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Abstract: The profile of flutes has a great influence on the stiffness and chip-removal capacity of
end-mills. Generally, the accuracy of flute parameters is determined by the computer numerical
control (CNC) grinding machine through setting the wheel’s location and orientation. In this work,
a novel algorithm was proposed to optimize the wheel’s location and orientation for the flute-grinding
to achieve higher accuracy and efficiency. Based on the geometrical constraint that the grinding
wheel should always intersect with the bar-stock while grinding the flutes, the grinding wheel and
bar-stock were simplified as an ellipse and circle via projecting in the cross-section. In light of
this, we re-formulated the wheel’s determination model and analyzed the geometrical constraints
for interference, over-cut and undercut in a unified framework. Then, the projection model and
geometrical constraints were integrated with the evolution algorithm (i.e., particle swarm optimization
(PSO), genetic algorithm (GA) for the population initialization and local search operator so as to
optimize the wheel’s location and orientation. Numerical examples were given to confirm the validity
and efficiency of the proposed approach. Compared with the existing approaches, the present
approach improves the flute-grinding accuracy and robustness with a wide range of applications
for various flute sizes. The proposed algorithm could be used to facilitate the general flute-grinding
operations. In the future, this method could be extended to more complex grinding operations with
the requirement of high accuracy, such as various-section cutting-edge resharpening.

Keywords: flute-grinding; evolution algorithms; wheel location and orientation

1. Introduction

Flutes, as the major structure of end-mills, play an important role in the cutting performance [1–4].
A flute can be defined by the following three parameters: core radius, flute angle and rake angle [5–7].
The rake angle influences the cutting force, while the core radius and the helix angle determine the
stiffness and chip-removal capacity of the cutters. The performance of those flute parameters quietly
depends on the manufacturing accuracy. Generally, the flute is manufactured by the CNC grinding
machine through the determination of location and orientation for the grinding wheel path [8–10].
In the flute-grinding operations, the grinding wheel will move with a helix path to generate the grooves.
In recent years, much attention has been paid to developing an advanced wheel path determination
model and optimized algorithms for the CNC flute grinding to minimize the manufacture errors and
improve calculation efficiency.
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The kinematics of flute-grinding operations for CNC grinders has been developed by many
researchers. For instance, Kim et al. [11] developed a simulation method with Boolean operations
to construct the helix motion and developed an iterative process to compute the wheel geometry
and location data. Although this method could be used for virtual cutting tests in the CAM system,
it is time-consuming to achieve a high machining accuracy. To improve the precision of generated
flutes, Li [12] established a novel algorithm to calculate the numerical data of flutes based on the
enveloping theory, in which the flute profile was interpolated with appropriate discrete points using the
cubic polynomial expression. However, this method might be invalid for grinding with a bevel-type
wheel. In order to calculate the location and orientation of wheels with complex shapes (e.g., 1B1,
1E1, 1F1, and 4Y1 wheels), Habibi et al. [13] used virtual grinding curves to formulate the grinding
processes. Based on the virtual curves, they calculated the grinding error with the worn wheels
and compensated the wheel path. Generally, the kinematic of flute-grinding was represented by
several transcendental equations, which were supposed to be solved to get the generated helical flute.
However, it is very complicated to give the analytical solution, and thus numerical analysis was
generally used to describe the flute profile in current studies, which suffer from long computation time.
For free-form grinding wheels, Wasif et al. [14] presented a novel method for five-axis CNC grinding
through the optimization of the grinding wheel geometry, which was constructed with line segments
and circular arcs. Although this method could economically produce or dress the grinding wheel for
accurately grinding the end-mill cutters, it ignored the optimization of the wheels’ path. On the basis
of the flute-grinding model, the following problem is how to achieve the desired flute parameters by
setting the trajectory of the grinding wheel. In industry, the conventional way is to grind end-mill
flutes by trial and error, which is costly and time-consuming [15]. Mathematically, the desired flute
profile can be viewed as an optimization problem with regards to the wheel’s shape and configuration.
To solve this problem, Chen et al. [16] proposed an iteration algorithm to determine the wheel location
and orientation. For each loop, the generated flute parameters were compared with the desired values
until they converged within the target range. The iteration method has a high calculating speed and
precision, but it required a proper initial value, which cannot be easily determined without experience.
In Karpuschewski’s research [17], particle swarm optimization (PSO) was investigated to search the
wheel location for a given helical flute and grinding wheel profile. Recently, Li et al. [18] extended this
work with a novel graphic analysis method and niche particle swarm optimization (NPSO) algorithm
to solve the problem for multi-objective of machining accuracy. Although the evolution algorithms
(EA, i.e., PSO, GA) could be used in the wheel path optimization process with a global search strategy
for such a complex nonlinear problem, they are not stable in convergence, especially for some small
flutes (flute diameter < 1 mm).

In view of the above survey, it can be seen that the current study has addressed the modeling
of flute-grinding well, but fast and stable algorithms are still required for further study. Currently,
extreme-size cutters are widely used in industry, such as the micro-milling cutter or turbine blade
root milling cutter. The flute parameters for those cutters will greatly affect their cutting performance,
which requires higher accuracy. However, the current algorithms lack the definition of various
constraint conditions in machining, which cannot guarantee the machining accuracy and calculation
stability. In this work, a new method is presented to calculate the flute parameters and determine its
CNC grinding operations. Compared to the above studies, we projected the grinding wheel in the
cross-section and used a two-parameter operator to control the grinding operations. Regarding the
wheel path optimization algorithm, the projection model was integrated with the evolution algorithm
(i.e., PSO, GA) for the population initialization and local search operator. Compared to the current
EA method, the improved method showed better stability and short computation time. In addition,
it could achieve higher accuracy for a wide range of flute sizes with various profiles, especially for the
above-mentioned small flutes.

The outline of the paper is described as follows. In Section 2, the kinematic of flute-grinding is
a model with an explicit expression, and the generated flute parameters are formulated. In Section 3,
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a projection model is proposed for the grinding processes and a two-parameter operator to control
the wheel location and orientation is introduced. Additionally, the constraints for undercut, over-cut
and extreme-cut of flutes are investigated. This projection model will integrate with the subsequent
evolution algorithm. Section 4 presents a wide range of flute-grinding problems to test the accuracy,
efficiency, and robustness of the proposed method. Finally, Section 5 summarizes the whole article and
points out the contribution of our work.

2. Modeling of Flute-grinding Processes

2.1. Grinding Wheel Modeling

In this work, a standard conical grinding wheel was applied to implement the flute-grinding.
Figure 1 illustrates this type of standard grinding wheel. To describe the wheel’s geometry, a frame
OG, denoted as a wheel coordinate system, is developed and shown in Figure 1. Then, the parametric
representation of the wheel GW(h,θ) in the wheel coordinate system can be derived as

GW(h,θ) =


f · cosθ
f · sinθ

h

, (1)

where h ∈ [0, H], θ ∈ [0, 2π] and f = R− h cotα.
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Figure 1. Modeling of conical grinding wheel.

Except for the wheel surface, the lateral face will also be involved in the grinding processes.
Geometrically, the front lateral face GW(0,θ) and the back lateral face GW(H,θ) can be obtained
by setting h = 0 and h = H. Additionally, the wheel surface normal is deduced from Equation (1)
as follows:

GN =


cosθ
sinθ
cotα

 (2)

2.2. Kinematic of CNC Flute-Grinding

To demonstrate the flute-grinding operations, another framework OT is established in Figure 2,
which is denoted as a tool coordinate system. In the modeling, OT is static while OG is moving with
the grinding wheel. The flute-grinding operations consist of two steps: (1) wheel set-up and (2) wheel
moving with a helix trajectory.
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In the wheel set-up operation, the wheel is configured in OT with a specified location and
orientation shown in Figure 2. The wheel location is defined by the wheel center OG, which is denoted
by the coordinate value [dx dy dz]. The wheel orientation is defined as an angle, which can be viewed
as rotating the grinding wheel about the YT axis in a counter clockwise direction through the angle β.
To this end, the set-up operation in the tool coordinate system can be expressed using the homogeneous
transformation matrix in Equation (3).

TM1 =


cos β

0
− sin β

0

0
1
0
0

sin β
0

cos β
0

dx
dy
dz
1

. (3)

In the wheel helix motion, the wheel moves along the ZT axis with a translation velocity ν while
the cutter rotates about the ZT axis with a velocity ω. In the tool coordinate system, the kinematics
matrix of the helix motion is represented as follows:

TM1 =


cos(ω · t)
sin(ω · t)

0
0

0
1
0
0

− sin(ω · t)
cos(ω · t)

1
0

0
0

v · t
1

, (4)

where t represents the grinding time.
To guarantee the helix angle λ, the translation v and the rotation ω is supposed to satisfy the

following condition:

cotλ =
v

rT ·ω
. (5)

Based on the above operations, the kinematic of grinding wheels can be obtained with
regarding machining time t in the tool coordinate system by integrating Equations (1)–(5), listed in
Equation (6). In addition, to simplify the calculation, the rotation speed ω is generally set as 1 in the
following equations.

TW(h,θ, t) = TM2 ·
TM1 ·

GW(h,θ) =
dx · cost− dy · sint + h · sinβ · cost− f · sinθ · sin t + f · cosβ · cosθ · cost
dy · cost + dx · sint + h · sinβ · sint + f · sinθ · cost + f · cosβ · cosθ · sint

h · cosβ+ v · t− f · sinβ · cosθ+ dz

 . (6)
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Geometrically, the flutes are generated by the envelope of grinding wheels. The envelope surface
consists of a group of curves, which are called the contact curve [19]. As shown in Figure 3, the contact
curve is composed of two parts. One is generated by the wheel surface, which can be deduced using
envelope theory. The other is formed by part of the wheel edges.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 16 
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For the first part of the contact curve, it can be obtained using the conjugate theory as shown in
Equation (7):

TN · TV = 0, (7)

where TN = TM2 ·
TM1 ·

GN and TV(h,θ, t) =
d(TW(h,θ,t))

dt .
By solving Equation (7), the equation of this contact curve can be deduced as Equation (8).

v · (dz− sinβ · cosθ+ cotα · cosβ) − (dy + sinθ · f ) · (dx + cotα · sinβ+ cosβ · cosθ)
+(dy + sinθ) · (dx + h · sinβ+ cosβ · cosθ · f ) = 0.

(8)

By solving this triangular equation, the explicit expression of the contact curve can be obtained in
Equation (9):

θ∗ = atan2(B, A) + atan2
(√

A2 + B2 −C2, C
)
, (9)

where


A = −dy · cosβ− v · sinβ
B = dx + f · sinβ · cotα

C = dy · cotα · sinβ− dz · v− v · cotα · cosβ
.

Substituting Equation (9) into Equation (6), the first part of the flute surface can be obtained,
which is formed by the envelope of the wheel surface in a general form in Equation (10).

TW(h, t)=


dx · cost− dy · sint + h · sinβ · cost− f · sinθ∗ · sin t + f · cosβ · cosθ∗ · cost
dy · cost + dx · sint + h · sinβ · sint + f · sinθ∗ · cost + f · cosβ · cosθ∗ · sint

h · cosβ+ v · t− f · sinβ · cosθ∗ + dz

 (10)

The other part of the contact curve generated by wheel edge can be obtained by setting h = 0 or
h = H for Equation (6) denoted as TW(0,θ, t) and TW(H,θ, t).

Generally, the flute parameters are presented in the cross-section with the definition of core radius,
flute angle and rake angle [20,21]. The flute profile could be easily obtained by setting Z = 0 for
Equation (10), as shown in Equation (11):
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TW(h) =
[

xc

yc

]
=[

dx · cost∗ − dy · sint∗ + h · sinβ · cost∗ − f · sinβ · sint∗ + f · cosβ · cosθ∗ · cost∗

dy · cost∗ + dx · sint∗ + h · sinβ · sint∗ + f · sinβ · cost∗ + f · cosβ · cosθ∗ · sint∗

]
,

(11)

where t∗ = R·sinβ·cosθ∗−h·cosβ−dz
v .

As shown in Figure 4a, the flute parameters are defined as follows:
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The flute angle is established as the opening angle between the vector OTP1 and another vector
OTP2, which can be calculated using: φ = acos(OTP1 ·OTP2).

The core radius is the minimum distance from a point OT to the flute profile, which can be
calculated as: rc = min

(
xc

2 + yc
2
)
.

The rake angle is illustrated in Figure 4b, which is a close-up of Figure 4a at point P1. In practice,
the rake angle is measured at the start point P3 with a measure distance PD (PD is set as 5% of tool
radius in this work). Geometrically, the rake angle is the included angle of the two vectors P2OT and
P2P3, which can be expressed as: γ = acos(P2OT · P2P3)

In addition, the points P1, P2 and P3 can be obtained by the following conditions:

(1) Point P1 is deduced by Equation (10) satisfying the condition
√

x2
c + y2

c = rT;

(2) Point P2 is deduced by setting h = 0 to Equation (10), and satisfying the condition
√

x2
c + y2

c = rT;

(3) Point P3 is deduced by setting |P2P3| = PD = 5% · rT.

3. Determination of Wheel Location and Orientations with a 2D Projection

Mathematically, the flute-grinding operations can be simplified with three equations shown in
Equation (12). For these equations, the wheel location [dx dy] and orientation β are supposed to be
calculated to configure the wheel path and generate the designed flute profile. Generally, the intelligent
evolution algorithms, i.e., GA or PSO, were used to solve the above equations. However, it was
reported that the selection of initial points would greatly affect the accuracy and efficiency of the
optimization. In practice, we found that the initial wheel’s location and orientation were confined
by several geometrical conditions, such as inference avoidance, contact constraints, etc., which can
be used to define the feasible space for the initial points. To this end, an optimization method was
introduced to build the feasible space and constraints by mapping the grinding operations into a
two-dimensional projection.
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f rake (dx, dy, β) = γ0

f f lute (dx, dy, β) = φ0

f core (dx, dy, β) = rc0

. (12)

3.1. Grinding Operation Projection

Geometrically, the flutes are formed by the intersection between the wheel and the bar-stock.
To represent the intersection, the grinding wheel and the bar-stock were projected in the cross-section,
which is shown in Figure 5. The bar-stock is simplified as a circle area and the wheel edge can be
expressed with an ellipse area. The ellipse could be represented with regard to the wheel’s location
and orientation denoted as re|(dx,dy,β). In order to assure the accuracy of the core radius, the ellipse will
intersect with the circle rT and tangent with the circle rc at a tangent point. The tangent point is defined
by the parameter θc, denoted by Pc|(θc). It can be seen that the point Pc|(θc) can be used to locate the
ellipse. The algebra relation between Pc|(θc) and re|(dx,dy,β) is deduced in Appendix A. In light of the
above geometrical relation, the wheel path determination equation can be re-organized concerning the
parameters θc and β, shown in Equation (13).

f rake (θC, β) = γ0

f f lute (θC, β) = φ0

f core (θC, β) = rc0

, (13)
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To solve this equation, an optimization model is defined as following:

minξ(θC, β) = s.t.ξ = max
{∣∣∣∣∣∣ f rake(θC, β) − γ0

γ0

∣∣∣∣∣∣,
∣∣∣∣∣∣ f f lute(θC, β) −φ0

φ0

∣∣∣∣∣∣,
∣∣∣∣∣∣ fcore(θC, β) − rc0

rc0

∣∣∣∣∣∣
}

, (14)

where ξ is the grinding error in the following description.
In addition, several constraints were defined as follows:

• Constraint 1: the tangent point Pc|(θc) should always locate in the first or the second quadrant,

θC ∈ [0,π]. (15)
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• Constraint 2: the wheel edge cannot be separated with the bar-stock and overcut the core radius,

rc(θC, β) = |OTPC| ∈ [rc0, rT], (16)

• Constraint 3: to avoid interference, the open-angle θS should satisfy the following condition (see
Appendix B),

θS ≥ Ω, (17)

To sum up, the flute-grinding operations can be re-formulated by the following optimization problem:

minξ(θC, β),

subjected to: Equations (15)–(17).
Compared with current flute-grinding optimization models, this project method has two

advantages: (1) instead of three decision parameters (dx, dy, β), only two parameters (θC, β) were
required to be considered, which will simplify the calculation during the iterations; (2) three constraints
could be used to confine the feasible area and generate the proper initial points, which would improve
the robustness and efficiency of the optimization.

3.2. Calculation Procedure with the Improved GA and PSO

To solve the above-constrained optimization problem, the projection model with the GA and
PSO was integrated to calculate the wheel’s location and orientation for flute-grinding operation.
As mentioned, the initial points would greatly affect the optimization results. In this work, an initial
points generation algorithm was proposed in Algorithm 1, which could be used for the population
initialization for GA or PSO. It is noted that all the initial points would be checked by the over-cut
and interference constraints in the projection model. Furthermore, the flowchart of improved GA
and PSO (IGA, IPSO) integrated with the projection model is shown in Figure 6. First, a set of initial
points were generated with the algorithm in, which is used to calculate the following wheel’s location
and the generated flute parameters. In light of this, the grinding errors were evaluated and set as
the fitness function for the GA and PSO. For the IGA and IPSO, the off springs or particles generated
by the iteration operators, e.g., mutation or crossover, will be checked by the proposed over-cut and
interference constraints. The iteration will stop while satisfying either of the following conditions:
(1) iterations n > 100 (2) there is no obvious improvement in the grinding errors within n = 10 succeeding
iterations. With this procedure, the optimized wheel’s location and orientation, the generated flute
parameters and grinding errors could be obtained.

Algorithm 1 Generate N initial points

Input: Desired flute
{
rT,λ, rc0,γ0,φ0

}
and wheel parameters {R, H,α}

Output: initial points (pop) for β & θC
1. pop =

{
ϕ
}
.

2. while n < N do
3. β = random(0,π/2) and θC = random(0,π).
4. Calculate rc(θC, β) and θs in the projection model (see Appendix A)
5. If satisfy the constraints for Equation (16) and Equation (17).
6. pop = pop∪

{
β,θC

}
7. else
8. go to line 3
9. end if
10. return pop
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(IPSO) with the projection model.

4. Numerical Simulation

To test the accuracy and efficiency of the presented model, the numerical simulation was
conducted with various sizes of flutes. Three types of grinding wheels were provided in Table 1.
The designed flutes were divided into three groups according to their size: small (rT ≤ 1 mm), medium
(1 mm ≤ rT ≤ 20 mm), large (rT ≥ 20 mm). To grind those flutes, the wheel’s location and orientation
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in CNC operations were determined with the proposed improved GA and PSO (IGA, IPSO), and also
compared with the traditional GA and PSO. For each instance, the optimization was run 10 times
and the average results and deviation were recorded. The optimization program was implemented in
MATLAB 2010 on a computer with Intel Core i5, 2.39 GHz, 4 GB RAM. The parameters of the GA and
PSO were set in Table 2. The desired flutes parameters are listed in Table 3. The helix angle for those
flutes was set as 30 degrees.

Table 1. Specification of grinding wheel.

Wheel Parameters Wheel 1 Wheel 2 Wheel 3

wheel width H (mm) 5 20 40
wheel radius R (mm) 30 75 75
wheel angle α (deg.) 75 75 90

Table 2. Parameters of optimization algorithms.

Algorithm Parameters Setting

GA or IGA

initial population size: 100
range of crossover probability: 0.2
range of mutation probability: 0.1
stopping condition: iterations > 100 or ξ < 1 × 10−4

PSO or IPSO

initial population size: 100
inertia weight: 1
inertia weight damping Ratio: 0.99
personal learning coefficient: 1.5
global learning coefficient: 2.0
stopping condition: iterations >1 00 or ξ < 1 × 10−4

The simulation results with various algorithms are given in Table 3. It can be concluded that
the integrated method, i.e., IGA and IPSO, had wider applicability and higher accuracy than the
traditional GA and PSO. Especially for IGA, it could be used to solve the very small size flute-grinding
problem. For further study, the grinding errors ξ (calculated by Equation (14)) between the grinding
flute parameters and the designed flute parameters were calculated as shown in Figure 7a. It can be
seen that the integrated method superior to the traditional in accuracy and stability. The accuracy of
flute parameters with IGA and IPSO could achieve 1 × 10−4. It was also noted that the grinding errors
with IGA and IPSO were less for the medium size flutes, while larger for the small and large size flutes.
What is more, to further test the efficiency of the proposed method, the computing time was recorded
as shown in Figure 7b. The integrated method also showed better efficiency in convergence, which
could save about 15%–40% computing time. In addition, the initial setting parameters of the grinding
wheel solved by IGA are provided in Table 4. In light of the IGA solution, three instances were selected
and simulated in the software CATIA. The simulated results were obtained and measured, as shown
in Figure 8, which also shows that they are highly consistent with the designed flute parameters.
In summary, according to the simulation tests for various optimization methods, it is demonstrated
that the proposed IGA and IPSO based on the projection model is effective, efficient, and robust solving
the flute-grinding problem.
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Table 3. The machined flute parameters.

Flute Size Case No. Cutter
Radius

Desired Flute
Parameters 1

Flute Parameters
Solved by IGA

Flute Parameters
Solved by GA

Flute Parameters
Solved by IPSO

Flute Parameters
Solved by PSO

small size flutes
F1 0.3 (0.2, 6, 75) (0.200, 5.995, 74.956) / / /
F2 0.5 (0.3, 6, 75) (0.300, 5.996, 74.976) / (0.300, 5.919, 74.796) /
F3 1 (0.6, 6, 75) (0.600, 5.998, 75.962) (0.602, 5.991, 75.386) (0.600, 6.000, 75.027) /

medium size flutes

F4 7 (5, 9, 75) (5.000, 9.005, 75.016) (4.989, 8.963, 75.007) (5.000, 9.000, 74.997) (5.021, 8.985, 74.781)
F5 9 (5, 9, 75) (5.000, 8.996,75.009) (5.149, 8.894, 75.410) (5.000, 9.000,75.000) (4.973, 8.969, 74.926)
F6 11 (6, 25, 110) (6.000, 25.016, 109.981) (5.955, 25.037, 109.530) (6.000, 25.000,110.002) (5.946, 24.994, 109.591)
F7 17 (10, 9, 75) (10.000, 9.002, 75.005) (9.997, 9.006, 74.916) (10.000, 8.998,75.003) (9.995, 8.984,74.989)

large size flutes
F8 20 (15, 9, 75) (15.000, 8.995, 75.942) (14.934, 9.038, 75.343) (15.000, 9.000, 75.003) (14.979, 8.995, 75.139)
F9 25 (17, 25, 110) (17.000, 24.995, 110.143) (17.081, 25.071, 109.598) (17.000, 25.000, 109.998) (16.929, 24.919, 110.406)

F10 30 (20, 9, 75) (20.000, 9.008, 75.047) (20.129, 9.020, 75.399) (20.000, 9.000, 74.999) (20.018, 9.011, 75.109
1 Note: (core radius, rake angle and flute angle).
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Table 4. Initial setting parameters of grinding wheels calculated by IGA.

Case No. β θc dx dy

F1 52.9353 87.7783 0.4304 30.1917
F2 50.3040 82.2274 1.7030 30.1838
F3 49.6645 82.7015 1.6804 30.4926
F4 53.2624 95.5550 −3.0894 80.4462
F5 48.4607 80.5059 6.3067 79.4745
F6 55.3177 100.8935 −5.7797 80.4662
F7 48.4607 77.1924 9.5815 83.9187
F8 54.5717 85.3600 3.2566 89.8680
F9 57.7373 99.4303 −6.3210 91.4772

F10 52.8445 79.5509 8.6418 94.2074
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5. Conclusions

In the CNC flute-grinding processes, the accuracy of generated flute parameters is determined
by setting the wheel’s location and orientation. The existing methods for the solution of wheel path
optimization were time-consuming and cannot handle grinding the extreme-size cutters. In addition,
the current model ignored the definition of various constraints in machining, which would strongly
affect the machining accuracy and calculation stability.

In the present work, a novel projection model for flute-grinding operations was developed to
generate the grinding wheels’ configuration. Based on the projection model, the wheel’s location
was re-formulated with the projection parameters, which simplified the following calculation of
machined flute parameters. To minimize the flute-grinding errors regarding the wheel configuration,
the projection model was used to generate the proper initial points and was integrated with the GA
and PSO as a heuristic regulation. In the numerical simulation, the improved GA and PSO are more
accurate, efficient, and robust, with a wide range of applications for various flute sizes. It is noted that
the proposed flute-grinding algorithm was verified with a simulation-based method. For the actual
grinding, a great deal of topics, such as the dynamics of the grinding machine, the material of the
grinding wheel and work-piece, the post-processing, the grinding speed, etc., should be considered in
the future experiments.

Author Contributions: Conceptualization, Y.F., L.W. and J.Y.; formal analysis, Y.F., L.W. and J.Y.; funding
acquisition, L.W.; Methodology, Y.F., and L.W.; supervision, L.W. and J.L.; Validation, Y.F. and L.W.;
writing—original draft, Y.F., L.W. and J.Y.; writing—review and editing, Y.F., L.W. and J.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Funds of the Key Research and Development Plan of Shandong
Province (2019GSF108005), the Shandong Provincial Natural Science Foundation, China (ZR2017BEE018) and
China Postdoctoral Science Foundation (2016M592182).



Appl. Sci. 2020, 10, 4223 13 of 15

Acknowledgments: Our deepest gratitude goes to the editors and the anonymous reviewers for their careful
work and thoughtful suggestions that have helped improve this paper substantially.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

R Grinding wheel radius
[dx dy dz] Grinding wheel location
β Grinding wheel orientation
OT Tool coordinate system
OG Wheel coordinate system
TM1 Set-up operation matrix
TM2 Kinematics matrix of 5-axis grinding
v Translation velocity
ω Rotation velocity
rT Cutter radius
rc Core radius
γ Rake angle
φ Flute angle
rc0 Designed cutter radius
γ0 Designed flute rake angle
φ0 Designed flute angle
λ Helix angle

Appendix A. Representation of the Wheel’s Location in the Projection Model
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In the projection model, the wheel edge can be represented as:

re =
[ dx + R · cosβ · cosθ

dy + R · sinθ

]
, (A1)
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The wheel edge is tangent with the core at the point Pc, which satisfies the following condition:{ rc = re
rc · r′e = 0 , (A2)

where rc =
[ rc0 · cosθc

rc0 · sinθc

]
and r′e is the derivative of re.

Solving Equation (A2), we get:[ dx
dy

]
=

[ rc0 · cosθc −R · cosβ · cosθe
rc0 · sinθc −R · sinθe

]
, (A3)

where θe = arctan
(

tanθc
cosβ

)
.

In summary, the wheel’s location [dx dy] can be expressed regarding the parameter θc.
In addition, two key points in PS and P′S in the projection mode were deduced in the following:

PS =
[ dx + R · cosβ · cosθ2

dy + R · sinθ2

]
, (A4)

P′S =
[ dx + R · cosβ · cosθ2

dy + R · sinθ2

]
. (A5)

The open angle between PS and P′S can be represented as: |OTPS| =
∣∣∣OTP′S

∣∣∣ = rT.

Appendix B. The Geometrical Condition for Interference-Free

Improper wheel setting would result in the interference in the flute-grinding operations. As shown in Figure
A, the interference is generally caused by the wheel edge grinding in the rake face. Geometrically, the interference
would happen while the point P′S crosses PS in the counterclockwise direction. To simplify this problem, the
angle θss is introduced in Figure Ab and c, which is defined as follows:

θss


> 0 No inter f erence
= 0 Critical
< 0 Inter f erence

. (A6)

In the flute-grinding operations, the angle θss can be obtained by mapping the angle θs with a phase
difference in the projection model: θss = θs − ∆Ω.

As mentioned, in the flute-grinding process, the tool-stock rotates with speed ω, while the wheel translates
in speed v along the ZT direction. Therefore, the points PS and P′S would be located in the cross-section with
a phase difference, which can be calculated by the following equation:

∆Ω =
f · sinβ · (cosθ2 − cosθ1)

v
·ω. (A7)

Therefore, to avoid interference, the following constraint can be got for the open-angle θs in the
projection mode:

θs ≥
f · sinβ · (cosθ2 − cosθ1)

v
·ω. (A8)
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