
applied  
sciences

Article

Bridge Crack Detection Based on SSENets

Haotian Li 1, Hongyan Xu 1, Xiaodong Tian 1, Yi Wang 1 , Huaiyu Cai 1, Kerang Cui 2 and
Xiaodong Chen 1,*

1 School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
lihaotian@tju.edu.cn (H.L.); tjdxxhy@tju.edu.cn (H.X.); tianxiaodong@tju.edu.cn (X.T.);
koala_wy@tju.edu.cn (Y.W.); hycai@tju.edu.cn (H.C.)

2 Tianjin Highway Engineering Design and Research Institute, Tianjin 300172, China; cuikerang@163.com
* Correspondence: xdchen@tju.edu.cn

Received: 25 May 2020; Accepted: 17 June 2020; Published: 19 June 2020
����������
�������

Abstract: Bridge crack detection is essential to prevent transportation accidents. However, the
surrounding environment has great interference with the detection of cracks, which makes it difficult
to ensure the accuracy of the detection. In order to accurately detect bridge cracks, we proposed an
end-to-end model named Skip-Squeeze-and-Excitation Networks (SSENets). It is mainly composed
of the Skip-Squeeze-Excitation (SSE) module and the Atrous Spatial Pyramid Pooling (ASPP) module.
The SSE module uses skip-connection strategy to enhance the gradient correlation between the
shallow network and deeper network, alleviating the vanishing gradient caused by the deepening of
the network. The ASPP module can extract multi-scale contextual information of images, while the
depthwise separable convolution reduces computational complexity. In order to avoid destroying the
topology of crack, we used atrous convolution instead of the pooling layer. The proposed SSENets
achieved a detection accuracy of 97.77%, which performed better than the models we compared it
with. The designed SSE module which used skip-connection strategy can be embedded in other
convolutional neural networks (CNNs) to improve their performance.
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1. Introduction

In modern society, it is important to ensure the safety of bridges. Crack is one of the most common
diseases of bridge structures, so detecting and repairing cracks in time are important tasks for the
maintenance of bridges [1]. It can effectively prevent bridge quality problems from endangering
transportation safety. In view of the strict requirements for bridge safety, we have to detect tiny cracks
successfully and overcome the interference of noise, scratches and uneven illumination to the detection
results. Workers used to rely on subjective judgment to detect bridge cracks, which would cause
the problems of low efficiency, accuracy and be time consuming, thus it is not appropriate for actual
application. With an advancement in computer vision and deep learning techniques, computer vision
has been applied in the field of crack detection [2,3], solving the problem of crack detection methods in
recent decades.

In recent years, crack detection algorithms based on computer vision are being continuously
developed. Threshold segmentation [4], morphological [5], wavelet transform [6], and the filter-based
algorithm [7] have been applied to detect cracks. Although these algorithms may achieve high
detection accuracy after adjusting parameters, they are only effective for images captured in specific
environments. In other words, when the illumination and shooting distance change, the parameters
need to be adjusted to ensure the high detection accuracy.

To satisfy the requirement of working in different environments, we considered the use of
convolutional neural networks (CNNs) to detect bridge cracks. CNNs was first proposed by
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LeCun et al. [8]. It was widely used in image classification [9–12], object detection [13], and action
recognition [14] due to the outstanding learning capability. The deeper network in CNNs can
further extract the feature of feature map, which is obtained by shallow network. Influenced by
this characteristic of CNNs, researchers have been devoted to the field of pixel-level crack detection.
CrackNet [15] was applied to crack detection in 2017. Unlike the traditional CNN structure, it removed
pooling layers to avoid loss of detail due to over downsampling. Though high detection accuracy can
be achieved, the feature generator used in CrackNet produced handcrafted features using predesigned
line filters, which leads to the limitations in learning capability. CrackNet-V [16] was modified on the
basis of CrackNet, and it had a deeper structure and fewer parameters. At the same time, CrackNet-V
improved detection efficiency and reduced calculation cast. CrackSeg [17] and U-Net [18] can also
get high detection accuracy. However, like other pixel-level crack detection algorithms, they need to
label each pixel of each image in the datasets, so the production of the datasets is a complex project.
Meanwhile, the large number of parameters and long training time of pixel-level crack detection make
it less feasible in practical engineering.

In order to meet the fast and accurate requirements in crack detection task, researchers have
designed classifiers to judge whether the image cells are cracks. Artificial Neural Networks
(ANNs) [19–21] and Support Vector Machines (SVMs) [22,23] have been verified to perform
classifications on crack detection. However, these techniques generally represent only a few layers
of abstraction and could not fully understand the complexity of bridge surface [16]. Cha et al. [24]
proposed a network based on CNNs and combined with the sliding window technique, which can
detect images with a resolution greater than 256 × 256 pixels. Xu et al. [25] designed an end-to-end
model based on the Atrous Spatial Pyramid Pooling (ASPP) module, achieving a detection accuracy
of 96.37%. Although these methods could complete the task of crack detection, the accuracy and
computational complexity of the detection can be further improved.

The conventional convolution used in the above studies is aggregated simultaneously in the
spatial dimension and the channel dimension of the feature map, which ignores the relationship
between channels and fails to establish the connections among the channels. Therefore, it would
block the network from studying the features of images. In order to deal with the problem of high
complexity and low detection accuracy in the conventional convolution, Inception [26–29], Xception [30],
MobileNet [31], Squeeze-and-Excitation Networks (SENets) [32] used depthwise separable convolution,
separating the aggregation in spatial dimension and channel dimension. These methods verified that
the depthwise separable convolution can improve the performance of the network while reducing
the parameters of the model. Compared with other networks, SENets used global information to
establish the relationship among channels, and recalibrated the value of the feature map. Though
it could improve the network performance, if the input of the SE module is a single feature map,
the network performance will be greatly reduced when the vanishing gradient appears with the
increase of network depth.

In order to solve above problems, we proposed a convolutional neural network named
Skip-Squeeze-and-Excitation Networks (SSENets), which based on the embedded SSE module.
Our main contributions are as follows:

• We designed an embedded module with skip-connection strategy, which was called
Skip-Squeeze-and-Excitation (SSE) module. By inserting the SSE module into the existing network,
the detection accuracy can be improved without increasing the computational complexity.

• Considering the large span of crack size in the crack detection task, we introduced the Atrous
Spatial Pyramid Pooling (ASPP) module into our model. It can effectively improve the detection
accuracy by capturing the context of images in multiple scales.

• Based on the above-mentioned modules, we proposed SSENets, which was applied to the bridge
crack detection task. The detection accuracy of SSENets can reach 97.77%, which is higher than
the traditional classification models and the model proposed by Xu et al. [25] under the same
model complexity.
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2. Materials and Methods

2.1. Datasets

In order to meet the experimental requirements, we used the bridge crack dataset created by
Xu et al. [25] as input for training and testing. A total of 2068 initial images of the dataset were
collected by Phantom 4 Pro’s Complementary Metal Oxide Semiconductor (CMOS) surface array
camera with a resolution of 1024× 1024. In order to construct positive samples (images with cracks) and
negative samples (images without cracks), the initial images were divided into four parts. Sub images
were filtered, cropped and flipped, then 6069 images with resolution of 224 × 224 were obtained.
The combination of images and labels was used as the dataset. We chose 4856 images as the training
set and 1213 images as the testing set. As shown in Figure 1, the flow chart of the crack detection task
was divided into two parts: training and testing. By inputting the training set into SSENets, we can get
a trained crack classifier. It can be used to detect whether there are cracks in the testing set, and finally
get the output of the task. In the test, we used the sliding window technique to traverse the whole
image. The structure of SSENets will be described in detail below.
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Figure 1. Flowchart of crack detection.

2.2. Proposed Network

In order to improve the capability of the model, reduce the model complexity and alleviate
the vanishing gradient in the training process, we proposed a model named SSENets, based on the
SSE module using skip-connection strategy and the ASPP module using atrous convolutions with
multi-sample rates. The structure of SSENets is shown in Figure 2, which contains the core SSE module,
ASPP module and conventional convolutional layers and pooling layers. The role of the first three
convolutional layers is to extract the images features. The module takes the feature maps from the
second and third convolutional layers as the input of the SSE module, and uses the generated channel
weights to recalibrate the feature map. The SSE module uses feature maps from different layers as
input, which can improve the problem of the vanishing gradient in the training process. The structure
of SSE module will be detailed in Section 2.3. So as to improve the learning capability to cracks features,
the model takes the output feature map of SSE module as the input of ASPP module and extracts the
multi-scale features. We structure the ASPP module with depthwise separable convolution in order to
greatly reduce the parameters and model complexity. The structure of ASPP module will be detailed
in Section 2.4. In addition, in order to avoid destroying the topology of the cracks after using several
pooling layers to sample the feature map, we introduce atrous convolution with an atrous rate of 2 in
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the last three convolutional layers. Finally, we use the Softmax function to predict whether the input
images contain cracks or not.
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2.3. Skip-Squeeze-and-Excitation Module

To alleviate the vanishing gradient problem with the increase of the depth of the model, we design
the embedded SSE module based on the skip-connection strategy, the structure of which is shown in
Figure 3. Ftr refers to any matrix transformation in the network. The feature map FMi ∈ RHi×Wi×Ci

can be obtained by Ftr, where i ≤ n, n is the total number of convolutional layers in the network.
Fsq represents the squeeze operator in the SSE module. The input of the Squeeze operation is the
feature map FMi, and its spatial dimensions of each channel will be aggregated to get the channel-wise
descriptor d ∈ RCi . Fex represents the excitation operator in the SSE module. The excitation operator
maps the input channel-wise descriptor d to a set of channel weights d′ ∈ RC j , the channel number
of which is the same as the output feature map FM j ∈ RH j×W j×C j . Then select the feature map
FM j ∈ RH j×W j×C j obtained by the j-th convolutional layer, multiply with channel weights d′. During
the training process, the channel weight d′ is adjusted continuously, and each channel of FM j is
recalibrated, so as to enhance the learning capability of the module.
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2.3.1. Skip-Connection

The appearance of VGGNets [33] proves that the performance of network increases with the
increase of network depth. However, with the increase of network depth, vanishing gradient would
appear. The essence that CNNs can iterate continuously is the back propagation of parameters.
The chain rule of back propagation will make the gradient less than 1 close to 0 after iteration, so that
the parameters far from the output layer cannot be undated. Therefore, it is impossible to increase the
number of network layers without limitation in order to improve the network performance.
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To alleviate the vanishing gradient caused by the depth increase of the network, this paper designs
the SSE module using the skip-connection strategy. SSE module selects the feature map of different
depths as input, and uses the channel weight d′ generated by the shallow layer to recalibrate the
feature map FM j generated by the deeper layers. This strategy can increase the gradient correlation of
the model, and alleviate the vanishing gradient of CNNs with the increase of the depth of the model.
Therefore, it makes the model easier to optimize, and improves the detection accuracy. The simplified
model of SSE module is shown in Figure 4. We assume that the input of the model is xn, the output is
xn+2 after two hidden layers. The formula of xn+2 is shown in Equation (1):

xn+2 = xn+1 �F (xn+1, Wn+1), (1)

where Wn represents the parameters of the hidden layer. Operator � represents Hadamard product of
the matrix. From the chain rule, the partial derivative of loss function Loss to parameter Wn is shown
in Equation (2):

∂Loss
∂Wn

=
∂Loss
∂xn+2

·
∂xn+2

∂xn+1
·
∂xn+1

∂Wn
=
∂Loss
∂xn+2

[
F (xn+1, Wn+1) + xn+1·

∂
∂xn+1

F (xn+1, Wn+1)

]
∂xn+1

∂Wn
, (2)

It can be seen from the formula that the square brackets contain two items, even if the partial
derivative ∂

∂xn+1
F (xn+1, Wn+1) approaches 0 with the increase of iteration times and the depth of the

model, ∂Loss
∂Wn

won’t be 0. Therefore, our model can alleviate vanishing gradient of the network.
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Figure 4. Simplified model of SSE module.

2.3.2. Squeeze

Each pixel obtained from conventional convolution is only related to the context in the local
receptive field and cannot take advantage of the context outside the receptive field. To solve this
problem, we use the Squeeze operator to aggregate global information into a channel descriptor d.
We apply global average pooling to generate a channel-wise vector from the input feature map FMi.
It can shrink the context with the size of Hi ×Wi to the size of 1× 1 in spatial dimension. The formula
of channel descriptor is shown in Equation (3):

dc = Fsq(FMci) =
1

Hi ×Wi

Hi∑
m=1

Wi∑
n=1

FMic(m, n), (3)

where dc is the value of c-th channel in the channel descriptor d and FMic refers to the c-th channel
of the feature map FMi. We choose the simplest aggregation strategy [32], which can improve the
capability of the module while minimizing the complexity of the module.
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2.3.3. Excitation

In order to alleviate the vanishing gradient of the network with the increase of the depth of the
model, we choose the feature map FM j from deeper layer interaction with the channel descriptor d from
the shallow feature map. However, the number of channels in FM j and d is generally different. To make
them possible to be multiplied, we have to post-process the channel descriptor d. Squeeze operator
establishes the global information of each channel in spatial dimension, but it does not consider the
connection between channels. Therefore, excitation operator adopts the gating strategy [32] to focus
on establishing the connection between channels, the formula is shown in Equation (4):

d′ = Fex(d, W1, W2) = δ(W2δ(W1d)), (4)

where d′ =
[
d′1, d′2, . . . , d′c, . . . , d′j

]
, δ refers to the Rectified Linear Unit (ReLU) activation function [34],

W1 ∈ R
Ci
r ×Ci and W2 ∈ RC j×

Ci
r , r is reduction ratio. To build up the correlation between channels,

we take the channel descriptor d as the input of two fully-connected layers. According to Equation (4),
the first fully-connected layer changes the number of channels from Ci to Ci

r , and the second changes
the number of channels from Ci

r to C j, which is same as the channels number of feature map FM j.
Besides, both of the fully-connected layer uses the ReLU activation function.

The output of SSE module is obtained by the following formula:

SSEc = Fsc
(
FM jc, d′c

)
= d′cFM jc, (5)

where SSE =
[
SSE1, SSE2, . . . , SSEc, . . . , SSE j

]
, Fsc

(
FM jc, d′c

)
refers to channel-wise multiplication

between the channel weights d′c and the feature map FM jc.
The SSE module essentially introduces the skip-connection strategy and depthwise separable

convolution: we select the feature maps of different depths as input, and use the channel weights
generated by the shallow feature map to multiply the deeper feature map to enhance the gradient
transmission ability of the network; the squeeze operator aggregates feature maps in the spatial
dimension to obtain the global information of each channel; the excitation operator uses the gating
strategy to establish the correlation between the channels, and converts the channel descriptor into the
channel weights, which can be used to recalibrate the input feature map with the global information
considering the channel relationship.

2.4. Atrous Spatial Pyramid Pooling Module

In crack detection task, cracks only occupy a small proportion of the image, and the width of
cracks is quite different. Conventional convolution cannot be used for multi-scale analysis of cracks
with different widths, which is not conducive to fully capturing the features of cracks. The Atrous
Spatial Pyramid Pooling (ASPP) module [35] uses atrous convolutions with different rates to extract
multi-scale features of cracks. As shown in Figure 5, the structure of ASPP module contains 5 parallel
sub-networks. The first part obtains global information through the global average pooling while the
remaining four parts use atrous convolutions with multi-sample rates of 1, 3, 7, and 11. The parallel
atrous convolutions are processed by depthwise separable convolution in order to reduce the model
complexity. Since the ASPP module captures the contextual information of cracks on multiple scale,
it could improve the detection accuracy.
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3. Experimental Results and Ablation Study

In this paper, all experiments are performed on an Inter(R) Core (TM) i5-9400F CPU @ 2.90 GHz
CPU, a 32 GB RAM and a NVIDIA GeForce GTX 1660 GPU. The model was constructed by Pytorch.
Models and code are available on [36].

3.1. Hyperparameters

SSENets uses Stochastic Gradient Descent (SGD) algorithm to train the training set containing
4856 images and labels mentioned in Section 2. We use the learning rate reduction strategy proposed
by Wilson and Martinez et al. [37] for training, in which initial learning rate is 0.001, momentum is 0.9,
weight decay is 0.3 and each batch contains 32 samples.

3.2. Experimental Results

In order to fairly test the performance of SSENets, we choose to compare with the model proposed
by Xu et al. [25] and several traditional classification models for comparison. We guarantee that all
models in the test apply the hyperparameters mentioned in Section 3.1. The experimental results are
shown in Table 1. Compared with other models, SSENets achieves a higher detection accuracy [38] of
97.77, which proves the SSENets could perform better on bridge cracks dataset.

Table 1. Experimental results of different models.

Model Epochs Accuracy

SSENets 100 97.77%
Xu’s Model 100 96.37%

Resnet18 100 93.56%
Resnet34 100 94.89%
Resnet50 100 95.71%

3.3. Ablation Study

In this section, ablation experiments are conducted to gain a better understanding of the effect of
using different configurations on components of the SSENets. All ablation experiments are performed
on the datasets mentioned in Section 2.1. and the hyperparameters mentioned in Section 3.1.
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3.3.1. SSE Module

In Section 2.3 we introduce the structure of SSE module and its effectiveness, as well as the
improvement compared with SE module. In order to verify the above content, we designed the
experiment as shown in Table 2. As shown in Table 2, the experimental results show that the detection
accuracy of SSE module is 1.44% higher than that of SE module. It is proven that SSE module
with skip-connection strategy can effectively enhance network performance and improve the crack
detection accuracy.

Table 2. Comparison with or without the SSE module.

SE Module SSE Module Epochs Accuracy

- - 100 95.53%
√

- 100 96.23%
-

√
100 97.77%

3.3.2. Reduction Ratio

Reduction ratio r is a hyperparameter introduced in Equation (4). By changing r, we can change
the vector size between the two fully-connected layers of excitation operator in SSE module. In order
to discuss the influence of r on the experimental result, we ensure that the input feature maps of the
SSE module are the same (select the feature map Con_2 obtained from the second convolutional layer
and Con_3 obtained from the third convolutional layer). It can be concluded from Table 3 that the
detection accuracy decreases with the increase of r, and the highest detection accuracy is obtained when
r = 0.5. [32] proves that the larger r is, the less the parameters of the model are. When r = 0.5, the model
has the most parameters and the strongest ability, thereby achieving the highest detection accuracy.

Table 3. Comparison between SSE module at different reduction ratios.

Reduction Ratio Epochs Input Accuracy

0.5 100 Con_2, Con_3 97.77%
1 100 Con_2, Con_3 96.29%
2 100 Con_2, Con_3 96.29%
4 100 Con_2, Con_3 95.30%
8 100 Con_2, Con_3 94.40%

3.3.3. Location of SSE Module

In order to discuss the effect of the location of SSE module on the detection accuracy, we ensure
that there are no ASPP modules in each model, and the reduction ratio r and other hyperparameters
are the same. Since there are 6 convolutional layers in the model, we select 5 groups of adjacent
convolutional layers as the input of SSE module in turn. As shown in Table 4, the detection accuracy of
SSE module with Con_2 and Con_3 as input is the highest, reaching 96.87%. The number of feature
map channels obtained in the shallow layer is small, and the global information obtained by squeeze
operator is limited, which blocks the capacity and ability of the model. Meanwhile, the number of
channels of the feature map obtained in the deeper layer is larger, which increases the risk of over
fitting when the datasets are small. Therefore, different locations of SSE module should be chosen for
different datasets to achieve the best detection accuracy.
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Table 4. Comparison between SSE Module at different locations.

Input Epochs Accuracy

Con_1, Con_2 100 95.47%
Con_2, Con_3 100 96.87%
Con_3, Con_4 100 95.88%
Con_4, Con_5 100 94.81%
Con_5, Con_6 100 95.05%

3.3.4. Skipping Span of SSE Module

In order to find the relationship between the detection performance and the skipping span of
the input feature maps of the SSE module, we keep the second input feature map unchanged and
change the skipping span of the two input feature maps. The experimental results are shown in
Table 5. It can be seen that the larger the input skipping span of SSE module, the higher the detection
accuracy. The reason is that SSE module uses skip-connection strategy, which applies the channel
weights obtained from the shallow feature map to the deeper feature map, and establishes the gradient
connection between the shallow network and deeper network. Once the skipping span of the input
increases, the gradient correlation between the shallow network and the deeper network increases,
thereby increasing the transmission capacity of the network and further improving the performance of
the network.

Table 5. Comparison between SSE Module at different skipping span.

Skipping Span Epochs Accuracy

Con_5, Con_6 100 95.05%
Con_4, Con_6 100 95.30%
Con_3, Con_6 100 95.64%
Con_2, Con_6 100 95.88%
Con_1, Con_6 100 96.62%

3.3.5. ASPP Module

In order to verify the contribution of ASPP module to the model and the influence of different
sampling rates on the experimental results, we choose the model without the ASPP module as the
control group, and the rest three models set the multi-sample rates as [1,3,6,9], [1,3,7,11] and [1,4,8,12],
respectively. The experimental results are shown in Table 6. It can be found that the detection accuracy
of the model with ASPP module is higher than that of the control group while the highest detection
accuracy is obtained when the multi-sample rate is set to [1,3,7,11]. Compared with the multi-sample
rate set to [1,3,6,9], the module set to [1,3,7,11] can obtain a larger receptive field, so as to capture more
contextual information, therefore improve the detection accuracy. However, the cracks are tiny, and
the size of crack will be further reduced after down sampling. The excessive multi-sample rate will
lead to the transformation of a 3× 3 atrous convolution into a simple 1× 1 convolution [39], so that
the detection accuracy of setting the multi-sample rate to [1,4,8,12] is lower than setting to [1,3,7,11].
In practical applications, we have to consider the characteristics of the detection object, and choose the
appropriate sampling rates, to achieve the best detection performance.

Table 6. Comparison between ASPP at different atrous rate.

ASPP Rate Epochs Accuracy

- 100 93.49%
[1,3,6,9] 100 95.36%
[1,3,7,11] 100 95.53%
[1,4,8,12] 100 94.32%
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3.4. Evaluation and Discussion

3.4.1. Performance of Models

To quantitatively analyze the testing result, several evaluation factors commonly used in the
binary classification task, which have been discussed in detail in [25], are chosen to compare the
performance of models. According to the evaluate results in Table 7, SSENets is superior to other
models in accuracy, precision, specificity and F1 score.

Table 7. Evaluate results of different models.

Model Accuracy Precision Sensitive Specificity F1 Score

SSENets 97.77% 95.45% 100% 95.83% 97.67%
Xu’s Model 96.37% 93.94% 100% 91.66% 96.88%

Resnet18 93.56% 88.46% 100% 89.96% 93.88%
Resnet34 94.89% 89.47% 100% 90.91% 94.44%
Resnet50 95.71% 93.33% 100% 88.89% 95.55%

3.4.2. The 5-Fold Cross-Validation

Furthermore, we use 5-fold cross-validation to demonstrate the generalization ability of the
models. After dividing the datasets into five parts on average, we choose each part as the testing set
and the rest as training set. The detection accuracy of training is shown in Table 8 while that of testing
is shown in Table 9.

Table 8. The 5-fold cross-validation of training.

Model 1 2 3 4 5 AVG

SSENets 99.28% 99.90% 94.59% 99.79% 99.69% 98.65%
Xu’s Model 98.04% 99.28% 93.92% 99.59% 99.28% 98.02%

Resnet18 99.07% 99.49% 87.44% 99.79% 99.59% 97.07%
Resnet34 98.76% 99.17% 84.34% 99.59% 99.79% 96.33%
Resnet50 99.48% 99.49% 91.97% 99.69% 99.28% 97.98%

Table 9. The 5-fold cross-validation of testing.

Model 1 2 3 4 5 AVG

SSENets 98.10% 99.18% 88.57% 99.79% 99.79% 97.09%
Xu’s Model 94.74% 97.94% 79.81% 99.79% 98.66% 94.19%

Resnet18 95.47% 92.89% 79.81% 99.48% 98.89% 93.31%
Resnet34 92.89% 99.07% 80.33% 99.48% 98.76% 94.11%
Resnet50 97.52% 99.28% 72.40% 99.79% 99.07% 93.61%

As shown in Tables 8 and 9, SSENets achieves the highest average detection accuracy in both
training and testing. In order to make the data more intuitive, we use a histogram to draw the results
of the 5-fold cross-validation. The histograms are shown in Figure 6.
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Figure 6. Histograms of 5-fold cross-validation. (a) The detection accuracy of training; (b) The detection
accuracy of testing.

3.4.3. Computational Efficiency and Complexity of Models

We use floating-point operations (FLOPs) and running time to measure the efficiency and
complexity of the models. As shown in Table 10, compared with Xu’s model, the FLOPs of SSENets is
increased by 0.4%, the running time is increased by 1%. Compared with Resnet50, which performs
best in ResNets, the FLOPs of SSENets is decreased by 38.35% while the running time is decreased
by 30.99%.

Table 10. Computational efficiency and complexity of models.

Model Epochs FLOPs Running Time

SSENets 100 2.54 G 95 min 49 s
Xu’s Model 100 2.53 G 94 min 52 s

Resnet18 100 1.82 G 53 min 8 s
Resnet34 100 3.67 G 74 min 38 s
Resnet50 100 4.12 G 138 min 51 s

3.4.4. Discussion

In this part, we will discuss the performances between SSENets and other models:

1. In Section 3.4.1, Table 7 shows SSENets achieves a better performance in terms of accuracy,
precision, specificity and F1 score, compared with other models. It proves that the designed
embedded SSE module, which selects feature maps of different depths as inputs, and can
improve the effectiveness of the model by recalibrating the feature maps by squeeze operator and
excitation operator.

2. As shown in Tables 8 and 9, the testing accuracy has been improved more in comparison to
the training accuracy, which shows that SSENets has a better generalization ability. Besides,
all the models get low detection accuracy at the third fold cross-validation. The reason is that
its testing set contains about two-thirds of the background images, which makes the number of
cracks images in training set is far more less than background images. Though this situation will
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affect the training results of models, SSENets still achieve a higher detection accuracy than other
models. Considering the great improvement in the specificity factor, which is shown in Table 7,
we conclude that SSENets can reduce the proportion of background images that are classified as
crack images.

3. Taking advantage of depthwise separable convolution, SSENets has smaller FLOPs and a shorter
running time, compared to Resnets. Therefore, SSENets can greatly reduce the complexity of
the model and improve the calculation efficiency, thus improving the detection performance of
the model.

4. Though SSENets could achieve a high detection accuracy in most situations, it still has limitations.
As the number of negative samples in the training set decreases, the detection accuracy of SSENets
will decrease, so we will devote future work to improving this problem.

4. Conclusions

In this paper, an image classification model SSENets for crack detection is proposed, which is
mainly composed of the SSE module using the skip-connection strategy and the ASPP module using
the atrous convolution with multi-sample rates. By applying the channel weights generated by shallow
feature map to the deeper feature map, SSE module establishes the gradient connection between the
shallow network and deeper network. It will alleviate the vanishing gradient during the network
training, increase the gradient correlation, and enhance the transmission ability of the model. In view
of the crack detection task, we introduce the ASPP module to capture multi-scale features from crack
images, thereby improving the accuracy of crack detection. The proposed model can achieve a detection
accuracy of 97.77%, which performs better than the comparison models.

Furthermore, the SSE module can be embedded in any convolutional neural network to improve
performance. In future work, we will apply SSE module to pixel-level crack detection. Given the
computational complexity of this task, we hope that the SSE module will reduce the model parameters
while improving the detection accuracy.
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