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Abstract: The wind turbine’s operation is affected by the wind speed variations, which cannot be
followed by the wind turbine due to the large moment of the power plant’s inertia. The method
proposed in this paper belongs to the wind turbine power curves (WTPC) approach, which expresses
the power curve of the permanent magnet synchronous generator (PMSG) by a set of mathematical
equations. The WTPC research papers published before now have not taken into consideration the
total power plant inertia at time-variable wind speeds, when the wind turbine’s optimal operation
is very difficult to be reached, and its efficiency is thus threatened. The study is based on a wind
turbine having a large moment of total inertia, and demonstrates, through extensive simulation
results, that the optimal values of the PMSG’s power can be determined based on the kinetic motion
equation. This PMSG’s optimal power represents an ideal time-varying curve, and the wind turbine
should be controlled so as to closely follow it. For this purpose, proportional integral (PI) and
proportional integral derivative (PID) type-based control methods were implemented and analyzed,
so that the PMSG’s power oscillations could be reduced, and the PMSG’s angular speed value made
comparable to the optimal one, meaning that the wind turbine operates within the optimal operation
area, and is efficient. The simulations are actually the numerical solutions obtained by using the
Scientific Workplace simulation environment, and they are based on the wind speed measurements
collected from a wind farm located in Dobrogea, Romania.
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1. Introduction

Renewable energy has become a very important research area during the last few decades,
and wind farms are a resource-efficient option for generating electric energy. The main drawback,
though, is that the wind resources are affected by wind volatility, and furthermore, sudden wind speed
variations lead to the unstable operation of the wind turbine [1].

As is highlighted in [2], from the energy point of view, the operation of the wind turbines within
the optimal area was treated mainly for constant wind speeds over time. In reality, the wind speed
is a time-varying function, and in order to operate within the optimal area from the energy point of
view, the angular speed of the permanent magnet synchronous generator (PMSG) must follow the
wind speed variation in time, because the PMSG’s optimal angular speed is directly proportional to
the wind speed value, as was shown in [3].
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Tracking the maximum power point (MPP) is the essence of the variable speed wind turbines’
control, since it determines their efficiency. The MPP is achieved by always adapting the wind turbine’s
speed to the wind speed [4].

There are five main categories of MPP tracking methods: power signal feedback (PSF) control [5],
optimal torque (OT) control [6], tip-speed ratio (TSR) control [7] and perturbation and observation
(P&O) control [8,9]. There are also artificial intelligence techniques, such as fuzzy logic [10], artificial
neural networks [11], intelligent search algorithms [12] and wind turbine power curves (WTPC) [13–15].

PSF- and OT-based MPP tracking methods employ the generator’s exact model, commonly used
in large-scale wind turbines [6,7]. The torque is usually estimated using the Kalman filter [16].

Since the wind turbines can change their rotation speed to follow changes in wind speed, this means
that for each wind speed there is an ideal rotational speed, which is called the optimal tip-speed
ratio (TSR), and is different for each wind turbine [7]. Thus, the TSR-based MPP tracking method
uses the wind turbine’s exact model. The wind speed and the tip-speed ratio are estimated using the
Newton–Raphson method. The error between the estimated torque and the steady optimal torque
is used as the feed-forward signal to control the generator torque. Unfortunately, there is a conflict
between the rapid wind variations and the slow dynamic response of the wind turbines, due to the
large inertia of the generator.

Regarding the P&O method, it was demonstrated in the literature that this fails to follow the MPP
trajectory of the under rapid wind variations [8].

For high efficiency, instantaneous MPP is highly demanded, but this claims high controller
robustness against parameter variations and external disturbances. Therefore, fuzzy and artificial
intelligence-based MPP tracking methods represent a flexible medium, that proposes solutions
to problems that cannot be tackled with traditional methods. Many papers have stated that the
sliding mode control approach is more robust with respect to parameter variations and external
disturbances [17]. Nevertheless, chattering is its main drawback. To address this, higher order sliding
mode control was developed [18].

Due to the uncertain nature of the wind, in order to make wind energy a reliable source, accurate
models for predicting the delivered power and performance monitoring of wind turbines are needed.
The wind turbine’s power curve, which gives the turbine’s delivered power at a specific wind speed,
provides a convenient way to model the performance of wind turbines. A number of methods have
been proposed in the literature for WTPC modelling, as follows: parametric models, parameter
estimation, data preprocessing, evaluation of model, and nonparametric models (i.e., the artificial
neural networks method and the fuzzy logic method, this one being used when the data collected
from the wind farms is voluminous, and usually contains errors). They have their own advantages
and disadvantages. The power curve models based on polynomial approximation are simple to use,
but only for small systems [13]. Most of the models are developed from the manufacturer’s curves
of wind turbines [14], which are turbine-specific, and they can be applied in the power prediction of
single turbines and in sites with steady winds [15]. As the wind turbine’s power is strongly dependent
on the wind speed at the wind farm site, the selection of an appropriate wind speed model, along with
the power curve model, is the main requirement for accurate prediction of the wind farm’s output.
Therefore, improved models are required, which should be able to minimize the prediction errors.
In consequence, the method proposed in this paper belongs to the WTPC approach, which express the
shape of the PMSG’s power curve by a set of mathematical equations. Determination of the coefficients
of these equations requires fitting the data to the mathematical model [13].

Furthermore, all these methods, PSF, OT, TSR, P&O, artificial intelligence techniques and WTPC,
at some level fail in the proper detection of the maximum power point. Furthermore, the problems
become more complex for time-varying wind speeds, due to the high value inertia moments [19,20].

To cope with these problems, the moment of inertia has to be considered, making it possible to
accurately detect the MPP, even under rapid wind variations.
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In the literature, there are only a few studies on methods to eliminate the inertial effect at variable
wind speeds, when the optimal operation of the wind turbine is very hard to achieve [14]. However,
as regards the WTPC method, there is no study taking into account the inertia. Therefore, the method
proposed in this paper is based on the mathematical model of the wind turbine, which includes its
moment of inertia, too.

The paper is comprised of seven sections. Section 1 presents an overview of the arising problems
regarding reaching a good wind turbine efficiency; Section 2 presents the wind turbines’ mathematical
model, on which the study is based; Section 3 describes the methodology of determining the PMSG’s
optimal power; Section 4 presents the implementation of a proportional integral (PI) type control
applied to the PMSG’s optimal power; in Section 5, a proportional integral derivative (PID)-type control
is applied to the PMSG’s optimal power; Section 6 presents a case study, and in Section 7, the conclusion
is drawn. The case study is based on a real wind turbine’s data, collected from a real wind farm and
provided in [21]. The installed wind turbines are of 2.5 (MW) nominal output power, and of the three
blades type, are manufactured by General Electric company and have the characteristics presented in
Table A1, which can be found in the Appendix paragraph.

Along with the case study presented in this paper, the operation of one wind turbine is analyzed
for wind speeds measured with a sampling step of 30 (s). Based on the values of the wind speed,
the maximum values of the chosen wind turbine’s power are determined, PWTmax. Then, the operation
of the wind turbine, at MPP, is analyzed, meaning that the optimal values of the PMSG’s power can be
determined based on the measured wind speed, so that the PMSG’s angular speed tends towards the
PMSG’s optimal angular speed.

Two control methods for constraining the PMSG’s power to follow the optimal one are in this
paper analyzed: one based on the PI-type regulator, and the second one based on the PID-type regulator.
The values of the regulator coefficients were determined by the trial and error method. Then, finally,
the optimal power values of the PMSG are compared to the ones obtained by implementing two types
of control, based on either the PI or PID regulators.

The simulations are actually represented by the numerical solutions obtained by using the MAPLE
core of the Scientific Workplace simulation environment, and they are based only on the measured
wind speed from the experimental data collected from the wind farm.

A list containing the main variables used in this paper is provided by Table A2 in Appendix.

2. Wind Turbine’s Mathematical Model

The study presented in this paper is based on the classical mathematical model of the wind turbine,
as given in [3]. It allows for the optimal values of the PMSG’s angular speed, ωoptim, to be determined,
so that the captured wind energy is maximum.

The characteristic of the wind turbine’s power, PWT(ω, Sw), which also represents the wind
turbine’s mathematical model, has, in general, the below shape

PWT(ω, Sw) = a
(Sw

ω
− b

)
e−c Sw

ω S3
w (1)

where Sw is the wind speed, ω is the PMSG’s angular speed, and the parameters a, b, c are
specific to the used wind turbine, and can be determined from the data sheet provided by the
wind turbine’s manufacturer.

For time-varying wind speeds, Sw(t), the wind turbine’s power, PWT, varies between a minimum
value and a maximum value, depending on the PMSG’s angular speed value, ω.

The maximum value of the wind turbine’s power, PWTmax is obtained from Equation (1), for the
PMSG’s optimal angular speed, ωoptim, by canceling the wind turbine’s power derivative

dPWT

dω
=

d
dω

(
a
(Sw

ω
− b

)
e−c Sw

ω S3
w

)
= 0 (2)
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which yields to

ωoptim =
c

1 + bc
× Sw = k1 × Sw (3)

where k1 represents the proportional constant, determined in [3],

k1 =
c

1 + bc
(4)

Furthermore, the wind turbine’s power is zero for ω = ωmax (the maximum value of the PMSG’s
angular speed), which, employed in Equation (1), yields to

PWT = a
( Sw

ωmax
− b

)
e−c Sw

ωmax S3
w = 0 (5)

whose solution is
ωmax =

Sw

b
(6)

Combining Equations (3) and (6), the ratio
ωoptim/ωmax is obtained as

ωoptim

ωmax
=

bc
1 + bc

(7)

which will be useful in determining the b and c coefficients.
Finally, by replacing Equation (3) in Equation (1), the maximum value of the wind turbine’s power,

PWTmax, is obtained as

PWTmax = a
(

Sw
ωoptim

− b
)

e
−c Sw
ωoptim S3

w = a
((

b + 1
c

)
− b

)
e−c(b+ 1

c )S3
w

= a
c e−1−bcS3

w = k2S3
w

(8)

where
k2 =

a
c

e−1−bc (9)

represents another proportional constant, determined in [3].

3. PMSG’s Optimal Power Determination based on the Kinetic Motion Equation

The kinetic motion equation, as depicted in [2], is as shown below

J
dω
dt

= TWT − TPMSG (10)

where J is the moment of total inertia, ω is the PMSG’s angular speed, TWT is the wind turbine’s
developed torque, TPMSG is the PMSG’s developed torque, and all of them are related to the
PMSG’s shaft.

Multiplying (10) by ω, the following expression results

J
dω
dt
ω = PWT − PPMSG (11)

where:

• the first term, which is dependent on the moment of total inertia, Pinertial is called the
“inertial power”,

Pinertial = J
dω
dt
ω (12)
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• the second term, PWT, which is dependent on the PMSG’s angular speed, ω, and on the wind
speed, Sw, as depicted by Equation (1), represents the “wind turbine’s power”.

• the third term, which is dependent on the PMSG’s angular speed, ω, and on the load resistance,
represents the PMSG’s power, PPMSG.

Therefore, Equation (11) can also be written as

Pinertial = PWT − PPMSG (13)

Then, integrating Equation (11), the below relationship can be obtained as

J
ω2

k −ω
2
k−1

2
=

∫ tk

tk−1

PWTdt−
∫ tk

tk−1

PPMSGdt =
PWT_avg

∆t
−

PPMSG_avg

∆t
(14)

where ωk is the PMSG’s angular speed at time instant k, ωk−1 is the PMSG’s angular speed at time
instant k− 1, PWT_avg is the average power delivered by the wind turbine, and PPMSG_avg is the PMSG’s
average power.

Thus, from Equation (14), the energy balance of the wind turbine was obtained as

E0 = EE + Ekinetic (15)

where:

• the first term, E0, represents the wind energy captured by the wind turbine during the time
interval, ∆t,

E0 =

∫ tk

tk−1

PWTdt =
PWT_avg

∆t
(16)

• the second term, EE, represents the energy delivered by the PMSG to the main grid,

EE =

∫ tk

tk−1

PPMSGdt =
PPMSG_avg

∆t
(17)

• the third term, Ekinetic, represents the kinetic energy,

Ekinetic = J
ω2

k −ω
2
k−1

2
(18)

where the variation of the kinetic energies, J
ω2

k−ω
2
k−1

2 , can be determined very precisely by measuring
the PMSG’s angular speed, ω.

Remark 1: The kinetic energy is the useful energy that also includes the PMSG’s efficiency,
thus generating the additional electrical power from the PMSG’s terminals.

The average power delivered by the PMSG can be determined from Equation (14) by using the
below relationship:

PPMSG_avg = PWT_avg −

J
ω2

k −ω
2
k−1

2

/∆t (19)

Similar to Equation (19), the optimal values of the PMSG’s power are obtained for the MPP
operation when its angular speed, ω(t), becomes equal to the PMSG’s optimal angular speed, ωoptim(t),
which depends linearly on the time-varying wind speed, Sw(t), as described by Equation (3). Thus,
ω(t) = ωoptim(t) and by employing Equation (3) in Equation (11), the result is that

PPMSGoptim(t) = PWTmax(t) − Jk1
dSw(t)

dt
k1Sw(t) (20)
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which, replacing Equation (9) in Equation (20), becomes

PPMSGoptim(t) = k2S3
w(t) − Jk2

1
dSw(t)

dt
Sw(t) (21)

where

Pinertial(t) = Jk2
1

dSw(t)
dt

Sw(t) (22)

In conclusion, based on the measured time-varying wind speed values, Sw(t), the optimal values
of the PMSG’s power, PPMSGoptim(t) can be determined using Equation (21). In essence, this means that
the wind turbine operates at the MPP, and thus, the PMSG’s angular speed, ω(t), tends towards the
optimal value, ωoptim(t).

4. PMSG’s Optimal Power Control Based on the PI-type Regulator

The time-varying curve of the PMSG’s optimal power was previously determined based on the
kinetic motion equation, and it represents the ideal (theoretical) curve to be followed by the wind
turbine in order to operate at the maximum power point. This means that the wind turbine should be
controlled in such a way as to closely follow the ideal curve.

Thus, the main objective is to control the PMSG’s power curve, following the PMSG’s optimal
power curve (PPMSG(t)→ PPMSGoptim(t) ), or, as otherwise stated, the PMSG’s angular speed becomes
equal to its optimal speed (ω(t)→ ωoptim(t) ). One way of doing this is by implementing a control
based on a PI-type regulator.

The equation of the PI-type regulator is below described:

PPMSG_PI(t) − PPMSGoptim(t) = kp
[
ω(t) −ωoptim(t)

]
+ ki

∫ [(
ω(t) −ωoptim(t)

)]
dt (23)

where PPMSG_PI is the reference value of the PMSG’s power for the case of a PI-type based control,
PPMSGoptim is the computed/measured value of the PMSG’s power, kp, is the proportional constant and
ki is the integral constant of the PI regulator.

By derivation, Equation (23) becomes

dPPMSG_PI(t)
dt

= kp
dω(t)

dt
− kp

dωoptim(t)
dt

+ ki
(
ω(t) −ωoptim(t)

)
(24)

Then, by replacing Equation (3) in Equation (24), it results in

dPPMSG_PI(t)
dt

= kp
dω(t)

dt
− k1kp

dSw(t)
dt

+ ki(ω(t) − k1Sw(t)) (25)

The PMSG’s power in Equation (25), PPMSG_PI(t), can be determined from the kinetic motion
equation from Equation (11).

Replacing Equation (1) in Equation (11), the below kinetic motion equation is obtained as

J
dω(t)

dt
ω(t) = a

(
Sw(t)
ω(t)

− b
)

e−c Sw(t)
ω(t) S3

w(t) − PPMSG_PI(t) (26)

The kinetic motion Equation (26), together with the PI-type regulator Equation (25), defines the
below system of differential equations used in the simulation environment for determining the PMSG’s
power curve and the PMSG’s angular speed: J dω(t)

dt ω(t) = a
(

Sw(t)
ω(t) − b

)
e−c Sw(t)

ω(t) S3
w(t) − PPMSG_PI(t)

dPPMSG_PI(t)
dt = kp

dω(t)
dt − k1kp

dSw(t)
dt + ki(ω(t) − k1Sw(t))

(27)
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5. PMSG’s Optimal Power Control Based on the PID-type Regulator

In this paragraph, another control method for ensuring the PMSG’s power follows the PMSG’s
optimal power, (PPMSG(t)→ PPMSGoptim(t) ) or (ω(t)→ ωoptim(t) ), is proposed, and consists of
implementing a control based on a PID-type regulator.

The equation of the PID-type regulator is

PPMSG_PID(t) − PPMSGoptim(t) = kp
(
ω(t) −ωoptim(t)

)
+ ki

∫ (
ω(t) −ωoptim(t)

)
dt + kd

d(ω(t)−ωoptim(t))
dt (28)

where PPMSG_PID is the reference value of the PMSG’s power in the case of a PID-type based control,
PPMSGoptim is the computed/measured value of the PMSG’s power, kp is the proportional constant, ki is
the integral constant and kd is the derivative constant of the PID regulator.

Derivation of Equation (28) yields to

dPPMSG_PID(t)
dt

= kp
d
(
ω(t) −ωoptim(t)

)
dt

+ ki
(
ω(t) −ωoptim(t)

)
+ kd

d2
(
ω(t) −ωoptim(t)

)
dt2 (29)

Then, replacing Equation (3) in Equation (29), it results to

dPPMSG_PID(t)
dt

= kp
dω(t)

dt
− kpk1

dSw(t)
dt

+ kiω(t) − kik1Sw(t) + kd
d2ω(t)

dt2 − kdk1
d2Sw(t)

dt2 (30)

The PMSG’s power in (30), PPMSG_PID, can be determined from the kinetic motion equation in
Equation (21), written as below:

J
dω(t)

dt
ω(t) = k2S3

w(t) − PPMSG_PID(t) (31)

Since, in Equation (30), there is a second order derivative of the time-varying wind speed curve,
Sw(t), the derivation of the kinetic motion equation from Equation (31) is imposed, obtaining

J
dε(t)

dt
ω(t) + Jε2(t) = k2

dS3
w(t)
dt

−
dPPMSG_PID(t)

dt
(32)

where the following notation has been made: ε(t) = dω(t)
dt .

The derived kinetic motion Equation (32), together with the PID-type regulator equation in
Equation (30), defines the below system of differential equations used in the simulation environment
for determining the PMSG’s power curve and the PMSG’s angular speed:

J dε(t)
dt ω(t) + Jε2(t) = k2

dS3
w(t)
dt −

dPPMSG_PID(t)
dt

dPPMSG_PID(t)
dt = kp

dω(t)
dt − kpk1

dSw(t)
dt + kiω(t) − kik1Sw(t) + kd

d2ω(t)
dt2 − kdk1

d2Sw(t)
dt2

(33)

6. Case Study

6.1. PMSG’s Optimal Power Determination

In what follows, the objective is to determine the optimal values of the PMSG’s power PPMSGoptim(t),
delivered by one of the wind turbines within [21].

Since the PPMSGoptim(t) depends on Sw(t), the main input parameter that could be measured is the
time-varying wind speed. The wind farm in [21] provided the wind speed measurements, sampled
with a step of 30 (s), as shown in the below presented Table 1.
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Table 1. Measured wind speed values over time.

t (s) Swmeas(t) (m/s)

0 6.24
30 6.25
60 6.26
90 6.27
120 6.28
150 6.29
180 6.3
210 6.31
240 6.32
270 6.32
300 6.32
330 6.315
360 6.31
390 6.29
420 6.27
450 6.255
480 6.24
510 6.225
540 6.21
570 6.14

Based on the data from [21], Sorandaru et al. [3] demonstrates that

ωoptim

ωmax
= 0.60606 (34)

and
k1 = 23.091 (35)

and
k2 = 3040.7 (36)

Thus, employing Equation (34) in Equation (7), it results to

bc = 1.5385 (37)

Using Equations (35) and (37) in Equation (4), it yields to

b = 2.6247× 10−2 and c = 58.617 (38)

Using Equations (36) and (38) in Equation (9), the value of a parameter is obtained as

a = 2.2566× 106 (39)

Finally, employing Equations (38) and (39), Equation (1) becomes

PWT = 2.2566× 106
(Sw

ω
− 2.6247× 10−2

)
e−58.617 Sw

ω S3
w (40)

Accuracy in finding the PMSG’s optimal power curve can be achieved via the accuracy of the
modelled wind speed. Thus, considering a parabolic shape for the approximated wind speed time
variation, described as

Sw(t) = mt2 + nt + 6.24 (41)
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and using the measurements data from Table 1, the below equations system results:{
6.32 = m2702 + n270 + 6.24, for t = 270 [s] and Swmax = 6.32 [m/s]
6.14 = m5702 + n570 + 6.24, for t = 570 [s] and Swmin = 6.14 [m/s]

(42)

the solutions of which are
m = −1.5724× 10−6, n = 7.2086× 10−4 (43)

Finally, an approximation for the wind speed time variation is obtained, as depicted below and
shown in Figure 1.

Sw(t) = −1.5724× 10−6t2 + 7.2086× 10−4t + 6.24 (44)

The first-order derivative of the wind speed time variation from Equation (44), which is also
depicted in Figure 1, can be obtained by using the below equation:

dSw(t)
dt

=
d
(
−1.5724× 10−6t2 + 7.2086× 10−4t + 6.24

)
dt

= −3.1448× 10−6t + 7.2086× 10−4 (45)

The approximated wind speed reaches a maximum value for the time instant t∗ (see Figure 1),

obtained by canceling its derivative in Equation (45), dSw(t)
dt = 0, whose solution is t∗ = 229.22 (s).

Remark 2: In Figure 1, it can be seen that the approximated wind speed time variation depicted in
(44) is very close to the measured wind speed curve, Swmeas(t), obtained as depicted in Table 1.

The maximum value of the wind turbine’s power can be determined from Equations (18) and (36),
using the below relationship:

PWTmax(t) = 3040.7S3
w(t) (46)

which, by replacing Sw(t) with Equation (44), becomes

PWTmax(t) = 3040.7
(
−1.5724× 10−6t2 + 7.2086× 10−4t + 6.24

)3
(47)

Following Equations (35) and (36), and replacing the moment of total inertia with the value of
J = 1.15 × 105

(
kg/m2

)
, which is known from [21], the PMSG’s optimal power curve, PPMSGoptim(t),

defined by Equation (21), for a certain wind speed time variation, Sw(t), can be written as below:

PPMSGoptim(t) = 3040.7S3
w(t) − 1.15× 105(23.091)2 dSw(t)

dt
Sw(t) (48)

Based on the wind speed time variation, given in Figure 1, it becomes

PPMSGoptim(t) = 3040.7
(
−1.5724× 10−6t2 + 7.2086× 10−4t + 6.24

)3

−1.15× 105(23.091)2
(
7.2086× 10−4

− 3.1448× 10−6t
)

×

(
−1.5724× 10−6t2 + 7.2086× 10−4t + 6.24

) (49)

Figure 2 below presents the time variations of the maximum wind turbine’s power and the PMSG’s
optimal power.

Integrating the PMSG’s optimal power described by Equation (49), for a time interval from 0 (s) to
570 (s), the value of the energy delivered by the PMSG to the main grid, EE, is the below:

EE(570) =
∫ 570

0

(
PPMSGoptim(t)

)
dt = 4.663× 108 (50)



Appl. Sci. 2020, 10, 4232 10 of 19

The maximum value of the captured wind energy,E0, during the time interval between 0 (s) and
570 (s), is obtained by integrating the wind turbine’s maximum power into (47):

E0(570) =
∫ 570

0

(
3040.7

(
−1.5724× 10−6t2 + 7.2086× 10−4t + 6.24

)3
)
dt

= 4.2835× 108
(51)
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Remark 3: The value of the captured wind energy is less than the value of the delivered energy,
the difference between the two values being found in the kinetic energy:

Ekinetic = J
ω(570)2

−ω(0)2

2
= 1.15× 105 141.782

− 144.092

2
= −3.7971× 107 (52)

Then, using Equations (50) and (52), Equation (15) becomes

E0 = EE + Ekinetic = 4.663× 108
− 3.7971× 107 = 4.2833× 108 (53)

which is equal to E0(570) = 4.2835× 108 (J) from (51).
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Thus, the energy balance in Equation (15) is checked.
Remark 4: For high values of the moment of total inertia, J, and of the wind speed derivative,

dSw(t)
dt , the value of the inertial power, Pinertial, is comparable with the wind turbine’s power values,

PWT, and the PMSG’s optimal power values, PPMSGoptim. For example, for the time instant, t = 570 (s)
the wind speed derivative in Equation (50) has the below value:

dSw

dt
(570) = −3.1448 · 10−6570 + 7.2086 · 10−4 = −1.071 7 · 10−3 (54)

while the power’s values are:
• the inertial power from Equation (22),

Pinertial = −4.0347× 105 (55)

• the optimal PMSG’s power from Equation (49),

PPMSGoptim = 11.073× 105 (56)

• the maximum wind turbine’s power from Equation (47),

PWTmax = 7.0385× 105 (57)

It can be observed that the value of the inertial power is negative, while the wind speed derivative
is negative and the PMSG’s angular speed decreases. Thus, in conclusion, the moment of total inertia,
J, has a huge impact on the wind turbine’s operation mode.

It also has to be noted that, within the time interval between 0 (s) and 230 (s), the wind speed rises
and the PMSG’s optimal power increases, due to the augmented value of the maximum wind turbine’s
power, which depends on the wind speed cube.

The wind turbine’s power is the sum of two powers: the PMSG’s optimal power and the inertial
power, as can be deduced from Equation (17). This is greater than the PMSG’ power, because the value
of the inertial power is positive, while the PMSG’s angular speed increases. During this time period,
the captured wind energy, E0, is included in the delivered energy, EE, and in the kinetic energy, Ekinetic.

For the time instant t∗ = 230 (s), the PMSG’s output power value is equal to the wind turbine’s
power value, the PMSG’s angular speed value being at its maximum.

Within the time interval between 230 (s) and 570 (s), the wind speed is slowing down while
the value of the PMSG’s optimal power is getting larger, due to the increasing value of the inertial
power, Pinertial.

The wind turbine’s power is lower than the PMSG’s power, and the difference between them is
represented by the inertial power, which is negative due to the decrease in the PMSG’s angular speed.

6.2. PI-Based Control of the PMSG’s Optimal Power

For the case study in this paragraph, the same experimental data are used as those used for the
previous case study. Therefore, the system of differential equations in Equation (27) becomes 1.15× 105 dω(t)

dt ω(t) = 2.2566× 106
(

Sw(t)
ω(t) − 2.6247× 10−2

)
e−58.617 Sw(t)

ω(t) S3
w(t) − PPMSG_PI(t)

dPPMSG_PI(t)
dt = kp

dω(t)
dt − 23.091kp

dSw(t)
dt + ki(ω(t) − 23.091Sw(t))

(58)

and by replacing the wind speed time-varying curve, Sw(t), and its first order derivative, dSw(t)
dt , from

Equations (44) and (45), respectively, the system of differential equations is obtained as
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1.15× 105 dω(t)
dt ω(t) = 2.2566× 106

(
(−1.5724×10−6t2+7.2086×10−4t+6.24)

ω(t) − 2.6247× 10−2
)

− 58.617
(−1.5724×10−6t2+7.2086×10−4t+6.24)

ω(t)

× e(−1.5724×10−6t2+7.2086×10−4t+6.24)
3
−PPMSG_PI(t)

dPPMSG_PI(t)
dt = kp

dω(t)
dt − 23.091kp

(
−3.1448× 10−6t + 7.2086× 10−4

)
+

+ ki
(
ω(t) − 23.091

(
−1.5724× 10−6t2 + 7.2086× 10−4t + 6.24

))
(59)

The initial conditions of the differential equations system are calculated from Equations (3), (26)
and (45), and from Table 1, considering t = 0 (s). Their expressions are the following ones:

ω(0) = ωoptim(0) = 23.091× Sw(0) = 23.091× 6.24 = 144.09
dω(0)

dt = 23.091 dSw(0)
dt = 23.091×

(
−3.1448× 10−6

× 0 + 7.2086× 10−4
)
= 1.6645× 10−2

PPMSG_PI(0) = 2.2566× 106
(

6.24
144.09 − 2.6247× 10−2

)
e−58.617 6.24

144.09 (6.24)3
− 1.15× 1051.6645× 10−2144.09

= 4.6297× 105

(60)

The final conditions of the differential equations system are calculated from Equations (3), (26)
and (45), and from Table 1, considering t = 570 (s). Their expressions are the following ones:
ω(570) = ωoptim(570) = 23.091× Sw(570) = 23.091× 6.14 = 141.78
dω(570)

dt = 23.091 dSw(570)
dt = 23.091×

(
−3.1448× 10−6

× 570 + 7.2086× 10−4
)
− 5.3879× 10−2

PPMSG_PI(570) = 2.2566× 106
(

6.14
141.78 − 2.6247× 10−2

)
e−58.617 6.14

141.78 (6.24)3
− 1.15× 1051.6645× 10−2141.78

= 1.5823× 106

(61)

The values of the proportional constant, kp, and of the integral constant one, ki, are determined by
successive simulations using the trial and error tuning method, so that the power oscillations are as
small as possible, and the PMSG’s angular speed value, ω, is made to be approximatively equal to the
optimal value of the PMSG’s angular speed, ωoptim. The method is now presented. The I and D terms
are set to zero first, and the proportional gain is increased until the output of the loop oscillates; once P
has been set to obtain a desired fast response, the integral term is increased to stop the oscillations.
The integral term reduces the steady state error, but increases overshoot. Once the P and I have been set
to get a fast system’s response, the derivative term is then increased until the loop is acceptably quick.
Thus, based on this tuning method applied in successive simulations, so that the power oscillations are
reduced and the PMSG’s angular speed value, ω, is comparable to the PMSG’s optimal angular speed
value (meaning that the wind turbine operates at the MPP), the coefficients of the PI/PID controller were
determined. For example, at t = 570 (s), the PMSG’s angular speed value is ω(570) = 141.76 (rad/s)
and ωoptim(570) = 23.091Sw(570) = 23.091 =

(
−1.5724× 10−65702 + 7.2086 × 10−4

×570 + 6.24) =

141.78 (rad/s).
From the simulations, it results that the PMSG’s power oscillations are lowest for

kp = 10 and ki = 2700. Thus, the differential equations system in Equation (59), together
with the initial conditions in Equation (60), can be written as

1.15× 105 dω(t)
dt ω(t) = 2.2566× 106

(
(−1.5724×10−6t2+7.2086×10−4t+6.24)

ω(t) − 2.6247× 10−2
)

− 58.617
(−1.5724×10−6t2+7.2086×10−4t+6.24)

ω(t) e(−1.5724×10−6t2+7.2086×10−4t+6.24)
3

−PPMSG_PI(t)
dPPMSG_PI(t)

dt = 10 dω(t)
dt − 23.091× 10

(
−3.1448× 10−6t + 7.2086× 10−4

)
+2700

(
ω(t) − 23.091

(
−1.5724× 10−6t2 + 7.2086× 10−4t + 6.24

))
ω(0) = 144.09
PPMSG_PI(0) = 4.6297× 105

(62)

the solutions of which are the PPMSG_PI(t) and ωoptim(t) curves.



Appl. Sci. 2020, 10, 4232 13 of 19

In conclusion, by using a PI-type regulator, the resulting PMSG optimal power, PPMSG_PI(t),
oscillates around the optimal values of the PPMSGoptim(t), with amplitudes up to ±20%, as can be seen
in Figure 3.
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For the case study in this paragraph, the same experimental data are used as those used for the
previous case studies. Therefore, the system of differential equations in Equation (33) becomes 1.15× 105 dε(t)

dt ω(t) + 1.15× 105ε2(t) = 3040.7 dS3
w(t)
dt −

dPPMSG_PID(t)
dt

dPPMSG_PID(t)
dt = kp

dω(t)
dt − 23.091kp

dSw(t)
dt + kiω(t) − 23.091kiSw(t) + kd

d2ω(t)
dt2 − 23.091kd

d2Sw(t)
dt2

(63)

The second order derivative of the wind speed time-varying curve, Sw(t), is obtained by derivation
of Equation (45):

d2Sw(t)
dt2 = 7.2086× 10−4 (64)

Then, by replacing the wind speed time-varying curve, Sw(t), its first order derivative, dSw(t)
dt ,

and its second order derivative, d2Sw(t)
dt2 , from Equations (44), (45) and (64), respectively, the below

system of differential equations is obtained, as:



115× 105 dε(t)
dt ω(t) + 1.15× 105ε(t)2 = 3040.7

d(−1.5724×10−6t2+7.2086×10−4t+6.24)
3

dt −
dPPMSG_PID(t)

dt

= 3040.7
(
−3.84× 10−28

(
3931t2

− 1.8022× 106t− 1.56× 1010
)2(

3931t− 9.0108× 105
))

−
dPPMSG_PID(t)

dt
dPPMSG_PID(t)

dt = kp
dω(t)

dt − 23.091× k1 ×
(
−3.1448× 10−6t + 7.2086× 10−4

)
+ ki

(
ω(t) − 23.091×

(
−1.5724× 10−6t2 + 7.2086× 10−4t + 6.24

))
+ kd

(
d2ω(t)

dt2 − 1.6645× 10−2
)

(65)

The initial conditions of the differential equations system in Equation (65) are calculated for the
wind speed value from Table 1, corresponding to t = 0 (s). Their expressions are the following ones:
ω(0) = ωoptim(0) = 23.091× Sw(0) = 23.091× 6.24 = 144.09

ε(0) = dω(0)
dt = 23.091 dSw(0)

dt = 23.091×
(
−3.1448× 10−6

× 0 + 7.2086× 10−4
)
= 1.6645× 10−2

PPMSG_PID(0) = 2.2566× 106
(

6.24
144.09 − 2.6247× 10−2

)
e−58.617 6.24

144.09 (6.24)3
− 1.15× 1051.6645× 10−2144.09

= 4.6297× 105

(66)

The values of the proportional constant, kp, of the integral constant, ki, and of the derivative
constant are also determined through the trial and error tuning method, so that the power oscillations



Appl. Sci. 2020, 10, 4232 14 of 19

are as small as possible, and the PMSG’s angular speed value, ω, is made to tend to the optimal value
of the PMSG’s angular speed, ωoptim. For example, at t = 570 (s), the PMSG’s angular speed value is
ω(570) = 141.76 (rad/s) and ωoptim(570) = 141.78 (rad/s).

From the simulations, it results that the PMSG’s power oscillations are lowest for kp =

10, ki = 2700 and kd = 1000, as can also be seen in Figure 4, and using those from Equation
(65) together with the initial conditions in Equation (66), the equations system in Equation (65) becomes

1.15× 105 dε(t)
dt ω(t) + 1.15× 105ε(t)2

= 3040.7
(
−3.84× 10−28

(
3931t2

− 1.8022× 106t− 1.56× 1010
)2(

3931t− 9.0108× 105
))

−
dPPMSG_PID(t)

dt
dPPMSG_PID(t)

dt = 10 dω(t)
dt − 44.942t− 3.8904× 105 + 2700ω+ 9.8032× 10−2t2 + 1000

(
dε(t)

dt − 1.6645× 10−2
)

ω(0) = 144.09
ε(0) = 1.6645× 10−2

PPMSG_PID(0) = 4.6297× 105

(67)

the solutions of which are the PPMSG_PID(t) and ωoptim(t) curves.
In order to highlight the influence of the derivative constant value, kd, on the time variation of the

PMSG’s optimal power, when using a PID-type regulator, PPMSG_PID(t), several simulations, the results
of which are given in Figure 4, were performed for different values of kd.

From the PMSG’s power time variation presented in Figure 4, it can be noticed that the power
oscillations are not diminished when using a PID-type regulator instead of a PI-type regulator,
regardless of the derivative constant value, kd. For kd = 1000, the PMSG’s optimal power curve,
PPMSG_PID(t), obtained using a PID-based control, has the smallest oscillations around the PMSG’s
optimal power curve PPMSGoptim(t), which result from the kinetic motion equation.
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Figure 5 shows, by comparison, the time variations of the three powers described below:

• the maximum wind turbine’s power when operating at MPP, defined in Equation (47) (PWTmax)
• the PMSG’s optimal power calculated from the kinetic motion equation, defined in Equation (49)

(PPMSGoptim(t))
• the PMSG’s power obtained by using either the PI- or PID-type regulators, PPMSG_PI_PID(t),

resulting from either Equation (62) or Equation (67).
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Remark 5: The derivative response is proportional to the rate of change of the process variable.
Increasing the derivative component will cause the control system to react more rapidly to error.
Thus, the derivative term allows one to have bigger P and I coefficients and still keep the loop stable,
providing a faster response and a better loop performance. On the other hand, it can cause the output
to decrease if the process variable is increasingly rapidly. Most practical control systems use very small
derivative times, because the derivative response is very sensitive to noise, and it can make the control
system unstable. So, the PI regulator is recommended, unless the process variable is really slow (as in
this paper’s presented case, due to the large inertia).
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Figure 6 shows the time variation of the PMSG’s angular speed, ω(t), and the derivative of the

wind speed, dSw(t)
dt .
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Remark 6: At the moment, t∗ the derivative of the wind speed is canceled (see Figure 6), and the
PMSG’s angular speed, ω, reaches its maximum, ωmax.

Thus, the wind speed and the PMSG’s angular speed reach their maximum values in the same
time instant. Furthermore, the inertial power Pinertial, yielding to the equality between the PMSG’s
power and the wind turbine’s power, PWT = PPMSG.

Therefore, by using the PI- or the PID-type regulators, the PMSG’s power oscillations increase,
and they are dependent on the values of the kp, ki and kd constants.

For kp = 10, ki = 2700 and kd = 1000, the PMSG’s power oscillations have the smallest values,
for wind speeds varying between 6.24 (m/s) and 6.32 (m/s).

As a general conclusion, it can be said that the two proposed controls bring the wind turbine
within the MPP operation area, while PPMSG_PI_PID(t) is not identical to PPMSGoptim(t), but close to it.

7. Conclusions

In this paper, the operation of one wind turbine within a wind farm, the data for which is collected
in [21], is analyzed for wind speed values measured with a sampling step of 30 s.

The operation of the wind turbine was analyzed at MPP, in which case the PMSG’s angular speed
tends towards its optimal value. The PMSG’s optimal power values are determined by employing
the values of the wind speed and its derivative in the mathematical model of the wind turbine. Since
the wind turbine’s mathematical model is used to calculate the PMSG’s optimal angular speed’s
dependence on the wind speed, its moment of total inertia should be considered.

For the actual PMSG’s angular speed, the wind turbine’s moment of total inertia behaves like a
damper. Due to its high value, it is not possible for the PMSG to permanently operate at MPP, which,
from the energy point of view, imposes the optimal value of the PMSG’s angular speed, because the
PMSG’s angular speed is not capable of following the rapid variation of the wind speed in time.

Therefore, in order to capture the maximum wind energy, the wind turbine should be controlled
to operate at the PMSG’s optimal angular speed, imposed by the wind speed value. This condition
is checked periodically, and if there are large differences between the PMSG’s angular speed and its
optimal value, the wind turbine is brought into the MPP operation by inserting the necessary amount
of electric energy, provided by the national power system. If the value of the wind speed is decreasing,
its derivate becomes negative, and the PMSG’s power becomes greater than the wind turbine’s power,
while in the case of the wind speed increasing, its derivative becomes positive, and the PMSG’s power
becomes lower than that of the wind turbine’s power value.
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Thus, two methods to direct the PMSG’s power towards its optimal value were proposed herein,
both of them based on the same principle, using either a PI-type regulator or a PID-type regulator.

The values of the regulator coefficients are determined by successive simulations, so that the
oscillations of the power are reduced. The simulations are actually the numerical solutions obtained by
using the MAPLE core of the Scientific Workplace simulation environment, and they are based on the
wind speed measurements.

In conclusion, it can be said that the proposed controls can bring the wind turbine within the
MPP operation area. However, the PMSG’s power, based on either the PI- or PID-type control, is not
identical to the theoretical PMSG’s optimal power based on the kinetic motion equation, but close to it,
depending on the applied control method.

For the presented case study, where the moment of total wind turbine inertia is large and leads to
reduced dynamics in the wind turbine’s operation, the PID regulator is recommended.

For practical application, the obtained PMSG’s optimal power curve is useful for monitoring and
increasing the performance of the wind turbines. As was shown in this paper, the PMSG’s optimal
power curve can be extracted from the wind speed measurements data. This curve can be used as a
reference curve. The actual PMSG’s power curve to be monitored can be compared with the reference
one, and the wind turbine can then be controlled, so that the deviation of the actual values from the
expected ones will be as small as possible, which increases the wind turbine’s efficiency.
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Nomenclature

PI—proportional integrator; PID—proportional integrator derivative; MPP—maximum power point;
PMSG—permanent magnet synchronous generator; WT—wind turbine; WTPC—the wind turbine power curves.

Appendix A

Table A1. Technical specifications of the GE 2.5 (MW) wind turbine.

Type Horizontal Axis Wind Turbine with Variable Rotor Speed

Rotor diameter 100 m

Power regulation Independent electromechanical pitch system for each blade

Rated power 2500 kW

Hub height 100 m

Rated rotational speed 14.05 rpm

Operating range rotational speed 3.83–15.61 rpm

Cut-in wind speed 3 m/s

Rated wind speed 12 m/s

Cut-out wind speed
(10-min mean) 25 m/s

Extreme wind speed
(50-year mean) 37.5 m/s

Annual average wind speed 7.5 m/s

Design life time 20 years

IEC 61400-1, class IIIA
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Table A2. List of the variables used in the paper.

Variable Description Units

E0 delivered energy (J)

EE captured wind energy (J)

Ekinetic kinetic energy (J)

J total moment of inertia (kg×m2)

Pinertial inertial power (W)

PPMSG PMSG’s power (W)

PPMSG−avg PMSG’s average power (W)

PPMSGoptim PMSG’s optimal power (W)

PPMSG_PI_PID
PMSG’s power obtained by using either the PI- or

PID-type regulators (W)

PPMSG_PI PMSG’s power in the case of PI control (W)

PPMSG_PID PMSG’s power in the case of PID control (W)

PWT wind turbine’s power (W)

PWT_avg wind turbine’s average power (W)

PWTmax wind turbine’s maximum power (W)

TPMSG PMSG’s torque (Nm)

TWT wind turbine’s torque (Nm)

Sw wind speed (m/s)

Swmeas measured wind speed (m/s)

ω PMSG’s angular speed (rad/s)

ωmax PMSG’s maximum angular speed (rad/s)

ωoptim PMSG’s optimal angular speed (rad/s)

ωk the PMSG’s angular speed at time instant k (rad/s)

ωk−1 the PMSG’s angular speed at time instant k− 1 (rad/s)
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