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Abstract: Functionally graded square and rectangular plates of different thicknesses placed on the
elastic foundation modeled according to the Winkler-Pasternak theory have been studied. The thermal
and mechanical characteristics, apart from Poisson’s ratio, are considered to continuously differ
through the thickness of the studied material as stated in a power-law distribution. A mathematical
model of functionally graded plate which include interaction with elastic foundation is defined.
The equilibrium and stability equations are derived using high order shear deformation theory that
comprises various kinds of shape function and the von Karman nonlinearity. A new analytically
integrable shape function has been introduced. Hamilton’s principle has been applied with the
purpose of acquiring the equations of motion. An analytical method for identifying both natural
frequencies and critical buckling temperature for cases of linear and nonlinear temperature change
through the plate thickness has been established. In order to verify the derived theoretical results on
numerical examples, an original program code has been implemented within software MATLAB.
Critical buckling temperature and natural frequencies findings are shown below. Previous scientific
research and papers confirms that presented both the theoretical formulation and the numerical
results are accurate. The comparison has been made between newly established findings based on
introduced shape function and the old findings that include 13 different shape functions available
in previously published articles. The final part of the research provides analysis and conclusions
related to the impact of the power-law index, foundation stiffness, and temperature gradient on
critical buckling temperature and natural frequencies of the functionally graded plates.

Keywords: functionally graded plate; von Karman nonlinear theory; high order shear deformation
theory; new shape function; thermal buckling; free vibration

1. Introduction

Due to a variety of organic and inorganic compounds, progress and growth has been made
possible when it comes to present-day materials, advanced polymers, engineering alloys, structural
ceramics, etc. [1]. The use of new materials happens as a consequence of current technology trends.
Material properties are expected to adapt to current changes in technology and to have a spectrum
of functions and characteristics that have not been introduced yet. As a result, materials are merged,
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and their advantages are preserved. Functionally graded materials (FGM) meet the needs of all the
mentioned requests in technology.

Belonging to the family of engineering composite materials, FGM are modern materials that
feature a continuous or discontinuous variation of the chemical composition through a defined
direction. Detailed analysis and scientific experimentation have shown that FGM are able to constitute
a gradient property, which is not the case with other homogeneous materials or composites. Present-day
engineering faces a significant number of obstacles that could be overcome with these newly established
materials with functionally graded composition. Mechanical characteristics like Poisson’s ratio, density
of material, modulus of elasticity, shear modulus, and thermal expansion coefficient change through
a defined direction, where a property gradient can be stepwise or continuous (linear, exponential,
or parabolic) (Figure 1).
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Figure 2. Material structure: (a) composite laminate; (b) functionally graded materials (FGM). 

Metal/ceramics are the most frequently used FGM, metal being superior to ceramics regarding 
strength, toughness, and high thermal conductivity, while ceramics features a good temperature 
resistance, low thermal conductivity, and good antioxidant characteristics. FGM that contain both 
metal and ceramic constituents enhance thermal-mechanical characteristics between layers. As a 
consequence of continuous change of properties at the interface, FGM avoids delamination. 

Functionally graded materials, being modern materials in the group composite materials, 
represent a popular topic discussed among numerous authors in recent years, as evidenced by a large 
number of publications in renowned journals in the field of composite materials. The actuality and 
the importance of the topic are addressed in numerous reviewed papers [3–6], which undoubtedly 
indicates the intention of the authors to illustrate the current state of research in this area and point 
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The existing materials and their qualities could be completely utilized by the FGM. The following
factors are encompassed: reduction of transverse shear stress, the enhancement of mechanical and
thermal characteristics as well as delamination prevention between the layers, which is one of the most
crucial and the most commonly studied issues related to composite laminates [2] (Figure 2).
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Metal/ceramics are the most frequently used FGM, metal being superior to ceramics regarding
strength, toughness, and high thermal conductivity, while ceramics features a good temperature
resistance, low thermal conductivity, and good antioxidant characteristics. FGM that contain both metal
and ceramic constituents enhance thermal-mechanical characteristics between layers. As a consequence
of continuous change of properties at the interface, FGM avoids delamination.

Functionally graded materials, being modern materials in the group composite materials, represent
a popular topic discussed among numerous authors in recent years, as evidenced by a large number of
publications in renowned journals in the field of composite materials. The actuality and the importance
of the topic are addressed in numerous reviewed papers [3–6], which undoubtedly indicates the
intention of the authors to illustrate the current state of research in this area and point to further
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research directions related to this very interesting area. Overall, FGM plates and shells under the
impact of mechanical load or temperature can be studied using a 3D elastic theory or equivalent
layer theories, which means classical plate theory (CPT), first-order shear deformation theory (FSDT),
and higher-order shear deformation theory (HSDT). In order to eliminate the disadvantages of CPT in
the analysis of moderately thick and thin plates [7], as well as to exclude the shear correction factors in
FSDT [8], higher-order shear deformation theories (HSDT) were introduced. The most commonly used
HSDT theory is third-order shear deformation theories (TSDT) developed by Reddy [9,10] for laminate
composite materials, taking into account the effects of shear deformation and satisfying condition that
the laminates upper and lower surface stress-free. Later, the aforementioned theory was applied to the
analysis of the FGM plates [11]. Subsequently, a number of authors have used Reddy’s TSDT theory in
the analysis of free vibrations and the dynamic stability [12,13] of FGM plates, with or without the
interaction of the plate and the elastic foundation [14]. The impact of temperature, plate geometry,
and material on free vibrations was studied in [15]. In addition to TSDT, a special HSDT group of
theories, which has been developed in order to exclude the need to use correction factors, includes
HSDT theories with shape functions. In general, there are different types of shape functions.

The initial idea of developing FGM was aimed at obtaining a material with high resistance to
temperature gradient on one side and also good mechanical properties on the other side. For this
reason, a number of authors have addressed the behavior problems of FG plates made of metal-ceramic
constituents under mechanical and thermal, static, and dynamic loads, applying the theories mentioned
above. The equilibrium and stability equations of thin, moderately thick, and thick FGM plates exposed
to the impact of temperature have been considered in the area of linear [16–18] and nonlinear
elasticity [19,20]. The effect of uniform, linear, and nonlinear temperature change in the direction of
plate thickness has been analyzed in dynamic problems [21–23]. The plate/foundation interaction and
the impact of the elasticity of the foundation, modeled by the Winkler-Pasternak model, were analyzed
by the authors in [24–27]. The problem of constrained multi objective optimization performed for mass
and material cost minimization as well as the minimization of stress failure criteria or maximization of
natural frequency is studied in [28,29]. A recent trend of research in the area of FGM is quantifying
uncertainty [30–33].

Ultimately, the final aim of all the previously mentioned research and studies is the application of
FGM in various fields of engineering and industry. Although initially used as FGM material for thermal
coating in spacecraft, due to their advantages over conventional materials, today FGM is increasingly
being used in medicine [34], dentistry [35], the energy and nuclear sectors [36], the automotive
industry [37], the military industry [38], optoelectronics [39], and others.

2. Mathematical Model of the Functionally Graded Plate Placed on Elastic Foundation

This paper deals with the FGM rectangular plate (a-length, b-width, and h-height) resting on
an elastic foundation, where the z-axis has a direction of thickness h and the x-y plane represents the
mid surface of the plate (Figure 3). Mathematical model of elastic foundation is defined by the use of
Winkler-Pasternak type of two parameters elastic foundation:

• k0 is stiffness of Winkler foundation,
• k1 represents shear stiffness (Pasternak coefficient).

Power law distribution is used to define Young’s modulus of elasticity, thermal expansion
coefficient, and temperature change through plate thickness [40]:

E(z) = Em + Ecm
(

1
2 + z

h

)p
, Ecm = Ec − Em,

α(z) = αm + αcm
(

1
2 + z

h

)p
, αcm = αc −αm,

T(z) = Tm + ∆Tcr
(

1
2 + z

h

)s
, ∆Tcr = Tc − Tm.

(1)
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The analytical procedure for determining natural frequencies as well as critical buckling
temperature for both linear and nonlinear temperature change across the FG plate thickness is
hereby developed.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 25 
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3. Equilibrium and Stability Equations of FG Plate Placed on Elastic Foundation

By introducing HSDT with shape functions, numerous authors have eliminated the disadvantages
of CPT and FSDT.

In order to produce good results for specific dynamical and static problems, many of these shape
functions have been introduced. It is important to note that the shape functions proposed by various
authors (Table 1) are not generally applicable to all types of problems.

Table 1. Different type of shape functions.

Number of Function Shape Function, f(z)

No. 1 [41] (z/2)
(
h2/4− z2/3

)
No. 2 [42] (5z/4)

(
1− 4z2/3h2

)
No. 3 [43] (h/π) sin(πz/h)
No. 4 [44] sin(πz/h)e

1
2 cos (π

h z) + (πz/2h)
No. 5–6 [45] tan(mz) − zm sec2(mh/2), m = {1/5h,π/2h}

No. 7 [46,47] z exp
(
−2(z/h)2

)
, z exp

(
−2(z/h)2

lnα

)
, ∀α> 0

No. 8 [48] z · 2.85−2(z/h)2
+ 0.028z

No. 9 [49] ξ[(h/π) sin(πz/h) − z], ξ =
{
1, 1/ cosh(π/2) − 1

}
No. 10 [50] hsinh(z/h) − z cosh(1/2)
No. 11 [51] z sec h

(
z2/h2

)
− z sec h(π/4)[1− (π/2)tanh(π/4)]

No. 12 [51] (3π/2)htanh(z/h) − (3π/2)z sec h2(1/2)
No. 13 [52] z cos(1/2)

−1+cos(1/2) −
h sin(z/h)
−1+cos(1/2)

This paper introduces a new shape function:

f(z) = z
(
cosh

( z
h

)
− 1.388

)
(2)

The starting point for developing a new shape function was a comparative analysis of the
advantages and disadvantages of existing shape functions given in Table 1. The initial conditions which
had to be satisfied in developing a new shape function are: the function has to be an odd function
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of the thickness coordinate, the function has to satisfy zero stress conditions for out of plane shear
stresses, the function has to be analytically integrable in order to additionally increases the precision of
the results obtained. Table 1 shows that the newly developed shape function belongs to the category of
simple mathematic functions. This makes the process of integration easier and it consequently reduces
the calculation time significantly. Since the function is analytically integrable, it is not necessary to
switch to numeric integration, and that fact additionally increases the precision of the results obtained.

Here, the assumed form of the displacement field [50] is:

u(x, y, z, t) = u0(x, y, t) − z∂w
∂x (x, y, t) + f(z)θx,

v(x, y, z, t) = v0(x, y, t) − z∂w
∂y (x, y, t) + f(z)θy,

w(x, y, z, t) = w0(x, y, t).
(3)

It is necessary to apply the relations between strains and displacements based on von Karman’s
non-linear theory of elasticity so as to define the components of unit loads [53]. Considering the effect
of the temperature change (1) and thermal expansion that cause a strain α∆T, as well as using the
generalized Hooke’s law, the following unit load components are obtained:


Nxx

Nyy
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
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(
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∂x

∂w
∂y

dz

+
h/2∫
−h/2


Q11(z) Q12(z) 0
Q12(z) Q22(z) 0
0 0 Q66(z)



−
∂2w0
∂x2

−
∂2w0
∂y2

−2∂
2w0
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h/2∫
−h/2


Q11(z) Q12(z) 0
Q12(z) Q22(z) 0
0 0 Q66(z)




∂θx
∂x
∂θy
∂y
∂θx
∂y +

∂θy
∂x

(f(z))2dz

−

h/2∫
−h/2


Q11(z) + Q12(z)
Q12(z) + Q22(z)
0

f(z)α(z)T(z)dz,

{
Ry

Rx

}
=

h/2∫
−h/2

{
τxz

τyz

}
f′(z)dz =

h/2∫
−h/2

[
Q44(z) 0
0 Q55(z)

]{
θx

θy

}
(f′(z))2dz,

(4)
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where:


ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

 =


∂u0
∂x + 1

2

(
∂w0
∂x

)2

∂v0
∂y + 1

2

(
∂w0
∂y

)2

∂u0
∂y + ∂v0

∂x
∂w0
∂x

∂w0
∂y

,


k(0)

xx

k(0)
yy

k(0)
xy

 =


−
∂2w0
∂x2

−
∂2w0
∂y2

−2∂
2w0
∂x∂y

,


k(1)

xx

k(1)
yy

k(1)
xy

 =


∂θx
∂x
∂θy
∂y
∂θx
∂y +

∂θy
∂x

,

 k(2)
xz

k(2)
yz

 =

{
θx

θy

}
, (5)

and f′(z) = df(z)
dz .

The coefficients of the constitutive elasticity tensor could be derived using engineering constants:

Q11(z) = Q22(z) =
E(z)

1− ν2 , Q44(z) = Q55(z) = Q66(z) =
E(z)

2(1 + ν)
, Q12(z) =

νE(z)
1− ν2 . (6)

Based on the Equation (4), new matrices are defined:

(
Aij, Bij, Dij, Eij, Fij, Gij

)
=

h/2∫
−h/2

Qij

(
1, z, f(z), z2, zf(z), (f(z))2

)
dzi, j = (1, 2, 6),

Hlr =
h/2∫
−h/2

Qlr(f
′(z))2dz, (l, r) = (4, 5).

(7)

In order to use the principles of minimum potential energy, it is necessary to define strain energy
Us, the potential energy of the elastic foundation Ue and the total potential energy Π:

Us =
h/2∫
−h/2

∫
A

(
σxx[εxx −α(z)T(z)] + σy

[
εyy −α(z)T(z)

]
+ σzzεzz + τxyγxy + τxzγxz + τyzγyz

)
dAdz, (8)

Ue =
1
2

∫
A

k0w2 + k1

(∂w
∂x

)2

+

(
∂w
∂x

)2
dA, (9)

Π = Us + Ue. (10)

By applying the principles of minimum potential energy:

δΠ = δ(Us + Ue) = δUs + δUe =
∫
A
(Nxxδε

(0)
xx + Nyyδε

(0)
yy + Nxyδγ

(0)
xy + Mxxδk

(0)
xx + Myyδk

(0)
yy + Mxyδk

(0)
xy

+Pxxδk
(1)
xx + Pyyδk

(1)
yy + Pxyδk

(1)
xy + Rxδk

(2)
xz + Ryδk

(2)
yz )dA +

∫
A

{
k0wδw + k1

(
∂w
∂x

∂δw
∂x + ∂w

∂y
∂δw
∂y

)}
dA = 0,

(11)

equilibrium equations become:

δu0 : ∂Nxx
∂x +

∂Nxy
∂y = 0, δv0 :

∂Nyy
∂y +

∂Nxy
∂x = 0,

δw0 : ∂
2Mxx
∂x2 + 2

∂2Mxy
∂x∂y +

∂2Myy

∂y2 + Nxx
∂2w0
∂x2 + 2Nxy

∂2w0
∂x∂y + Nyy

∂2w0
∂y2 − k0w0 + k1

(
∂2w0
∂x2 + ∂2w0

∂y2

)
= 0,

δθx : ∂Pxx
∂x +

∂Pxy
∂y −Rx = 0, δθy :

∂Pxy
∂x +

∂Pyy
∂y −Ry = 0.

(12)

Based on the equilibrium Equation (12) and using the displacement components
u0, v0, w0, θx0 and θy0, the stability equation could be defined. The displacement components of the
next stable configuration are:

u = u0 + u1, v = v0 + v1, w = w0 + w1,
θx = θx0 + θx1, θy = θy0 + θy1,

(13)

where u1, v1, w1, θx1 and θy1 represent the displacement components of arbitrarily small deviation
from the stable configuration. If it is assumed that the temperature is constant in xy-plane of the
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FG plate and that it changes only in the direction of z-axis, the stability equation can be obtained by
substituting the Equation (13) into the Equation (12):

δu0 : ∂N1
xx

∂x +
∂N1

xy
∂y = 0, δv0 :

∂N1
yy

∂y +
∂N1

xy
∂x = 0,

δw0 : ∂
2M1

xx
∂x2 + 2

∂2M1
xy

∂x∂y +
∂2M1

yy

∂y2 + N0
xx
∂2w0
∂x2 + 2N0

xy
∂2w0
∂x∂y + N0

yy
∂2w0
∂y2 − k0w1 + k1

(
∂2w1
∂x2 + ∂2w1

∂y2

)
= 0,

δθx : ∂P1
xx
∂x +

∂P1
xy
∂y −R1

x = 0, δθy :
∂P1

xy
∂x +

∂P1
yy
∂y −R1

y = 0.

(14)

where N0
xx, N0

yy and N0
xy are the resultants of pre-buckling forces:

N0
xx = N0

yy = −

h/2∫
−h/2

E(z)α(z)T(z)
1− υ

dz, N0
xy = 0. (15)

Analytical solutions are obtained by using assumed solution forms and boundary conditions
in accordance with Navier’s methods [54]. Boundary conditions along the edges of the rigidly
fixed-simply supported plate rectangular plate are the following:

u1 = v1 = w1 = θy1 = N1
xx = M1

xx = P1
xx = 0 along sides x = 0 and x = a,

u1 = v1 = w1 = θx1 = N1
yy = M1

yy = P1
yy = 0 along sides y = 0 and y = b.

(16)

In order to satisfy the previously defined boundary conditions, the following Navier’s solution is
assumed [54]:

u1(x, y) =
∞∑

m=1

∞∑
n=1

U1
mn cos mπx

a sin nπy
b , v1(x, y) =

∞∑
m=1

∞∑
n=1

V1
mn sin mπx

a cos nπy
b ,

w1(x, y) =
∞∑

m=1

∞∑
n=1

W1
mn sin mπx

a sin nπy
b ,

θx1(x, y) =
∞∑

m=1

∞∑
n=1

T1
xmn cos mπx

a sin nπy
b , θy1(x, y) =

∞∑
m=1

∞∑
n=1

T1
ymn sin mπx

a cos nπy
b .

(17)

where U1
mn, V1

mn, W1
mn, T1

xmn, T1
ymn are parameters which are to be determined.

Based on Navier’s solution, the stability equation becomes:

[L−ΩI]U = 0, (18)

where U =
{

U1
mn V1

mn W1
mn T1

xmn T1
ymn

}T
and Ω buckling parameter. Coefficients Lij,

(i, j = 1÷ 5) are defined in the following way:

L11 = α2A11 + β
2A66, L12 = αβ(A12 + A66), L13 = 0, L14 = α2D11 + β

2D66,
L15 = αβ(D12 + D16), L22 = α2A66 + β

2A22, L23 = 0, L24 = αβ(D12 + D16),
L25 = α2C66 + β

2C22, L33 = α4E11 + 2α2β2E12 + 4α2β2E66 + β
4E22,

L34 = −α3F11 −αβ
2F12 − 2αβ2E66, L35 = −α2βF12 − 2α2βF66 −β

3F22,
L44 = H44 + α

2G11 + α
2G66, L45 = αβ(G12 + G66), L55 = H55 + α

2G66 + α
2G22,

(19)

while the matrix Iij, (i, j = 1÷ 5) is determined as:

I =

 0,
α2N0

x + β
2N0

y + k0 + k1
(
α2 + β2

)
, (i, j = 3), α = mπ/a, β = nπ/b

(20)

The determinant in (18) must be equal to zero value in order to get nontrivial solutions:

|L−ΩI| = 0. (21)
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4. Equations of Motion of FG Plate Placed on Elastic Foundation

As the subject of this chapter is linear dynamic analysis, the kinematic relations of displacements
and deformations are defined under assumptions of small deformations. Since the total potential
energy Π is represented as the sum of the strain energy of the plate and the potential energy of the
elastic foundation (10), for the application of the Hamilton’s principle it is necessary to further define
the kinetic energy:

K =
1
2

h/2∫
−h/2

∫
A

ρ(z)

(∂u
∂t

)2

+

(
∂v
∂t

)2

+

(
∂w
∂t

)2dAdz, (22)

wherein:

ρ(z)-material density in an arbitrary cross-section z,

As can be seen, as a consequence of the gradient structure of the plate material, the material
density represents a function of the z coordinate. The change of density in the direction of z-axis is
defined in accordance to the power-law distribution as:

ρ(z) = ρm + ρcm

(1
2
+

z
h

)p
, ρcm = ρc − ρm, (23)

By substituting the strain energy of the plate (8), the potential energy of the elastic foundation (9)
and the kinetic energy (22) into the Hamilton’s principle:

δ
t1∫

t1

[K− (Us + Ue)]dt =
t2∫

t1

−∫
A
(Nxxε

(0)
xx + Nyyε

(0)
yy + Nxyγ

(0)
xy + Mxxk(0)

xx + Myyk(0)
yy + Mxyk(0)

xy

+Pxxk(1)
xx + Pyyk(1)

yy + Pxyk(1)
xy + Rxk(2)

xz + Ryk(2)
yz )dA

−

∫
A

{
k0wδw + k1

(
∂w
∂x

∂δw
∂x + ∂w

∂y
∂δw
∂y

)}
dA

+
h/2∫
−h/2

∫
A
ρ(z)

(
∂u
∂t
∂δu
∂t + ∂v

∂t
∂δv
∂t + ∂w

∂t
∂δw
∂t

)
dAdz

dt = 0.

(24)

By substituting the strain components expressed by assumed displacement forms as well as
by applying the calculus of variations and group the members with the δu0, δv0, δw0, δθx and δθy,
the equations of motion are obtained:

δu0 : ∂Nxx
∂x +

∂Nxy
∂y = I1

..
u0 − I2

∂
..
w0
∂x + I4

..
θx,

δv0 :
∂Nyy
∂y +

∂Nxy
∂x = I1

..
v0 − I2

∂
..
w0
∂y + I4

..
θy,

δw0 : ∂2Mxx
∂x2 + 2

∂2Mxy
∂x∂y +

∂2Myy

∂y2 − k0w0 + k1

(
∂2w0
∂x2 + ∂2w0

∂y2

)
= I1

..
w0 + I2

(
∂

..
u0
∂x + ∂

..
v0
∂y

)
−I3

(
∂2 ..

w0
∂x2 + ∂2 ..

w0
∂y2

)
+ I5

(
∂

..
θx
∂x +

∂
..
θy
∂y

)
,

δθx : ∂Pxx
∂x +

∂Pxy
∂y −Rx = I4

..
u0 − I5

∂
..
w0
∂x + I6

..
θx,

δθy :
∂Pxy
∂x +

∂Pyy
∂y −Ry = I4

..
v0 − I5

∂
..
w0
∂y + I6

..
θy.

(25)
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where Ii (i = 1, 2, 3, 4, 5 i 6) are terms due to inertia defined as:

I1 =
h/2∫
−h/2

ρ(z)dz, I2 =
h/2∫
−h/2

ρ(z)zdz,

I3 =
h/2∫
−h/2

ρ(z)f(z)dz, I4 =
h/2∫
−h/2

ρ(z)z2dz,

I5 =
h/2∫
−h/2

ρ(z)zf(z)dz, I6 =
h/2∫
−h/2

ρ(z)(f(z))2dz.

(26)

Analytical solutions will be derived for the simply supported rectangular FGM plate, wherein the
boundary conditions are defined according to [54] as:

v0 = w0 = θy = Nxx = Mxx = Pxx = Ry = 0, on the sides where x = 0 or x = a,
u0 = w0 = θx = Nyy = Myy = Pyy = Rx = 0, on the sides where y = 0 or y = b.

(27)

In order to satisfy the previously defined boundary conditions, the following Navier’s solution
is assumed:

u0(x, y, t) =
∞∑

m=1

∞∑
n=1

Umn cos mπx
a sin nπy

b eiωt, v0(x, y, t) =
∞∑

m=1

∞∑
n=1

Vmn sin mπx
a cos nπy

b eiωt,

w0(x, y, t) =
∞∑

m=1

∞∑
n=1

Wmn sin mπx
a sin nπy

b eiωt,

θx(x, y, t) =
∞∑

m=1

∞∑
n=1

Txmn cos mπx
a sin nπy

b eiωt, θy(x, y, t) =
∞∑

m=1

∞∑
n=1

Tymn sin mπx
a cos nπy

b eiωt.

(28)

Comparing the assumed form of Navier’s solutions (17) and (28), it can be observed that the only
difference between these forms is in the terms eiωt, where ω is the natural frequency of the system
and Umn, Vmn, Wmn, Txmn, Tymn are parameters to be determined. By substituting (28) into (25) the
following equation is obtained: [

K−ω2I
] ¯
U = 0, (29)

K =


K11 K12 K13 K14 K15

K22 K23 K24 K25

K33 K34 K35

sym K44 K45

K55


,

¯
U =



Umn

Vmn

Wmn

Txmn

Tymn


. (30)

Coefficients Kij,(i, j = 1÷ 5) are defined as:

K11 = α2A11 + β
2A66, K12 = αβ(A12 + A66), K13 = −3B16α

2β− B26β
3,

K14 = 2D16αβ, K15 = α2D16 + β
2D26, K22 = α2A66 + β

2A22,
K23 = −B16α

3
− 3B26αβ

2, K24 = α2E16 + β
2E26, K25 = 2αβE26,

K33 = α4E11 + 2α2β2E12 + 4α2β2E66 + β
4E22, K34 = −α3F11 −αβ

2F12 − 2αβ2F66,
K35 = −α2βF12 − 2α2βF66 −β

3F22, K44 = H44 + α
2G11 + β

2G66,
K45 = αβ(G12 + G66), K55 = H55 + α

2G66 + β
2G22.

(31)

while Iij, (i, j = 1÷ 5) is defined as:

I =



I1 0 −αI2 I4 0
0 I1 −βI2 0 I4

−αI2 −βI2 I3
(
α2 + β2

)
+ I1 −αI5 −βI5

I4 0 −αI5 I6 0
0 I4 −βI5 0 I6


, α =

mπ
a

, β =
nπ
b

(32)
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The determinant in (29) must be equal to zero value in order to get nontrivial solutions:∣∣∣K−ω2I
∣∣∣ = 0. (33)

5. Numerical Examples and Results

In order to verify the derived theoretical results on numerical examples, an original program code
for determination of critical buckling temperature as well as for determination natural frequencies of
FGM plates has been implemented within software MATLAB. The main goal of this chapter is to check
the exactness and the effectiveness of the proposed theory and new shape function. Different numerical
examples were done in order to compare obtained results to results based on other shear deformation
theory. Analysis were performed for FG plate with metal and ceramic constituents, the mechanical
and thermal characteristics of which are given in Table 2.

Table 2. Material properties of functionally graded materials (FGM) constituents.

Material
Material Properties

Elasticity
Modulus E[GPa] Poisson’s Ratio ν Thermal Expansion

Coefficient α[◦C−1]
Density ρ [kg/m3]

Aluminum (Al) Em = 70 ν = 0.3 αM = 23 · 10−6[◦C−1] ρm = 2702
Alumina (Al2O3) Ec = 380 ν = 0.3 αC = 7.4 · 10−6[◦C−1] ρc = 3800

5.1. Thermal Buckling Analysis

This section provides results of the research based on comparative analysis of all shape functions
(Table 1) and new proposed function. The obtained results for critical buckling temperatures of FG
square and rectangular plates placed on an elastic foundation are totally in accordance with the results
by authors in [55] which is applied trigonometric shear deformation plate theory and [25] which is
applied HSDT based on the just one shape function.

In Table 3, critical buckling temperatures (∆tcr = ∆Tcr·10−3) of FGM plates placed on an elastic
foundation for case a linear temperature change through the plate thickness are presented. Values
such as the power law index p, Winkler and Pasternak coefficient k0, k1 and thickness ratios a/h were
varied during the analysis of the influence on the critical buckling temperature. By drawing an analogy
between these findings where 13 different shape functions were applied, it can be clearly seen that
the newly established shape function demonstrates quite similar results. From the findings, we can
infer that critical buckling temperatures drops off with the rise of power law index p and ratio a/h.
Additionally, Pasternak coefficient k1 has a bigger effect than Winkler coefficient k0 on the critical
buckling temperatures.

Table 3. Critical buckling temperatures (∆tcr) of FGM plates placed on an elastic foundation for case of
linear temperature change across plate thickness (a/b = 1, m = n = 1, and Tm = 5◦).

p Source

∆tcr

k0 = 0, k1 = 0 k0 = 10, k1 = 0 k0 = 10, k1 = 10

a/h = 10 a/h = 20 a/h = 10 a/h = 20 a/h = 10 a/h = 20

0

[55] 3.2276 0.833 3.3154 0.855 5.0479 1.2881
[25] 3.2273 0.833 3.3151 0.855 5.0476 1.2881

Present study 3.2274 0.8331 3.3151 0.855 5.0476 1.2881
No. 1 3.2273 0.833 3.3151 0.855 5.0476 1.2881
No. 2 3.2273 0.833 3.3151 0.855 5.0476 1.2881
No. 3 3.2276 0.833 3.3154 0.855 5.0479 1.2881
No. 4 3.2333 0.8334 3.3211 0.8554 5.0536 1.2885
No. 5 3.2273 0.833 3.3151 0.855 5.0476 1.2881
No. 6 3.2282 0.8331 3.316 0.855 5.0485 1.2882
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Table 3. Cont.

p Source

∆tcr

k0 = 0, k1 = 0 k0 = 10, k1 = 0 k0 = 10, k1 = 10

a/h = 10 a/h = 20 a/h = 10 a/h = 20 a/h = 10 a/h = 20

0

No. 7 3.2284 0.8331 3.3162 0.855 5.0487 1.2882
No. 8 3.2285 0.8331 3.3163 0.855 5.0488 1.2882
No. 9 3.2285 0.8331 3.3163 0.855 5.0488 1.2882

No. 10 3.2273 0.833 3.3151 0.855 5.0476 1.2881
No. 11 3.2288 0.8331 3.3166 0.8551 5.0491 1.2882
No. 12 3.2275 0.833 3.3152 0.855 5.0477 1.2881
No. 13 3.2273 0.833 3.3151 0.855 5.0476 1.2881

1

[55] 1.413 0.3587 1.4897 0.3778 3.004 0.7564
[25] 1.4129 0.3587 1.4896 0.3778 3.0039 0.7564

Present study 1.413 0.3587 1.4897 0.3779 3.0039 0.7564
No. 1 1.4129 0.3587 1.4896 0.3778 3.0039 0.7564
No. 2 1.4129 0.3587 1.4896 0.3778 3.0039 0.7564
No. 3 1.413 0.3587 1.4897 0.3778 3.004 0.7564
No. 4 1.4152 0.3588 1.4919 0.378 3.0061 0.7565
No. 5 1.4129 0.3587 1.4896 0.3778 3.0039 0.7564
No. 6 1.4133 0.3587 1.49 0.3779 3.0042 0.7564
No. 7 1.4133 0.3587 1.49 0.3779 3.0043 0.7564
No. 8 1.4134 0.3587 1.4901 0.3779 3.0043 0.7564
No. 9 1.4134 0.3587 1.4901 0.3779 3.0043 0.7564

No. 10 1.4129 0.3587 1.4896 0.3778 3.0039 0.7564
No. 11 1.4135 0.3587 1.4902 0.3779 3.0044 0.7564
No. 12 1.413 0.3587 1.4897 0.3778 3.0039 0.7564
No. 13 1.4129 0.3587 1.4896 0.3778 3.0039 0.7564

5

[55] 1.16 0.2986 1.2576 0.323 3.1839 0.8046
[25] 1.1606 0.2987 1.2582 0.3231 3.1845 0.8046

Present study 1.1608 0.2987 1.2584 0.3231 3.1846 0.8047
No. 1 1.1606 0.2987 1.2582 0.3231 3.1845 0.8046
No. 2 1.1606 0.2987 1.2582 0.3231 3.1845 0.8046
No. 3 1.16 0.2986 1.2576 0.323 3.1839 0.8046
No. 4 1.1604 0.2986 1.2579 0.323 3.1842 0.8046
No. 5 1.1607 0.2987 1.2582 0.3231 3.1845 0.8046
No. 6 1.1626 0.2988 1.2602 0.3232 3.1865 0.8048
No. 7 1.1597 0.2986 1.2573 0.323 3.1835 0.8045
No. 8 1.1597 0.2986 1.2572 0.323 3.1835 0.8045
No. 9 1.1597 0.2986 1.2572 0.323 3.1835 0.8045

No. 10 1.1607 0.2987 1.2583 0.3231 3.1846 0.8046
No. 11 1.1631 0.2988 1.2607 0.3232 3.187 0.8048
No. 12 1.1602 0.2986 1.2578 0.323 3.184 0.8046
No. 13 1.1606 0.2987 1.2582 0.323 3.1844 0.8046

10

[55] 1.2183 0.3156 1.3317 0.344 3.5699 0.9035
[25] 1.2186 0.3156 1.332 0.344 3.5701 0.9035

Present study 1.2187 0.3157 1.3321 0.344 3.5703 0.9036
No. 1 1.2186 0.3156 1.332 0.344 3.5701 0.9035
No. 2 1.2186 0.3156 1.332 0.344 3.5701 0.9035
No. 3 1.2183 0.3156 1.3317 0.344 3.5699 0.9035
No. 4 1.2206 0.3158 1.3339 0.3441 3.5721 0.9037
No. 5 1.2186 0.3156 1.332 0.344 3.5702 0.9035
No. 6 1.2201 0.3157 1.3335 0.3441 3.5717 0.9036
No. 7 1.2184 0.3156 1.3318 0.344 3.57 0.9035
No. 8 1.2185 0.3156 1.3318 0.344 3.57 0.9035
No. 9 1.2185 0.3156 1.3318 0.344 3.57 0.9035

No. 10 1.2186 0.3156 1.332 0.344 3.5702 0.9035
No. 11 1.2203 0.3158 1.3337 0.3441 3.5719 0.9036
No. 12 1.2184 0.3156 1.3318 0.344 3.5699 0.9035
No. 13 1.2186 0.3156 1.3319 0.344 3.5701 0.9035
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Table 4 illustrates comparative findings of critical buckling temperatures of FGM plates placed on
an elastic foundation for case a nonlinear temperature change through the plate thickness. By drawing
an analogy between these findings, the ones where 13 different shape functions were applied, and the
ones included in the sources [55], it can be clearly seen that the newly established shape function
demonstrates quite similar results.

Table 4. Critical buckling temperatures (∆tcr) of FGM plates placed on an elastic foundation for case of
nonlinear temperature change across plate thickness (a/b = 1, m = n = 1, s = 3, and Tm = 5◦).

p Source

∆tcr

k0 = 0, k1 = 0 k0 = 10, k1 = 0 k0 = 10, k1 = 10

a/h = 10 a/h = 20 a/h = 10 a/h = 20 a/h = 10 a/h = 20

0

[55] 6.4552 1.6661 6.6308 1.71 10.0958 2.5763
Present study 6.4547 1.6661 6.6303 1.71 10.0953 2.5763

No. 1 6.4547 1.6661 6.6302 1.71 10.0953 2.5762
No. 2 6.4547 1.6661 6.6302 1.71 10.0953 2.5762
No. 3 6.4552 1.6661 6.6308 1.71 10.0958 2.5763
No. 4 6.4667 1.6669 6.6422 1.7108 10.1073 2.577
No. 5 6.4547 1.6661 6.6302 1.7182 10.0953 2.5762
No. 6 6.4564 1.6662 6.632 1.71 10.097 2.5764
No. 7 6.4569 1.6662 6.6324 1.7101 10.0974 2.5764
No. 8 6.4571 1.6663 6.6326 1.7101 10.0977 2.5764
No. 9 6.4571 1.6663 6.6326 1.7101 10.0977 2.5764

No. 10 6.4547 1.6661 6.6302 1.7101 10.0953 2.5762
No. 11 6.4577 1.6663 6.6332 1.7139 10.0983 2.5764
No. 12 6.455 1.6661 6.6305 1.7102 10.0956 2.5762
No. 13 6.4547 1.6661 6.6302 1.71 10.0953 2.5762

1

[55] 2.8269 0.7176 2.9804 0.756 6.0097 1.5133
Present study 2.8268 0.7176 2.9802 0.756 6.0096 1.5133

No. 1 2.8267 0.7176 2.9802 0.7559 6.0095 1.5133
No. 2 2.8267 0.7176 2.9802 0.7559 6.0095 1.5133
No. 3 2.8269 0.7176 2.9804 0.756 6.0097 1.5133
No. 4 2.8312 0.7179 2.9847 0.7562 6.014 1.5136
No. 5 2.8267 0.7176 2.9802 0.7559 6.0095 1.5133
No. 6 2.8274 0.7176 2.9808 0.756 6.0102 1.5133
No. 7 2.8275 0.7176 2.981 0.756 6.0103 1.5133
No. 8 2.8276 0.7176 2.9811 0.756 6.0104 1.5133
No. 9 2.8276 0.7176 2.9811 0.756 6.0104 1.5133

No. 10 2.8267 0.7176 2.9802 0.7559 6.0095 1.5133
No. 11 2.8278 0.7177 2.9813 0.756 6.0106 1.5134
No. 12 2.8268 0.7176 2.9803 0.756 6.0096 1.5133
No. 13 2.8267 0.7176 2.9802 0.7559 6.0095 1.5133

5

[55] 2.0152 0.5188 2.1847 0.5612 5.5309 1.3977
Present study 2.0165 0.5189 2.186 0.5613 5.5322 1.3978

No. 1 2.0162 0.5188 2.1858 0.5612 5.5319 1.3978
No. 2 2.0162 0.5188 2.1858 0.5612 5.5319 1.3978
No. 3 2.0152 0.5188 2.1847 0.5611 5.5309 1.3977
No. 4 2.0157 0.5188 2.1853 0.5612 5.5315 1.3977
No. 5 2.0163 0.5188 2.1858 0.5612 5.532 1.3978
No. 6 2.0197 0.5191 2.1892 0.5615 5.5354 1.398
No. 7 2.0146 0.5187 2.1841 0.5611 5.5303 1.3977
No. 8 2.0145 0.5187 2.1841 0.5611 5.5302 1.3977
No. 9 2.0145 0.5187 2.1841 0.5611 5.5302 1.3977

No. 10 2.0164 0.5189 2.1859 0.5612 5.5321 1.3978
No. 11 2.0206 0.5191 2.1901 0.5615 5.5363 1.3981
No. 12 2.0154 0.5188 2.1849 0.5612 5.5311 1.3977
No. 13 2.0161 0.5188 2.1856 0.5612 5.5318 1.3978
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Table 4. Cont.

p Source
∆tcr

k0 = 0, k1 = 0 k0 = 10, k1 = 0 k0 = 10, k1 = 10

a/h = 10 a/h = 20 a/h = 10 a/h = 20 a/h = 10 a/h = 20

10

[55] 2.0971 0.5433 2.2923 0.5921 6.1448 1.5552
Present study 2.0978 0.5434 2.2929 0.5922 6.1455 1.5553

No. 1 2.0976 0.5433 2.2928 0.5921 6.1453 1.5553
No. 2 2.0976 0.5433 2.2928 0.5921 6.1453 1.5553
No. 3 2.0971 0.5433 2.2923 0.5921 6.1448 1.5552
No. 4 2.101 0.5436 2.2961 0.5924 6.1487 1.5555
No. 5 2.0976 0.5433 2.2928 0.5921 6.1453 1.5553
No. 6 2.1002 0.5435 2.2954 0.5923 6.1479 1.5554
No. 7 2.0973 0.5433 2.2925 0.5921 6.145 1.5552
No. 8 2.0973 0.5433 2.2925 0.5921 6.145 1.5552
No. 9 2.0973 0.5433 2.2925 0.5921 6.145 1.5552

No. 10 2.0977 0.5433 2.2928 0.5921 6.1454 1.5553
No. 11 2.1005 0.5435 2.2957 0.5923 6.1482 1.5555
No. 12 2.0972 0.5433 2.2924 0.5921 6.1449 1.5552
No. 13 2.0975 0.5433 2.2927 0.5921 6.1452 1.5553

Figures 4a and 5a clarify the impact of ratio a/b on the critical buckling temperature for case of
linear and nonlinear temperature change through the plate thickness. It should be stressed that the rise
of a/b ratio leads to the rise of critical temperature, e.g., curves show the harsh rise of a/b ratio functions.
Furthermore, the critical buckling temperatures in the same instance are higher for nonlinear than the
linear temperature change through the plate thickness.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 25 
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Figures 4b and 5b illustrate the impact of ratio a/h on the critical buckling temperature for case
of linear and nonlinear temperature change through the plate thickness. This diagram exhibits the
values of p = 0, 1, 5, 10 and it is evident that the most prominent curve is the one whose value is p = 0,
while the remaining curves lie over each other when the value of ratio is a/h > 15.

The impact of the elastic foundation on the critical buckling temperature for case of linear and
nonlinear temperature change through the plate thickness is shown in Figure 6a,b. It should be
underlined that results are presented for the shape function is No.10 because of its analytical integration.
Numerical integration does not have to be employed.
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Figure 6. Impact of the power law index p and parameter s on the critical buckling temperature ∆tcr

for case of linear and nonlinear temperature change across plate thickness: (a) a/h = 10, a/b = 1, s = 1;
(b) a/h = 10, a/b = 1, s = 3.

The numerical calculations were done to figure out the influence of every elastic foundation
parameter (k0 and k1). This was achieved by varying one of the parameters and setting the other one
as a constant. Similarly to previous cases, the analysis is conducted for a linear and nonlinear rise in
temperature and the findings are illustrated in Figures 7a and 8a (fixed value k1 and variation of k0)
and also in Figures 7b and 8b (fixed value k0 and variation of k1). The Figures provide information
about the curves that represent critical buckling temperature changes and their rapid rise that occurs
because of the change of coefficient k1, rather than when coefficient k0 changes. Another important
observation is that the curve with the most rapid rise has the value p = 10.
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5.2. Free Vibration Analysis

In order to properly evaluate the behaviour of FGM plates, in addition to the results of the static
analysis, an analysis of the behaviour of plates in a dynamic environment is also required. This section
presents the results of free vibrations of FGM plates placed on an elastic foundation for different values
of Winkler coefficient k0, Pasternak coefficient k1, and power law index p. As with the results of
the thermal analysis described above, the verification of the developed and implemented theoretical
results based on the newly introduced shape function was performed through a tabular representation
of the obtained results, in comparison with the results from the literature. The procedure verified in
this way was used to obtain other results for plates of different gradient structure. Based on the results
of the dynamic analysis, appropriate interpretations and the comments were provided, and certain
conclusions made. In order to display the numerical values of natural frequencies, for rectangular and
square FGM plates, it is necessary to normalize the obtained values according to:

ω̃ = ωh
√
ρm

Em
. (34)

Tables 5 and 6 show the non-dimensional natural frequencies ω̃ of rectangular (a/b = 0.5) and
square (a/b = 1) plates resting on an elastic foundation for different values of Winkler coefficient
(k0), Pasternak coefficient (k1) and index p. In order to observe the impact of the elastic foundation,
the values of k0 = 0 and k1 = 0 were first taken, introducing one coefficient at the time in order to
determine which of the two coefficients has a greater impact. By analyzing the results, it is evident that
the impact of the coefficient k1 on the ω̃ is far greater than the impact of the coefficient k0.

Table 5. Non-dimensional natural frequencies (ω̃) of rectangular FGM plates placed on an elastic
foundation for different values of the Winkler coefficient k0, Pasternak coefficient k1, and power law
index p (a/b = 0.5, a/h = 5, m = 1, n = 1).

a/b k0 k1 Theory

ω̃

a/h = 5

p = 0 p = 1 p = 5 p = 10

0.5 0 0

Present study 6.761 5.2016 4.3761 4.206
No. 1 6.7609 5.2015 4.3757 4.2058
No. 2 6.7609 5.2015 4.3757 4.2058
No. 3 6.7616 5.202 4.3733 4.205
No. 4 6.775 5.2108 4.3753 4.2136
No. 5 6.7609 5.2015 4.3757 4.2058
No. 6 6.7628 5.2027 4.3832 4.211
No. 7 6.7636 5.2033 4.3722 4.2055
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Table 5. Cont.

a/b k0 k1 Theory

ω̃

a/h = 5

p = 0 p = 1 p = 5 p = 10

0.5

0 0

No. 8 6.7638 5.2034 4.3721 4.2056
No. 9 6.7638 5.2034 4.3721 4.2056
No. 10 6.7609 5.2015 4.3759 4.2059
No. 11 6.7642 5.2036 4.3852 4.2117
No. 12 6.8031 5.2291 4.4434 4.2771
No. 13 6.7609 5.2015 4.3754 4.2056

100 0

Present study 7.2125 5.8654 5.2358 5.1214
No. 1 7.2125 5.8653 5.2354 5.1211
No. 2 7.2125 5.8653 5.2354 5.1211
No. 3 7.2132 5.8657 5.2336 5.1205
No. 4 7.2256 5.8734 5.2353 5.1274
No. 5 7.2125 5.8653 5.2355 5.1212
No. 6 7.2142 5.8664 5.2415 5.1252
No. 7 7.215 5.8668 5.2327 5.1209
No. 8 7.2152 5.867 5.2326 5.121
No. 9 7.2152 5.867 5.2326 5.121
No. 10 7.2125 5.8653 5.2357 5.1212
No. 11 7.2155 5.8672 5.2431 5.1258
No. 12 7.2517 5.8893 5.2902 5.1777
No. 13 7.2125 5.8653 5.2352 5.121

0 100

Present study 11.115 10.845 10.992 11.079
No. 1 11.115 10.845 10.9919 11.0793
No. 2 11.115 10.845 10.9919 11.0793
No. 3 11.1154 10.8452 10.9914 11.0791
No. 4 11.1226 10.8484 10.9922 11.0814
No. 5 11.115 10.845 10.9919 11.0793
No. 6 11.116 10.8455 10.9936 11.0803
No. 7 11.1164 10.8457 10.9912 11.0793
No. 8 11.1166 10.8457 10.9912 11.0794
No. 9 11.1166 10.8457 10.9912 11.0794
No. 10 11.115 10.845 10.992 11.0793
No. 11 11.1168 10.8458 10.994 11.0804
No. 12 11.138 10.8552 11.0077 11.0949
No. 13 11.115 10.845 10.9918 11.0792

100 100

Present study 11.395 11.178 11.3593 11.4558
No. 1 11.3952 11.178 11.3593 11.4558
No. 2 11.3952 11.178 11.3593 11.4558
No. 3 11.3956 11.1782 11.3588 11.4557
No. 4 11.4026 11.1812 11.3596 11.4578
No. 5 11.3952 11.178 11.3593 11.4558
No. 6 11.3962 11.1784 11.3608 11.4567
No. 7 11.3966 11.1786 11.3587 11.4559
No. 8 11.3967 11.1787 11.3587 11.4559
No. 9 11.3967 11.1787 11.3587 11.4559
No. 10 11.3952 11.178 11.3593 11.4558
No. 11 11.3969 11.1787 11.3612 11.4568
No. 12 11.4174 11.1876 11.3737 11.47
No. 13 11.3952 11.178 11.3592 11.4557
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Table 6. Non-dimensional natural frequencies (ω̃) of square FGM plates placed on an elastic foundation
for different values of the Winkler coefficient k0, Pasternak coefficient k1, and power law index p (a/b = 1,
a/h = 5, m = 1, n = 1).

a/b k0 k1 Theory

ω̃

a/h = 5

p = 0 p = 1 p = 5 p = 0

1

0 0

Present study 10.3761 8.0121 6.6687 6.3883
No. 1 10.3761 8.0121 6.6677 6.3879
No. 2 10.3761 8.0121 6.6677 6.3879
No. 3 10.3779 8.0133 6.663 6.3864
No. 4 10.4086 8.0336 6.6684 6.4062
No. 5 10.3761 8.0121 6.6679 6.3879
No. 6 10.38 8.0147 6.6838 6.3987
No. 7 10.3824 8.0163 6.6607 6.3877
No. 8 10.3831 8.0167 6.6606 6.388
No. 9 10.3831 8.0167 6.6606 6.388

No. 10 10.3761 8.0121 6.6683 6.3881
No. 11 10.383 8.0166 6.6881 6.4001
No. 12 10.4698 8.0739 6.8155 6.5423
No. 13 10.3762 8.0122 6.6672 6.3876

100 0

Present study 10.6722 8.4517 7.2542 7.0179
No. 1 10.6723 8.4517 7.2534 7.0175
No. 2 10.6723 8.4517 7.2534 7.0175
No. 3 10.674 8.4528 7.2491 7.0162
No. 4 10.7037 8.4718 7.2541 7.0339
No. 5 10.6722 8.4517 7.2535 7.0176
No. 6 10.676 8.4541 7.2678 7.0271
No. 7 10.6783 8.4556 7.2471 7.0174
No. 8 10.679 8.456 7.247 7.0177
No. 9 10.679 8.456 7.247 7.0177

No. 10 10.6722 8.4517 7.2539 7.0177
No. 11 10.6789 8.4559 7.2717 7.0284
No. 12 10.7629 8.5096 7.3865 7.1553
No. 13 10.6723 8.4517 7.2529 7.0173

0 100

Present study 15.1867 14.3818 14.3054 14.376
No. 1 15.1867 14.3818 14.3052 14.3759
No. 2 15.1867 14.3818 14.3052 14.3759
No. 3 15.1878 14.3823 14.304 14.3757
No. 4 15.2066 14.391 14.3064 14.3818
No. 5 15.1867 14.3818 14.3052 14.376
No. 6 15.1891 14.3829 14.3094 14.3785
No. 7 15.1906 14.3836 14.3036 14.3763
No. 8 15.191 14.3838 14.3036 14.3764
No. 9 15.191 14.3838 14.3036 14.3764

No. 10 15.1867 14.3818 14.3053 14.376
No. 11 15.191 14.3838 14.3105 14.3788
No. 12 15.2444 14.4086 14.3463 14.4167
No. 13 15.1868 14.3818 14.305 14.3759

100 100

Present study 15.3904 14.6304 14.5846 14.6636
No. 1 15.3904 14.6305 14.5843 14.6636
No. 2 15.3904 14.6305 14.5843 14.6636
No. 3 15.3914 14.6309 14.5833 14.6634
No. 4 15.4099 14.6394 14.5856 14.6692
No. 5 15.3904 14.6305 14.5844 14.6636
No. 6 15.3927 14.6315 14.5883 14.666
No. 7 15.3941 14.6322 14.5829 14.6639
No. 8 15.3945 14.6323 14.5829 14.664
No. 9 15.3945 14.6323 14.5829 14.664

No. 10 15.3904 14.6305 14.5845 14.6636
No. 11 15.3945 14.6324 14.5894 14.6663
No. 12 15.447 14.6564 14.6233 14.7021
No. 13 15.3904 14.6305 14.5842 14.6635
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Figure 9 shows the diagrams of the non-dimensional natural frequencies ω̃ of the plates resting on
an elastic foundation for different ratios a/h, a/b, and the values of the coefficients k0, k1, and index p.
Figure 9a shows the impact of the Winkler coefficient (k0) and Pasternak coefficient (k1) on the values
of natural frequencies for the first oscillation mode. It can be clearly observed that the introduction of
the coefficient k0 leads to very small changes in the ω̃ values in comparison to the case of absence of
an elastic foundation (k0 = 0 and k1 = 0). On the other hand, when you introduce the coefficient k1,
there is an evident change in the value of natural frequencies ω̃. The effect of the geometry changes
of the plate (a/b ratio) and the index p is shown in the diagram 9b. With the increase of a/b ratio the
curves become further away from each other, i.e., the fastest change in the ω̃ value occurs in a ceramic
plate, the slowest change occurs in a metal plate, and in FGM the rate of change depends on the ratio
of constituents. Figure 9c shows the effect of different a/h ratios on the values ω̃. For smaller values of
a/h ratios, the changes in values ω̃ are greater, while at values of a/h > 5, the effect on the values ω̃
is decreasing.
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Figure 10 shows 3D diagrams of the non-dimensional natural frequencies ω̃ of the plates resting on
an elastic foundation for different ratios a/h, a/b, and values k0, k1, and the index p. This visualization
provides a more transparent insight into the previously described effects of certain parameters on the
natural frequency values and the conclusions reached. For example, at Figure 10c it can be clearly
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seen that the impact of the coefficient k1 on the frequency values is far greater than the impact of the
coefficient k0.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 25 

visualization provides a more transparent insight into the previously described effects of certain 
parameters on the natural frequency values and the conclusions reached. For example, at Figure 10c 
it can be clearly seen that the impact of the coefficient k1 on the frequency values is far greater than 
the impact of the coefficient k0. 

  
(a) (b) 

 
(c) 

Figure 10. 3D diagrams of the non-dimensional natural frequencies ω  of the plates placed on an 
elastic foundation for different ratios a/h, a/b, values k0, k1 and index p: (a) p = 5, m = 1, n = 1, k0 = 100, 
k1 = 100; (b) a/b = 1, m = 1, n = 1, k0 = 100, k1 = 100; (c) a/b = 1, a/h = 5, m = 1, n = 1. 

6. Conclusions 

The obtained results presented in the already published articles have been the foundation for 
developing and introducing the new shape function. The results obtained put an emphasis on the 
significance and topicality of the research in the field of functionally graded materials. A 
comprehensive and detailed investigation and systematization of the literature according to the topic 
have been guided related to the type of problems that authors tried to solve during the analysis of 
the functionally graded materials. Special focus and attention has been paid to different shear 
deformation theories that authors have used during the research. The new introduced shape function 
has been compared to 13 other shape functions that were originally proposed by different authors for 
the purpose of analysing composite laminates. However, this article implemented the previously 
mentioned shape 13 shape functions as well as new proposed shape function in order to analyse FGM 
plates. By comparing obtained results related to the static and dynamic analysis of moderately thick 
and thick plates, it is possible to conclude that the newly presented shape function can be applied 
during the analysis of FGM plates. Generally, based on the above research as well as obtained results, 
the following conclusions could be emphasized: 

Figure 10. 3D diagrams of the non-dimensional natural frequencies ω̃ of the plates placed on an elastic
foundation for different ratios a/h, a/b, values k0, k1 and index p: (a) p = 5, m = 1, n = 1, k0 = 100,
k1 = 100; (b) a/b = 1, m = 1, n = 1, k0 = 100, k1 = 100; (c) a/b = 1, a/h = 5, m = 1, n = 1.

6. Conclusions

The obtained results presented in the already published articles have been the foundation for
developing and introducing the new shape function. The results obtained put an emphasis on the
significance and topicality of the research in the field of functionally graded materials. A comprehensive
and detailed investigation and systematization of the literature according to the topic have been guided
related to the type of problems that authors tried to solve during the analysis of the functionally
graded materials. Special focus and attention has been paid to different shear deformation theories that
authors have used during the research. The new introduced shape function has been compared to 13
other shape functions that were originally proposed by different authors for the purpose of analysing
composite laminates. However, this article implemented the previously mentioned shape 13 shape
functions as well as new proposed shape function in order to analyse FGM plates. By comparing
obtained results related to the static and dynamic analysis of moderately thick and thick plates, it is
possible to conclude that the newly presented shape function can be applied during the analysis
of FGM plates. Generally, based on the above research as well as obtained results, the following
conclusions could be emphasized:
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• Decreasing the volume fraction of ceramics and increasing the volume fraction of metal in the
FGM (the value of p index increases) decreases the value of the critical buckling temperature for
both linear and nonlinear cases of temperature distribution through plate thickness

• Comparative analysis of the results for the linear and nonlinear distribution of the temperature
across the plate thickness, and for other fixed parameters of the plate, it can be concluded that
higher critical buckling temperatures are obtained for nonlinear distribution

• The elastic foundation effect shows that critical buckling temperature rapid rise because of the
change of Pasternak coefficient k1, rather than when Winkler coefficient k0 changes

• Based on the analysis of the impact of the Winkler-Pasternak elastic foundation model parameters,
similar to the thermal analysis, it was pointed out that the Pasternak coefficient k1 has a far greater
influence on natural frequencies than the Winkler coefficient k0
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