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Abstract: Paraphrase identification has been one of the major topics in Natural Language Processing
(NLP). However, how to interpret a diversity of contexts such as lexical and semantic information
within a sentence as relevant features is still an open problem. This paper addresses the problem
and presents an approach for leveraging contextual features with a neural-based learning model.
Our Lexical, Syntactic, and Sentential Encodings (LSSE) learning model incorporates Relational
Graph Convolutional Networks (R-GCNs) to make use of different features from local contexts,
i.e., word encoding, position encoding, and full dependency structures. By utilizing the hidden
states obtained by the R-GCNs as well as lexical and sentential encodings by Bidirectional
Encoder Representations from Transformers (BERT), our model learns the contextual similarity
between sentences effectively. The experimental results by using the two benchmark datasets,
Microsoft Research Paraphrase Corpus (MRPC) and Quora Question Pairs (QQP) show that the
improvement compared with the baseline, BERT sentential encodings model, was 1.7% F1-score on
MRPC and 1.0% F1-score on QQP. Moreover, we verified that the combination of position encoding
and syntactic features contributes to performance improvement.

Keywords: paraphrase identification; encodings, R-GCNs; BERT; contextual features

1. Introduction

Paraphrase identification is the task to identify whether a pair of sentences is a paraphrase or
not. It is highly related to the task of semantic textual similarity to measure the degree of semantic
equivalence between two sentences and has been an interest as it is necessary to accomplish most NLP
tasks such as question answering, information retrieval, textual entailment, and text summarization.
With a recent surge of interest in neural networks, paraphrase identification based on deep learning
techniques has been intensively studied. These attempts include Convolutional Neural Networks
(CNNs) based model [1,2], Long Short-Term Memory (LSTM) [3], Bidirectional-LSTM (BiLSTM) [4],
and gated recurrent averaging [5]. It enables us to utilize the contexts of the target sentences which
are powerful for learning features from the training data. Despite some successes, the approaches
explored so far rely on word sequence, not making use of different aspects of contexts simultaneously.
Several efforts have been made to utilize different representations of the contexts. One attempt is
pre-trained contextualized word/sentence representations [5–11]. They have been successfully applied
to many NLP tasks, while they explicitly rely on not syntax but the sequential context of words by
utilizing a large volume of data.
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Motivated by the previous work mentioned in the above, we incorporate several contextual
features into a unified framework, Relational Graph Convolutional Networks (R-GCNs) [12–14].
Consider the two sentences from the MRPC data shown in Figure 1. These two sentences are an
example of non-paraphrase sentence pair. Adjacent words such as “Hong” “Kong” and “South” “Korea”
marked with blue indicate compound nouns and those marked with red such as “0.2–0.4” “percent”
and “0.3” “percent” show numeric modifiers. These sentences have different contents/meanings,
while there exist many overlapping words such as “Australia”, “Singapore”, “flat” and “percent”.
The relative position information marked with blue and red is good indicators to discriminate whether
these sentences are a paraphrase or not. Similarly, in the top sentence, “Korea” modifies “lost” with
the nsubj (nominal subject) relation type, while in the second sentence, “Korea” modifies “added” with
the nsubj relation type. This syntactic structure information also becomes clues that these sentences are
not a paraphrase.

Our R-GCNs model integrates different features: (i) word encoding; (ii) position encoding; and (iii)
full dependency structures as syntactic encoding from a sentence. We used word encoding obtained by
Bidirectional Encoder Representations from Transformers (BERT) [11]. BERT models were pre-trained
using a large corpus of sentences. The training is done by masking a few tokens in a sentence and the
task is to predict the masked tokens. It learns to produce a powerful internal representation of words
as word embedding. Position encoding is a technique to inject information about a token’s position
within a sentence into a deep learning model. We applied the Stanford parser [15,16] to the input
sentences and obtained full dependency structures. Besides contexts with syntactic level, our Lexical,
Syntactic, and Sentential Encodings (LSSE) learning model also makes use of contextual information
with lexical and sentential levels obtained by the BERT model. Intuitively, by sharing rich contextual
features, the model can produce a more meaningful representation to identify paraphrases.

ROOT  Hong Kong  was  flat,  Australia,  Singapore  and  South Korea  lost  0.2-0.4  percent .

ROOT  Australia  was  flat,  Singapore was  down  0.3 percent  by  midday  and  South Korea  added  0.2  percent .
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Figure 1. Non-paraphrase sentence pair from the MRPC corpus: Adjacent words such as “Hong” and
“Kong” marked with blue indicate compound nouns and those such as “0.2–0.4” and “percent” marked
with red show numeric modifiers.

The main contributions of our work can be summarized: (1) We propose a paraphrase
identification method that makes use of contextual information with lexical, syntactic, and sentential
levels; (2) We apply R-GCNs to utilize different features from local contexts; (3) The experimental
results on the two benchmark datasets show that our model is comparable to the related work,
and especially, the combination of syntactic features and position encoding contributes to performance
improvement in our method.
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2. Related Work

There is a large body of work on paragraph identification based on deep learning techniques.
The early attempts include a recursive neural network (RNN) [17], CNNs [1,18], and a tree-based
LSTM [19]. Despite some successes, techniques explored so far rely on word sequence, ignoring to
make use of different aspects of contexts simultaneously.

Several efforts have been made to handle different representations for the same sentence in
different contexts. One attempt is pre-trained contextualized language representations. Many authors
have attempted to learn contextualized language representation by pre-training a language model
with a large amount of unannotated data [7,9,20,21]. Melamud et al. proposed a method called
context2vec which learns each sense annotation in the training data by using a bidirectional LSTM
trained on an unlabeled corpus [7]. Peters et al. attempted to learn a model called Embeddings from
Language Models (ELMo) by using two-layer bidirectional LSTM [9]. More recently, sentence or
document encoders that produce contextual token representations have been processed by two steps:
pre-trained from unlabeled text and fine-tuned for a supervised downstream task. These approaches
can decrease the number of parameters to learn from scratch. One such attempt is Generative
Pre-Training (GPT-2) which enhances the context-sensitive embedding [20]. It achieved previously
state-of-the-art results in many sentence-level tasks including paraphrase identification from General
Language Understanding Evaluation (GLUE) benchmark datasets [21]. However, the attempt is based
on a left-to-right architecture. Therefore, every token can only attend to previous tokens, which may
cause an issue when we apply it to token-level downstream tasks such as question answering and
sentiment analysis.

Devlin et al. focused on the problem and presented a method, BERT, to pre-train deep bidirectional
representations from an unlabeled text by jointly conditioning on both left and right context in all
layers [11]. They adopted a Masked Language Model (MLM) by adding a next sentence prediction
task into the pre-training to learn text-pair representations and can pre-train a deep bidirectional
Transformer. Since then, BERT has realized a breakthrough in sentence representation learning which
is broadly applied to various NLP tasks including the paraphrase identification task. Lample et al.
extended the pre-training model to multiple languages and showed the effectiveness of cross-lingual
pre-training. They attempted to integrate two approaches to learn cross-lingual language models
(XLMs): the two unsupervised methods, i.e., Causal Language Modeling (CLM) and Masked Language
Modeling (MLM), and a supervised method [22]. CLM consists of a Transformer Language model
while MLM is based on the technique of Devlin et al. [11]. The supervised model, translation language
modeling (TLM) is to improve cross-lingual pre-training which is based on MLM. The common
framework related to pre-training mentioned in the above utilizes the Transformer that is the first
full-attentional mechanism for learning long-term dependency [23]. Moreover, several approaches
apply pre-trained language representation to a large variety of tasks such as named entity, semantic
closeness including paraphrase identification and discourse relations through multi-task learning
techniques [24–26].

Similar to the recent upsurge of pre-trained contextualized word/sentence representations,
graph neural networks [27] such as GCNs [12–14], R-GCNs [28], and Densely Connected GCNs [29]
have been successfully employed for many NLP tasks. Such attempts include neural machine
translation (NMT) [30,31], pronoun resolution [32], relation extraction [33], semantic role labeling [34]
and text classification [35–37]. Most of these attempts showed that the models have contributed
to improving the performance on each task, while it has so far not been used for the paraphrase
identification task. Moreover, most of them focus on one type of features, syntactic information,
and integrate them into their graph model.
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3. LSSE Learning Model

Our model leverages various contextual features obtained from the paraphrase-labeled data.
Figure 2 illustrates our Lexical, Syntactic, and Sentential Encoding (LSSE) learning framework.
The left-hand side of Figure 2 illustrates the overview of our LSSE and the right-hand side is its
corresponding flow of the input/output.
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Figure 2. LSSE learning model: S1 consisting a sequence of w1, w2, · · · , wm and S2 which consists
of w1, w2, · · · , wn are a pair of the input sentences. xi refers to a word encoding and pi indicates its
position encoding. ai ∈ Rd refers to the encoded node feature, i.e., it is obtained by summing up word

and position encodings. h(k)
i ∈ Rd is the hidden state of node vi (wi) in the k + 1-th layer.

3.1. Lexical and Sentential Contexts Learning with BERT

The contextualized word representation that we use is BERT which is a Bidirectional Transformer
model [11]. A transformer encoder computes the representation of each token through an attention
mechanism concerning the surrounding tokens.

BERT architecture consists of two steps: pre-training and fine-tuning. The pre-training BERT
model is trained on unlabeled data over different pre-training tasks. It can be easily fine-tuned
for NLP tasks by just adding a fully-connected layer. It is pre-trained by using a combination of
masked token prediction and next sentence prediction tasks. The input of the BERT is two sentences
that are concatenated by a special token [SEP]. It consists of tokens that are segmented by BERT
tokenizer using WordPiece embeddings vocabulary [38]. The representation of each token is the sum
of the corresponding token, segment, and position embeddings. The first token of every input is the
special token of [CLS], and the final hidden state corresponding to this [CLS] token is regarded as an
aggregated representation of the input sentence pair. We used this aggregated representation as our
sentential encoding of two sentences as well as each token embeddings.
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3.2. Syntactic Context Learning with R-GCNs

We utilize R-GCNs to learn syntactic context. It can capture syntactic dependency structures
naturally as well as word order because it allows the information to flow in the opposite direction of
edges. For example, the sentence in the top of Figure 1, the word “0.2–0.4” modifies the word “percent”.

Let S be a sentence and wi be the i-th absolute position word within the sentence. Let also
G = (V, E) be a directed graph, where each node vi ∈ V indicates the information of word wi, consisting
of a word encoding xi. BERT uses word pieces and not word embeddings. When wi consists of several
word pieces, we obtained the average value of all pieces corresponding to wi and set it to the wi
embeddings. and its position encoding pi shown in Figure 2. We can define a matrix A ∈ Rd×n where
each column ai ∈ Rd refers to the encoded node feature of vi, i.e., we sum up word and position
encodings as lexical encoding, ai = xi + pi. An edge from node vi to vj with a dependency relation
type (label) l ∈ L is denoted by <vi, vj, l> ∈ E, where L is a set of dependency relation types. Figure 3
illustrates dependency relations consisting of two information flows: from head to dependent and
self-loop. Self-loop is to ensure that the representation of the encoded node feature at the k + 1-th
hidden layer can also be informed by its corresponding representation at the k-th hidden layer [28].

Australia was flat and Singapore down 0.3 percent middaybywas
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Figure 3. Dependency relations: “xi” and “pi” refer to the i-th word encoding and its position encoding,
respectively. Arcs indicate two types of edges: (i) head to dependent with labeled syntactic relations
such as nsubj(nominal subject) and nummod (numeric modifier); and (ii) self-loop.

The propagation model for calculating the forward-pass update of a node vi in a local graph can
be given by:

h(k+1)
i = f

∑
l∈L

∑
j∈Nl

i

(
1
cl

i
W(k)

l h(k)
j + b(k)

l

)
+ W(k)

0 h(k)
i

 , (1)

where h(k)
i ∈ Rd is the hidden state of node vi in the k-th layer of the neural network with d being

the dimensionality of the hidden representations, especially the initial value of h(0)
i equals to ai.

Nl
i refers to the set of neighbor indices of node vi under dependency label l ∈ L. cl

i shows a
normalization constant [28]. It can either be learned or chosen in advance. We empirically set cl

i

to 2 in the experiments. W(k)
l ∈ Rd×d stands for the weight matrix and b(k)

l ∈ Rd refers to the bias
vector under label l ∈ L of the k-th hidden layer. We used 32 syntactic dependency relation types
including nsubj and dobj provided by the Stanford parser for the first type of flows and their opposite
direction types which would result in having 64 (32 × 2) dependency labels. W(k)

0 ∈ Rd×d indicates
self-loop convolution weights and f refers to an activation function. We use the ReLU function.
Equation (1) shows that it accumulates transformed feature vectors of neighboring nodes which
depend on the relation type and the flow of an edge through a normalized sum. Motivated by the
method of Vashishth et al. [39], we also utilized a special gate mechanism. Our context learning model
is given by:

h(k+1)
i = f

∑
l∈L

∑
j∈Nl

i

g(k)l j ·
(

1
cl

i
W(k)

l h(k)
j + b(k)

l

)
+ W(k)

0 h(k)
i

 , (2)
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where g(k)l j is given by:

g(k)l j = σ
(

Ŵ(k)
l h(k)

j + b̂(k)
l

)
. (3)

g(k)l j is the so-called gate mechanism [34,40] which is to reduce the effect of false dependency edges.
The information from neighboring nodes may not be reliable as the dependency relations obtained by
some NLP tools are not perfect. Therefore, it needs to be down-weighted. Similar to [32,34], we use
the gate value obtained by Equation (3). σ refers to the sigmoid function so that the gate value ranging
from 0 to 1. Ŵ(k)

l ∈ Rd×d and b̂(k)
l ∈ Rd show weights and a bias for the gate under label l ∈ L of the

k-th hidden layer, respectively.
Figure 4 illustrates the R-GCNs model. The left-hand side of Figure 4 is the flow of the model

and the right-hand side shows Graph Convolution in the R-GCNs. In the Graph Convolution part
shown in the right-hand side of Figure 4, the update of a single node marked with red is computed.
Activations from neighboring nodes marked with blue are collected and transformed for each
dependency relation such as dep_1 and dep_N individually (for both “in” and “outgoing” edges).

The results marked with green, each of which corresponds to g(k)l j ·
(

1
cl

i
W(k)

l h(k)
j + b(k)

l

)
or W(k)

0 h(k)
i in

Equation (2), are accumulated and passed through an activation function (ReLU). As shown in the
left-hand side of Figure 4, in each hidden layer, the Graph Convolution is applied to update the state
of each node of the graph. The output of the R-GCNs is the last hidden layer states. For each sentence,
we applied R-GCNs.
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Figure 4. R-GCNs model [28]: The left-hand side is the flow of the model and the right-hand side
shows Graph Convolution in the R-GCNs.

3.3. Paraphrase Identification

Because graph convolution of the R-GCNs model is a special form of Laplacian smoothing, it mixes
the features of a node and its neighbors [41,42]. This smoothing operation makes the features of nodes
less distinguishable [32]. Therefore, when the training data is small, it often the case that it does not
work well. Adding more layers also does not work well as empirically it has been observed that the
best performance is achieved with a 2-layer model [41]. Therefore, as illustrated in the right-hand side
of Figure 2, after the hidden state hi has been learned, we concatenate the hidden state hi with the
lexical encoding ai to keep the original encoding. We obtain the syntactic encoding with the context
information aggregated, i.e., a′i = (ai, hi). The result by concatenation has a fixed length, i.e., 2×d.
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The two matrices Ms1 ∈ R2d×m and Ms2 ∈ R2d×n corresponding to each sentence S1 ∈ Rd×m and
S2 ∈ Rd×n are obtained by R-GCNs and passed to the semantic measurement layer which is shown in
Figure 5. For each of the two matrices Ms1 and Ms2 , we applied the row-based average pooling over
them and obtained two vectors, u1 and u2 ∈ R2d, respectively. We then calculate the similarity between
these vectors, i.e., for each dimension, we applied L1 distance, and obtain a similarity vector sv ∈ R2d.
The sv is further concatenated with sentential encoding obtained by BERT, and the result is passed to
the fully connected layer FC. We set the size of the output layer of the FC to two. Finally, we apply the
softmax function to obtain probabilities of two predicted labels, paraphrase or non-paraphrase, in the
output layer. The network is trained with the objective that minimizes the binary cross-entropy loss of
the predicted distributions and the actual distributions (one-hot vectors corresponding to the ground
labels) by performing Adam optimization algorithm [43].
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Figure 5. Semantic measurement: after the pooling operation, the similarity between sentences are
calculated by using L1 distance.

4. Experiments

4.1. Experimental Settings

We selected two benchmark datasets, Microsoft Research Paraphrase Corpus (MRPC) [44] and
Quora Question Pairs (QQP) [45]. MRPC contains 5801 pairs of sentences extracted from news on the
Internet and is annotated to capture the equivalence of paraphrase or semantic relationship between a
pair of sentences.

The QQP dataset consists of three folds: 363,870 for training data, 40,431 for validation, and 390,965
for test data. Of these, training and validation data are annotated with a binary classification indicating
whether these two questions are a paraphrase or not. We followed the method of Wang et al. [46].
More precisely, we merged training and validation data, and randomly selected 5000 paraphrases
and 5000 non-paraphrases as the test set. Table 1 illustrates some sentence pairs from MRPC and
QQP. Each data in Table 1 consists of the number of ID, two sentences and its ground labels that the
sentences are a paraphrase (1) or non-paraphrase (0).
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Table 1. Sentence pairs from MRPC and QQP datasets: Label indicates the ground-truth labels that the
sentences are paraphrase (1) or non-paraphrase (0).

Data #1 ID #2 ID #1 String #2 String Label

MRPC

2108705 2108831

Yucaipa owned Dominick’s
before selling the chain to
Safeway in 1998 for USD
2.5 billion.

Yucaipa bought Dominick’s
in 1995 for USD 693 million
and sold it Safeway for USD
1.8 billion in 1998.

0

702876 702977

Amrozi accused his brother,
whom he called “the
witness”, of deliberately
distorting his evidence.

Referring to him as only “the
witness”, Amrozi accused
his brother of deliberately
distorting his evidence.

1

QQP

364011 490273 What causes stool color to
change to yellow?

What can cause stool to
come out as little balls? 0

536040 536041 How do I control my
horny emotions?

How do you control
your horniness? 1

The paraphrase identification task is a binary classification. Given a pair of sentences,
classify them as paraphrases or not paraphrases. All the datasets are parsed by using Stanford
parser nlp.stanford.edu/software/lex-parser.shtml [16]. We utilized the BERT_base model as a
pre-training model of the lexical and sentential encodings [11] due to the environment with the
restricted computational resources. The experiments were conducted on Nvidia TITAN RTX
(24GB memory). We used the same model settings as BERT, i.e., the number of training epochs
was 3, the batch size was 8, and the number of dimensions of a word and position encoding
vectors was 768. The learning rate was 2 × 10−5 by using Adam, learning rate warmup over
the first 10,000 steps, and linear decay of the learning rate. We used a dropout probability
of 0.1 on all layers in BERT. The number of hidden layers of R-GCNs was optimized by using
Optuna https://github.com/pfnet/optuna where the range was [1, 2, 3, 4, 5, 6]. We used 10-fold
cross-validation on training data as Phang et al. pointed out that BERT performances become unstable
when a training dataset with fine-tuning is small [47]. As a result, we set the number of hidden
layers to 2 in the experiments. Following by General Language Understanding Evaluation (GLUE)
platform [21], gluebenchmark.com/tasks we used the Accuracy and/or F1-score for evaluation metrics.
Throughout the experiments using two benchmark datasets, we choose BERT sentential encodings as
a baseline model and implemented a fine-tuning approach in the same manner as with BERT [11].

4.2. Main Results

Table 2 shows the results by using MRPC data (Supplementary Materials). We can see from Table
2 that our model outperformed the baseline, BERT sentential encodings, by 2.0% accuracy and 1.8% F1
on the MRPC and 1.9% accuracy and 2.0% F1 on the QQP data. Why did our LSSE perform particularly
strong on the dataset QQP? We notice that the volume of this dataset is larger than that of the MRPC
dataset. This confirms our intuition that deep learning typically requires more training data to achieve
high performance, and our model could successfully take this advantage on the QQP dataset.

Table 2. Main result by using test dataset: Baseline shows the result obtained by BERT sentential
encodings [11]. Bold font shows the best result in each dataset.

Model
Baseline LSSE

Acc F1 Acc F1

MRPC 84.3 88.1 86.3 89.9
QQP 88.7 88.4 90.6 90.4

nlp.stanford.edu/software/lex-parser.shtml
https://github.com/pfnet/optuna
gluebenchmark.com/tasks
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Table 3 shows some examples obtained by both of the models. In Table 3, TP, FP, TN, and FN
refer to an abbreviation of true positive, false positive, true negative, and false negative, respectively.
“N” indicates the number of instances from the test data. For example “N = 70” in Table 3 shows that
the number of “LSSE(TP) and BERT(FN)”, i.e., the sentence pairs that were classified by LSSE as true
positive and classified by BERT as false negative is 70. We can see that the number of “LSSE(TP) and
BERT(FN)” is larger than that of “LSSE(FN) and BERT(TP)” in both datasets. However, the number of
“LSSE(FP) and BERT(TN)” is larger than that of “LSSE(TN) and BERT(FP)”. Most of the errors of FP
in our model are in the case that two sentences share the same contents but one sentence has more
detailed information of the other. For example in the MRPC dataset, one sentence (#1 String) includes
additional information, “private creditors”, while it is not mentioned in the second sentence (#2 String).
BERT sentential encodings is a simple paraphrase identification compared to our model. But why such
a relatively simple model leads to a better prediction for particular test data is not clear at this point.
Answering this question requires future research.

Table 3. Example sentences obtained by our LSSE and BERT model: TP, FP, TN and FN refer to an
abbreviation of true positive, false positive, true negative and false negative, respectively.

MRPC Dataset

#1 String #2 String LSSE BERT N

Licensing revenue slid 21 percent,
however, to USD 107.6 million.

License sales, a key measure of demand,
fell 21 percent to USD 107.6 million. TP FN 70

For the entire season, the average
five-day forecast track error was
259 miles, Franklin said.

The average track error for the five-day
(forecast) is 323 nautical miles. FN TP 19

By Sunday night, the fires had
blackened 277,000 acres, hundreds of
miles apart.

Major fires had burned 264,000 acres by
early last night. TN FP 36

Other countries and private creditors
are owed at least USD 80 billion in
addition.

Other countries are owed at least USD
US80 billion (USD 108.52 billion). FP TN 53

QQP Dataset

#1 String #2 String LSSE BERT N

What are the most intellectually
stimulating movies you have ever seen?

What are the most intellectually
stimulating films you have
ever watched?

TP FN 331

How do I get business ideas? How can I think of a business idea? FN TP 212

How do I remove dry paint from
my clothes?

How do I get acrylic paint out of
my clothes? TN FP 201

How do Champcash make money
from Chrome?

How do a Champcash customer make
money from Chrome? FP TN 130

We also examined how the percentage of training data affects overall performance. Figure 6
shows an F1-score against the percentage of the MRPC training data. We run ten times for each volume
of training data size except for 100% and obtained the average F1-score. Overall, the curves show that
more training data helps the performance, while the curves obtained by LSSE drop slowly compared
to the BERT sentential encodings. From the observation, we can conclude that our model works well
compared to BERT sentential encodings.
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Figure 6. Performance against the percentage of the training data.

4.3. Comparison with Related Work

In MRPC dataset, we compared our model with eight related work, graph-based approach or
approaches which utilize BERT_base model to make a fair comparison. These are classified into
five types: (i) a relational graph-based approach, Str Align; (ii) BERT_base; (iii) Multi-task learning,
GenSen and ERNIE 2.0; (iv) extending BERT pre-trained model, Trans FT, and StructBERT_base;
and (v) an adversarial training algorithm, FreeLB-BERT, and its similar approach, ELECTRA.

1. Str Align

Structural Alignment (Str Align) uses a hybrid representation, attributed relational graphs to
encode lexical, syntactic and semantic information [48]. To create a relational graph, they used
token, lemma, Part-of-Speech (POS) tag, Named Entity Recognition (NER) tag, and Word2Vec
word embedding as an attribute of a node, and the dependency label by Stanford CoreNLP is
attached to the edge as an attribute. Given two attributed relational graphs, the structural aligner
generates an alignment. Then, the similarity score between the two graphs is applied to judge
whether they are equivalent or not.

2. BERT_base model

BERT is pre-train deep bidirectional representations from the unlabeled text by jointly
conditioning on both left and right context in all layers [11]. We used BERT_base model which
contains 12-layers, 12 self-attention heads and 768-dimensional of hidden size.

3. GenSen

GenSen is multi-task learning for sentence representations where a single recurrent sentence
encoder is shared across multiple tasks, i.e., multi-lingual NMT, natural language inference,
constituency parsing, and skip-thought vectors [49]. The model for multi-task learning is a
sequence-to-sequence model. We compared GenSen which utilizes BERT_base model.

4. ERNIE 2.0

Enhanced Representation through kNowledge IntEgration (ERNIE) 2.0 is a multi-task learning
model that learns pre-training tasks incrementally [25]. The architecture consists of pre-training
and fine-tuning that is the same manner as BERT models. In the process of pre-training,
ERNIE 2.0 continually construct unsupervised pre-training tasks with big data and prior
knowledge involved, and then incrementally update the model through multi-task learning.
In the fine-tuning with task-specific supervised data, the pre-trained model is applied to ten
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different NLP tasks in English and nine tasks in Chinese. We compared our model with ERNIE
2.0 using BERT_base model.

5. Trans FT

Transfer Fine-Tuning (Trans FT) is an extended model of BERT to handle phrasal paraphrase
relations. The model can generate suitable representations for semantic equivalence assessment
instead of increasing the model size [50]. The authors inject semantic relations between a
sentence pair into a pre-trained BERT model through the classification of phrasal and sentential
paraphrases. After the training, the model can be fine-tuned in the same manner as BERT models.
The model achieves improvement on downstream tasks that only have small amounts of training
datasets for fine-tuning.

6. StructBERT_base

StructBERT_base incorporates language structures into pre-training BERT_base model [51].
The architecture uses a multi-layer bidirectional Transformer network. It amplifies the ability of
the masked language model task by shuffling a certain number of tokens after token masking and
predicting the right order. To capture the relationship between sentences, StructBERT randomly
swaps the sentence order and predicts the next sentence and the previous sentence as a new
sentence prediction task. The model learns the inter-sentence structure in a bidirectional manner
as well as to capture the fine-grained word structure in every sentence. In the fine-tuning
process, the pre-trained model is applied to a wide range of downstream tasks including
GLUE benchmark, Stanford Natural Language inferences (SNLI corpus) and extractive question
answering (SQuADv1.1) with good performance.

7. FreeLB-BERT

Free-Large-Batch aims to improve the generalization of pre-trained language models such as
BERT, RoBERTAa [52], ALBERT [53] and T5 [54] by enhancing their robustness in the embedding
space during finetuning on the downstream language understanding tasks [55]. The method
adds norm-bounded adversarial perturbations to the embeddings on the input sentences by using
a gradient-based method. Their technique on embedding-based adversaries can manipulate
word embeddings which makes it produce powerful pre-trained language models. The results
achieved new state-of-the-art on GLUE and AI2 Reasoning Challenge (ARC) benchmark datasets.

8. ELECTRA-Base

“Efficiently Learning an Encoder that Classifies Token Replacements Accurately” (ELECTRA)
pre-trains the network as a discriminator that predicts for every token whether it is an original or a
replacement. The model trains two neural networks, a generator, and a discriminator. For a given
position, the discriminator predicts whether the token of this position comes from the data rather
than the generator distribution. The generator is trained to perform masked language modeling.
After pre-training, the model fine-tune the discriminator on downstream tasks. ELECTRA-Base
that we compared it with our LSSE model is pre-trained in the same manner as BERT_base model.

The results are shown in Table 4 (Supplementary Materials). We can see from Table 4 that LSSE
showed a 1.5% accuracy and 1.0% F1-score improvement over BERT_base model. Moreover, our model
is competitive for the best systems except for ELECTRA_Base, as ELECTRA_Base outperformed our
LSSE by 0.3% in accuracy. This shows that our model can leverage contextual features obtained from
the limited volume of the paraphrase-labeled data. We also compared our model with two approaches
by using the QQP dataset.
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Table 4. Comparative results with related work including state-of-the-art method: Str Align is based
on attributed relational graphs. Bold font shows the best result.

MRPC Dataset

Model Acc F1

Str Align [48] 78.3 84.9
BERT_base [11] 84.8 88.9

GenSen [49] 78.6 84.4
ERNIE 2.0 [25] 86.1 89.9
Trans FT [50] - 89.2

StructBERT_base [51] 86.1 89.9
FreeLB-BERT [55] 83.5 88.1

ELECTRA-Base [56] 86.7 -
LSSE (Our model) 86.3 89.9

1. BiMPM

A Bilateral Multi-Perspective Matching (BiMPM) model [46] encodes given two sentences with a
BiLSTM encoder and the two encoded sentences are matched two directions. In each matching
direction, each time step of one sentence is matched against all time-steps of another sentence from
multiple perspectives. Then, another BiLSTM layer is utilized to aggregate the matching results
into a fixed-length matching vector. Finally, a decision is made through a fully connected layer.
The authors reported that the experimental results on standard benchmark datasets including
QQP showed that the model achieved state-of-the-art performance on all the tasks.

2. SSE

Shortcut-Stacked Sentence Encoder Model (SSE) is a model which enhances multi-layer BiLSTM
with skip connection to avoid training error accumulation [57,58]. The input of the k-th BiLSTM
layer which is the combination of outputs from all previous layers represents the hidden state of
that layer in both directions. The final sentence embedding is the row-based max pooling over
the output of the last BiLSTM layer. The experimental results by using eight benchmark datasets
including QQP dataset shows that SSE improvs overall performance compared with the three
baselines, InferSent [59], Pairwise word interaction model [60], and the decomposable attention
model [61], especially it works well in the case that the number of training data is small.

Table 5 shows the results (Supplementary Materials). As we can be seen clearly from Table 5,
LSSE outperforms two baseline models as the improvement is 2.4∼2.8%. This indicates that our model
works well compared with the sequence model and sentence encoding model based on BiLSTM.

Table 5. Comparative restuls in accuracy by using QQP: Bold font shows the best result.

QQP Dataset

Model Acc

BiMPM [46] 88.2
SSE [58] 87.8

LSSE (Our model) 90.6

4.4. Ablation Study

We recall that our model utilizes lexical and syntactic encodings including the baseline model.
Moreover, the syntactic encoding integrates different features. We thus conducted ablation studies to
empirically examine the impact of these features/encodings. The results are shown in Table 6.
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Table 6. Ablation test: “PE” refers to position encoding and “SentE” indicates sentential encoding.
“BERT tokenE” stands for lexical encoding by BERT. “–X” indicates the result by using LSSE without “X”.
Bold font shows the best result.

MRPC Dataset

Model Acc F

LSSE (Our model) 86.3 89.9

–PE 85.3 89.0
–SentE 84.2 88.3
–SentE and –PE 83.5 88.1
–R-GCNs 85.7 89.5
–R-GCNs and –SentE 83.0 87.3
–R-GCNs and –BERT tokenE 84.3 88.1

Table 6 shows the results by using the MRPC dataset (Supplementary Materials). Overall, we can
see that integrating different features from the contexts is effective as LSSE was the best performance.
The results both without R-GCNs and BERT token encoding (–R-GCNs and –BERT TokenE) and
without R-GCNs and sentential encoding (–R-GCNs and –SentE) are worse than those without R-GCNs
(-R-GCNs). This shows that the combination of the sentential and lexical encoding is effective for
paraphrase identification.

We note that the result by “–SentE” is better than that with “–SentE and –PE”. This means that the
combination of R-GCNs output, BERT token encoding and position encoding is better than that with
only R-GCNs output and BERT token encoding. We can see a similar observation that the combination
of sentential encoding, R-GCNs output, BERT token encoding, and position encoding more works well
than that with sentential encoding, R-GCNs output, and BERT token encoding because our LSSE is
better than the result by “–PE”. From these observations, we can conclude that the combination of
syntactic features and position encoding contributes to performance improvement.

4.5. Qualitative Analysis of Errors

We performed an error analysis by using the MRPC dataset to provide feedback for further
improvement of our method. The number of false-positive and false-negative pairs of sentences was
61 and 38, respectively. These errors have occurred even though we used all the features or any
combination of these features. We found that there are mainly three types of errors.

1. Inclusion relation between sentences: As we mentioned in Table 3, this error is that two
sentences share the same contents but one sentence has more detailed information of the other.

(1) “There’s a Jeep in my parents’ yard right now that’s not theirs”, said Perry,
whose parents are vacationing in North Carolina.

(2) “There’s a Jeep in my parents’ yard right now that’s not theirs”, she said.

Sentence (1) and (2) are similar content and our model identified these sentences as paraphrases.
However, according to the Microsoft Research definitions, https://www.microsoft.com/en-
us/download/details.aspx?id=52398 these sentences should be identified as “non-paraphrase”
because the sentence (1) includes the information marked with the underlined that “Perry’s
parents are vacationing in North Carolina” and it is a significantly larger superset of the
sentence (2). We observed that 39 pairs were classified into this type.

2. Dependency relation: Dependency relation within a sentence is not correctly analyzed.
For example, in the sentence (3), “<.DDJ>” is divided into four tokens(“<”, “.”, “DDJ”, and “>”)
by BERT tokenizer. As a result, the Stanford parser incorrectly analyzed that “>” modifies
“added” with adverb modifier (advmod) relation. In total, 10 pairs of sentences were classified
into this type.

https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://www.microsoft.com/en-us/download/details.aspx?id=52398
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(3) The Dow Jones industrial average <.DJI> added 28 points, or 0.27 percent, at 10,557,
hitting its highest level in 21 months.

3. Inter-sentential relations: Two sentences which have inter-sentential relations are difficult to
interpret correctly whether these sentences are paraphrase or not.

(4) British Airways’ New York-to-London runs will end in October.
(5) British Airways plans to retire its seven Concordes at the end of October.

Sentences (4) and (5) have the same sense, while different expressions such as
“New York-to-London” and “Concordes” are used and they are co-referred entities. To identify
these sentences as “paraphrases” correctly, it requires not only local dependency, i.e.,
dependency structure within a sentence but also non-local dependency between sentences.
There were nine pairs classified into this type.

Apart from these observations, we found that when the number of arcs from other nodes is
small, the performance of R-GCNs has not improved because convolution mixes the features of a
node and its neighbors. One solution is to incorporate more linguistics information such as tree-based
structure [62,63], Named Entity Recognition, and Co-Reference Resolution into our framework to
represent rich relations among nodes. This is a rich space for further exploration.

We recall that our model for lexical and sentential encodings are based on the BERT. The BERT
pre-training model, an unsupervised manner is to learn general, domain-independent knowledge.
However, most of the downstream tasks including paraphrase identification and even in the same task,
there are several domain-specific data which are collected from different genres such as MRPC and
QQP. It would be helpful to develop a good fine-tuning method in our future work.

5. Conclusions

We focused on the problem that how to interpret a diversity of context information as relevant
features and proposed an approach by leveraging a variety of features with a neural-based learning
model. For syntactic encodings, our LSSE model incorporates word encoding, position encoding,
and full dependency structures into a unified framework, R-GCNs. By utilizing the hidden states
obtained by the R-GCNs as well as lexical and sentential encodings by BERT, our model learns
contextual similarity between sentences. The experimental results by using two datasets showed
that our model attained at 86.3% accuracy and 89.9% F1-score in MRPC, and 90.6% accuracy in QQP
data which are comparable to the related work on paraphrase identification methods. Moreover,
throughout the ablation test, we found that the combination of position encoding and syntactic
features contributes to performance improvement.

There are several interesting directions for future work. We should be able to obtain further
advantages in efficacy in our syntactic embeddings obtained by the R-GCNs model. We empirically
examined that the best performance is achieved with a two-layer model, while R-GCNs with more
layers can be considered to capture richer neighborhood information of a graph. Guo et al. focused
on this problem and proposed a densely connected graph convolutional network that introduces
residual connections, dense connectivity, and graph attention techniques [29]. They reported that the
model attained at the current state-of-the-art neural models in the English–German and English–Czech
translation tasks. This is definitely worth trying with our LSSE learning model.

As we mentioned in Section 4.5, we found that more effective knowledge extraction improves the
overall performance of paraphrase identification. Our model utilized BERT_base model for lexical
and sentential encodings and applied it to two domain-specific data, MRPC and QQP. However,
the BERT pre-training model is to learn general domain-independent knowledge. In the phase of
fine-tuning, the model learns by using these domain-specific data which causes difficulty to estimate
optimal parameters. Moreover, Phang et al. reported that BERT is unstable when a training dataset
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with fine-tuning is small [47]. One approach is to develop a knowledge transfer technique which
is some empirical work along these lines in the deep learning field [64]. This is a rich space for
further exploration.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/12/4144/s1.
Tables 2, 4, 5, 6.
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