misdetection happened. In this case, no reward is achieved, i.e., R (s (t) |Φ2 ) = 0.
Belief µ (t + 1) for the next time slot can be updated as

µ (t + 1) = PBF. (14)

The remaining energy in CUim for the next time slot is updated by

ere
im (t + 1) = min

(
ere

im (t) + eh
im (t)− ess − etr

im (t) , Ebat

)
. (15)

In reinforcement learning, the agent is capable of improving the policy based on the recursive
lookup table of state-value functions. The state-value function, Vπ (s), is defined as the maximum
expected value of the accumulated reward starting from current state s with the given policy, which is
written as [28]:

Vπ (s) = E

{
∞

∑
t=1

γtR (t) |s (t) = s, π

}
, (16)

where E {.} denotes the expectation, in which γ ∈ (0, 1) is the discount factor, which can affect
the agent’s decisions on myopic or foresighted operations; π is the stochastic policy, which maps
environment state space S to action space A, π (a |s ) = Pr (a (t) = a |s (t) = s ). The objective of the
resource allocation problem is to find optimal policy π∗ that provides the maximum discounted value
function in the long run, which can satisfy the Bellman equation as follows [41]:

π∗ (a |s ) = arg max
π

Vπ (s) . (17)
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The policy can be explored by using an ε− greedy policy in which a random action is chosen
with probability ε, or an action can be selected based on the current policy with probability (1− ε)

during the training process [42]. As a result, the problem of joint power and bandwidth allocation
in Equation (7) can be rewritten as Equation (17), and the solution to deep actor-critic reinforcement
learning will be presented in the following section.

4.2. Deep Actor-Critic Reinforcement Learning Algorithm

The maximization problem in Equation (17) can be solved by using the actor-critic method, which
is derived by combining the value-based method [43] and the policy-based method [44]. The actor-critic
structure involves two neural networks (actor and critic) and an environment, as shown in Figure 5.
The actor can determine the action according to the policy, and the critic evaluates the selected actions
based on value functions and instant rewards that are fed back from the environment. The input of
the actor is the state of the network, and the output is the policy, which directly affect how the agent
chooses the optimal action. The output of the critic is a state-value function Vπ (s), which is used to
calculate the temporal difference (TD) error. Thereafter, the TD error is used to update the actor and
the critic.
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Figure 5. The structure of deep actor-critic reinforcement learning.

Herein, both the policy function in the actor and the value function in the critic are approximated
with parameter vectors θ and ω, respectively, by two sequential models of a deep neural network.
Both value function parameter ω and policy parameter θ are stochastically initialized and updated
constantly by the critic and the actor, respectively, during the training process.

4.2.1. The Critic with a DNN

Figure 6 depicts the DNN at the critic, which is composed of an input layer, two hidden layers,
and an output layer. The critic network is a feed-forward neural network that evaluates the action
taken by the actor. Then, the evaluation of the critic is used by the actor to update its control policy.
The input layer of the critic is an environment state, which contains (2M + 1) elements. Each hidden
layer is a fully connected layer, which involves HC neurons and uses a rectified linear unit (ReLU)
activation function [45,46] as follows:

fReLU (z) = max (0, z) , (18)

where z =
2M+1

∑
i=1

ωisi (t) is the estimated output of the layer before applying the activation function,

in which si (t) indicates the ith element of the input state, s (t), and ωi is the weight for the ith input.
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The output layer of the DNN at the critic contains one neuron and uses the linear activation function
to estimate the state-value function, Vπ(s). In this paper, the value function parameter is optimized by
adopting stochastic gradient descent with a back-propagation algorithm to minimize the loss function,
defined as the mean squared error, which is computed by

Lω = δ2 (t) , (19)

where δ (t) is the TD error between the target value and the estimated value, which is given by

δ (t) = E[R (t) + γVω (s (t + 1))−Vω (s (t))], (20)

and it is utilized to evaluate selected action a (t) of the actor. If the value of δ (t) is positive, the tendency
to choose action a (t) in the future, when the system is in the same state, will be strengthened; otherwise,
it will be weakened. The critic parameter can be updated in the direction of the gradient, as follows:

∆ω = αcδ (t)∇ωVπ
ω (s (t)) , (21)

where αc is the learning rate of the critic.
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Figure 6. The deep neural network in the critic.

4.2.2. The Actor with a DNN

The DNN in the actor is shown in Figure 7, which includes an input layer, two hidden layers,
and an output layer. The input layer of the actor is the current state of the environment. There are two
hidden layers in the actor, where each hidden layer is comprised of HA neurons. The output layer of
the actor provides the probabilities of selecting actions in a given state. Furthermore, the output layer
utilizes the soft-max activation function [28] to compute the policy of each action in the action space,
which is given as:

πθ (a |s ) = eza

∑
a′∈A

ez
a′

, (22)

where za is the estimated value for the preference of choosing action a. In the actor, the policy can be
enhanced by optimizing the state-value function as follows:

J (πθ) = E [Vπ (s)]
= ∑

s∈S
dπ (s)Vπ (s) , (23)
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where dπ (s) is the state distribution. Policy parameter θ can be updated toward the gradient ascending
to maximize the objective function [39], as follows:

∆θ = αa∇θ J (πθ) , (24)

where αa denotes the learning rate of actor network, and policy gradient∇θ J (πθ) can be computed by
using the TD error [47]:

∇θ J (πθ) = E [∇θ log πθ (s, a) δ (t)] . (25)

It is worth noting that TD error δ (t) is supplied by the critic. The training procedure of the
proposed DACRL approach is summarized in Algorithm 2. In the algorithm, the agent interacts with
the environment and learns to select optimal action in each state. The convergence of the proposed
algorithm depends on number of steps per episode, the number of training episodes and the learning
rate, which is discussed in the following section.

Algorithm 2 The training procedure of the deep actor-critic reinforcement learning algorithm

1: Input: S, A, γ, αa, αc, ere(t), µ(t), Eca, ξavg, T, W, εmin, εmax, εd.
2: Initialize network parameters of the actor and the critic: θ, ω.
3: Initialize ε = εmax.
4: for each episode e = 1, 2, 3, ..., L :
5: Sample an initial state s ∈ S.
6: for each time step t = 0, 1, 2, 3..., T − 1 :
7: Observe current state s (t), and estimate state value Vπ

ω (s (t)).
8: Choose an action:
9:

10: a (t) =

 arg max πθ (a (t) |s (t) ) w.p 1− ffl

random action a (t) ∈ A otherwise
11: Execute action a (t), observe current reward R (t).
12: Update epsilon rate ε = max (ε.εd, εmin)

13: Update next state s (t + 1)
14: Critic Process:
15: Estimate next state value Vπ

ω (s (t + 1)).
16: Critic calculates TD error δ (t)
17: if episode is end at time slot t:
18: δ (t) = R (t)−Vω (s (t)) .
19: else
20: δ (t) = R (t) + γVω (s (t + 1))−Vω (s (t)) .
21: end if
22: Update parameter of critic network ω← ω + ∆ω

23: Actor Process:
24: Update parameter of actor network θ← θ+ ∆θ

25: end for
26: end for
27: Output: Final policy π∗t (a (t) |s (t) ).
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Figure 7. The deep neural network in the actor.

5. Simulation Results

In this section, we investigate the performance of uplink NOMA systems using our proposed
scheme. The simulation results are compared with other myopic schemes [48] (Myopic-UP,
Myopic-Random, and Myopic-OMA) in terms of average data transmission rate and energy efficiency.
In the myopic schemes, the system only maximizes the reward in the current time slot, and the
system bandwidth is allocated to the group only if it has at least one active CU in the current time
slot. In particular, with the Myopic-UP scheme, the CBS arranges the CUs into different pairs based
on Algorthim 1. In the Myopic-Random scheme, the CBS randomly decouples the CUs into pairs.
In the Myopic-OMA scheme, the total system bandwidth is divided equally into sub-channels in order
to assign them to each active CU without applying user pairing. In the following, we analyze the
influence of the network parameters on the schemes through the numerical results.

In this paper, we used Python 3.7 with the TensorFlow deep learning library to implement the
DACRL algorithm. Herein, we consider a network based on different channel gain values between
the CUs and the CBS, such as h1 = −20 dB, h2 = −25 dB, h3 = −30 dB, h4 = −35 dB, h5 = −40 dB,
h6 = −45 dB, where h1, h2, h3, h4, h5, h6 are the channel gains between CU1, CU2, CU3, CU4, CU5, CU6

and the CBS, respectively. Two sequential DNNs are utilized to model the value function and the
policy function in the proposed algorithm. Each DNN is designed with an input layer, two hidden
layers and an output layer as described in Section 4. The number of neurons in each hidden layer of the
value function DNN in the critic, and the policy function in the actor, are set at HC = 24 and HA = 24,
respectively. For the training process, value function parameter ω and the policy parameter θ are
stochastically initialized by using uniform Xavier initialization [49]. The other simulation parameters
for the system are shown in Table 1.

We first examine the average transmission rates of the the DACRL scheme under different training
iterations, T, while the number of episodes, L, increases from 1 to 400. We achieved the results by
calculating the average transmission rate after separately running the simulation 20 times, as shown in
Figure 8. The curves sharply increase in the first 50 training episodes, and then gradually converge
to the optimal value. We can see that the agent needs more than 350 episodes to learn the optimal
policy at T = 1000 iterations per episode. However, with the increment in T, the algorithm begins to
converge faster. For instance, the proposed scheme learns the optimal policy in less than 300 episodes
when T = 2000. Nevertheless, it might take a very long time for the training process if each episode
uses too many iterations, and the algorithm evenly converges to a locally optimal policy. As a result,
the number of training iterations per episode and the number of training episodes should not be too
large or too small. In the rest of the simulations, we set training episodes at 300 and training iterations
at 2000.
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Table 1. Simulation Parameters.

Parameter Description Value

M Number of groups 3
Ttot Time slot duration 200 ms
τss Sensing duration 2 ms
W Total system bandwidth 1 Hz
Ebat Battery capacity 30 µJ
ess Sensing cost 1 µJ
etr Transmission energy 0, 10, 20 µJ
ξavg Mean value of harvested energy 5 µJ
µ Initial belief that the primary channel is free 0.5
PFF Transition probability of the primary channel from state F to itself 0.8
PBF Transition probability of the primary channel from state B to state F 0.2
Pd Probability of detection 0.9
Pf Probability of false alarm 0.1
σ2 Noise variance −80 dB
γ Discount factor 0.9
αa Learning rate of the actor 0.001
αc Learning rate of the critic 0.005
ε Epsilon rate 1→ 0.01
εd Epsilon decay 0.9999
L Number of episodes 300
T Number of iterations per episode 2000
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Figure 8. The convergence rate of the proposed actor-critic deep reinforcement learning with different
training steps in each episode.

Figure 9 shows the convergence rate of the proposed scheme according to various values of actor
learning rate αa and critic learning rate αc. The figure shows that the reward converges faster with
increments in the learning rates. In addition, we can observe that the proposed scheme with actor
learning rate αa = 0.001 and critic learning rate αc = 0.005 provides the best performance after 300
episodes. When the learning rates of the actor and the critic increase to αa = 0.01 and αc = 0.005,
respectively, the algorithm converges very fast, but does not bring a good reward due to underfitting.
Therefore, we set the actor and critic learning rates at αa = 0.001 and αc = 0.005, respectively, for the
rest of the simulations.
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Figure 9. The convergence rate of the proposed actor-critic deep reinforcement learning according to
different learning rate values.

Figure 10 illustrates the average transmission rates under the influence of mean harvested energy.
We can see that the average transmission rate of the system increases when the mean value of
harvested energy grows. The reason is that with an increase in ξavg, the CUs can harvest more
solar energy, and thus, the CUs have a greater chance to transmit data to the CBS. In addition,
the average transmission rate of the proposed scheme dominates the conventional schemes because
the conventional schemes focus on maximizing the current reward, and they ignore the impact of the
current decision on the future reward. Thus, whenever the primary channel is free, these conventional
schemes allow all CUs to transmit their data by consuming most of the energy in the battery in order
to maximize the instant reward. This makes the CUs stay silent in the future due to energy shortages.
Although the Myopic-Random scheme had lower performance than the Myopic-UP scheme, it still
had greater rewards than Myopic-OMA. This outcome demonstrates the efficiency of the hybrid
NOMA/OMA approach, compared with the OMA approach, in terms of average transmission rate.
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Figure 10. Average transmission rate according to different values for mean harvested energy.
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In Figure 11, the energy efficiency of the schemes was compared with respect to the mean value of
the harvested energy. In this paper, we define energy efficiency as the transmission data rate obtained
at the CBS over the total energy consumption of the CUs during the operations. We can see that the
energy efficiency declines as ξavg rises. The reason is that when the harvested energy goes up, the CUs
can gather more energy for their operations; however, the amount of energy overflowing the CUs’
batteries also increases. The curves show that the performance of the proposed scheme outperforms
the other conventional schemes because the DACRL agent can learn about the dynamic arrival of
harvested energy from the environment. Thus, the proposed scheme can make proper decision in each
time slot.
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Figure 11. Energy efficiency according to different values of harvested mean energy.

In Figures 12 and 13, we plot the average transmission rate and the energy efficiency, respectively,
based on differing noise variance at the CBS. The curves show that system performance notably
degrades when noise variance increases. To explain this, noise variance will degrade the data
transmission rate, as shown in Equation (3). As a consequence, energy efficiency also decreases
with an increment in noise variance. Based on noise variance at the CBS, the figures verify that the
proposed scheme dominates the myopic schemes.
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Figure 12. Average transmission rate according to noise variance.
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Figure 13. Energy efficiency according to noise variance.

6. Conclusions

In this paper, we investigated a deep reinforcement learning framework for joint power and
bandwidth allocation by adopting both hybrid NOMA/OMA and user pairing in uplink CRNs.
The DACRL algorithm was employed to maximize the long-term transmission rate under the energy
constraint in the CUs. A DNN was applied to approximate the policy function and the value function
such that the algorithm can work in the system with large state and action spaces. The agent of the
DACRL can explore the optimal policy by interacting with the environment. As a consequence, the CBS
can effectively allocate bandwidth and power to the CUs based on the current network state in each
timeslot. The simulation results verified the advantages of the proposed scheme in improving network
performance under various network conditions in the long run, compared to the conventional schemes.
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