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Abstract: Fingerprint classification is a stage of biometric identification systems that aims to group
fingerprints and reduce search times and computational complexity in the databases of fingerprints.
The most recent works on this problem propose methods based on deep convolutional neural
networks (CNNs) by adopting fingerprint images as inputs. These networks have achieved high
classification performances, but with a high computational cost in the network training process, even
by using high-performance computing techniques. In this paper, we introduce a novel fingerprint
classification approach based on feature extractor models, and basic and modified extreme learning
machines (ELMs), being the first time that this approach is adopted. The weighted ELMs naturally
address the problem of unbalanced data, such as fingerprint databases. Some of the best and most
recent extractors (Capelli02, Hong08, and Liu10), which are based on the most relevant visual
characteristics of the fingerprint image, are considered. Considering the unbalanced classes for
fingerprint identification schemes, we optimize the ELMs (standard, original weighted, and decay
weighted) in terms of the geometric mean by estimating their hyper-parameters (regularization
parameter, number of hidden neurons, and decay parameter). At the same time, the classic accuracy
and penetration-rate metrics are computed for comparison purposes with the superior CNN-based
methods reported in the literature. The experimental results show that weighted ELM with the
presence of the golden-ratio in the weighted matrix (W-ELM2) overall outperforms the rest of the
ELMs. The combination of the Hong08 extractor and W-ELM2 competes with CNNs in terms of
the fingerprint classification efficacy, but the ELMs-based methods have been demonstrated their
extremely fast training speeds in any context.

Keywords: fingerprint classification; fingerprint features; extreme learning machine; unbalanced
dataset

1. Introduction

Fingerprint is one of the widely used biometric techniques for individuals identification purposes
because of its bio-invariant and reliability characteristics. Besides, it provides sufficient and necessary
details for the differentiation of people [1]. It should be noted that fingerprint is chosen among other
biometric techniques (iris, face, voice, hand, and others) due to its high accuracy and low acquisition
cost. Fingerprint recognition has several applications for security goals such as forensic and civil
registering, as well as an alternative for user authentication [2].

An automatic fingerprint recognition system requires the matching of an input fingerprint sample
with a large number of fingerprint templates registered in the biometric database [3]. Taking into
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account a massive database for a real-world application, an individuals identification system is
excessively expensive in terms of search-time and computational cost [4]. For example, the FBI
database contains more than 100 million fingerprints, delaying the identification of a person up to
30 min in the best scenario. Of course, high-performance computing methods are employed to get
this time.

Fingerprint classification is the most adopted approach to reduce the penetration rate in the
database [5]. Fingerprint images have structural characteristics based on the pattern of ridges.
Thus, according to the morphology of its ridge structure, fingerprints can be classified into five
major categories [6]: arch, tented arch, left loop, right loop, and whorl, which are not evenly
distributed. Figure 1 depicts these fingerprint classes and their frequency of occurrence in the overall
population. In other words, an unbalanced dataset is naturally experienced in which two classes are
under-represented relative to others. The problem of unbalanced data is commonly associated with
asymmetric costs of misclassifying elements of the diverse classes [7]. In order to deal with unbalanced
data, the following methodologies can be adopted: under-sampling approaches [8], over-sampling
techniques [9], and algorithmic methods [10]. The former can lead to loss of majority class information,
the second approach may produce distortion of the minority class, and the latter is to set different
misclassification costs according to each particular class, which is adopted in our work for simplicity
and effectiveness purposes.

Arch (3.7%) Left loop (33.8%) Right loop (31.7) Tented arch (2.9%) Whorl (27.9%)

Figure 1. Fingerprint image samples generated, which represent the five fingerprint categories along
with their frequency of occurrence in the total population.

The fingerprint classification task typically consists of three main processes [11,12]:
(i) pre-processing, to reduce the noises and interference in images; (ii) feature extraction, to represent
the image as a vector of characteristics; and (iii) classification procedure. This methodology allows
building extremely precise classifiers with an acceptable computational cost [2,5]. An alternative for
classifying fingerprints in a single stage is deep convolutional neural networks (CNNs) [1,3,13,14],
which are characterized by millions network parameters involved in the learning phase. These
approaches obtain yields close to 100% but with a time-consuming training process, despite using
computers with the latest generation parallel software and hardware.

Extreme learning machine (ELM) has been proposed as a promising training algorithm for
single hidden layer feedforward neural networks [7]. In the ELM algorithm, the weights and
biases of the hidden layer are randomly generated. Then, the weights of the output layer may
be analytically computed via solving a linear system thanks to the Moore–Penrose pseudoinverse
matrix [15,16]. Previous results, both in regression and classification problems, have shown the low
computational complexity of ELM compared to the popular backpropagation-based algorithm and
support vector machines, especially for high dimensional and large data applications [7,15,17,18].
Besides, it is highlighted for its fast and stable training process, easy implementation, and accuracy in
modeling and prediction.

Nevertheless, the prediction accuracy of the ELM algorithm can be susceptible to outlier
interference, which is presented for unbalanced datasets [19], such as a fingerprint database. Namely,
the basic ELM algorithm trained with an unbalanced dataset may be biased towards the majority
class and obtain a superior accuracy on the majority class by affecting minority class accuracy for
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classification problems. In a fingerprint recognition system, this issue will conduce to some important
persons that cannot be found timely. Aiming to face the unbalanced data issue, weighted ELMs were
introduced by Zong et al. [10]. This improved ELM incorporates weights to mitigate interference from
outliers in the learning procedure. A weighted ELM may automatically adjust the correlation weight
of ELM based on the training errors in the training procedure. The weighted ELM shows the best
performance on unbalanced datasets contrasted to standard ELM by maintaining the benefits from it
(convenient implementation and easy application on multi-class data classification) [20]. Consequently,
a weighted ELM is more suitable for fingerprint classification. In our work, standard and weighted
ELMs are developed to demonstrate the advantage of the latter for unbalanced datasets.

In [21], the problem of fingerprint classification using a standard ELM has been briefly addressed.
This study introduces a modified descriptor of the histogram of oriented gradients. The authors of [21]
arbitrarily use a radial base activation function, discarding the regularization parameter (over-fitting
can occur in the modeling process) for the original ELM, and they do not declare the number of
neurons in the hidden layer. Moreover, they do not provide any comparison against other classifiers
and use a well-known database (the Fingerprint Verification Competition (FVC) of 2004) only divided
into four categories (the arch and tended arch classes are joined as a single class), which can increase
the penetration rate and computational cost for the fingerprint identification system.

In this paper, we introduce the combination of the better feature extractors and several versions
of the ELM for fingerprint classification purposes. The feature extraction step obtains a set of
meaningful global features of the fingerprint. On the other hand, the ELM algorithm classifies each
fingerprint as one of the five classes of fingerprints. In our study, we consider three feature descriptors
(e.g., Capelli02 [22], Hong08 [23], and Liu10 [24]), which will be termed with the name of the first
author and the year of publication in the rest of the paper. In addition, three ELM models (e.g., basic
ELM [17], original weighted ELM [10] and decay weighted ELM [20]) are developed. The Synthetic
Fingerprint Generator (SFINGE) dataset [25,26] is utilized since its images are naturally distributed
into five classes. In addition, this dataset contains fingerprints of different qualities (high, normal, and
low), by allowing the simulation of several real-world scenarios. The main novelties and contributions
of our study can be summarized as follows:

(i) As fingerprint classification system, we propose an ELM model based on feature descriptors with
the highest performance for fingerprint identification. The introduction of the ELM algorithm is
due to its training stage consumes short time, which allows to increase the identification in large
fingerprint databases.

(ii) In the weighted ELM, original and decay weighting schemes are developed to improve the
classification capability of the classifier by considering complex data distribution, such as
fingerprint classes.

(iii) The hyper-parameters of the ELMs (regularization and decay parameters, and the number of
hidden nodes) are numerically optimized in terms of the geometric mean since this metric
normalizes the classification accuracy of each class.

(iv) The combination of the Hong08 feature extractor and the weighted ELM with the presence
of the golden-ratio in the weighted matrix is superior to the rest of combinations of feature
extractors and ELMs, and almost matches the CNN-based methods in terms of accuracy and
penetration rate. Nevertheless, our approach has the benefit of a fast learning speed by using any
commercial computer.

The rest of the paper has the following organization. Section 2 presents the state-of-the-art
regarding the fingerprint classification issue. Section 3 exposes the best feature extractors reported
in the literature as well as the ELMs for balance and unbalance datasets. Section 4 presents the
methodology, which is comprised of the fingerprint database, a k-fold cross-validation scheme, and
performance metrics. Section 5 shows the results and discussion. Finally, Section 6 provides some
concluding remarks and future works.
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2. Related Works

Fingerprint classification is the most common approach to reduce the database penetration
rate of a fingerprint identification system. It is well-known, fingerprints can be classified into five
major categories: arch, tented arch, left loop, right loop, and whorl, as shown in Figure 1. On this
regard, several approaches have been proposed, and two main tendencies are identified to address the
fingerprint classification problem (refer to Table 1):

(i) Via feature extractors that obtain the most important characteristics of the fingerprint image,
by reducing the original size severally. In this context, the feature extractor models with the
best-reported results in the literature are [3,5]: Capelli02 [22], Hong08 [23], and Liu10 [24], which
are based on global level characteristics of the image such as orientation maps, ridge structure,
and singular points, respectively. Afterward, the classification problem is performed trough a
supervised learning technique, e.g., support vector machines, or artificial neural networks based
on the gradient operation.

(ii) By employing only a CNN directly on the input images, where the feature extractors are
discarded. In practice, CNNs are complex networks that combine different types of neuron layers
(convolutional, pooling, and fully connected) with diverse activation functions (e.g., Rectified
linear unit (RELU), softmax, RELU plus dropout). Besides, it can be accompanied by a Bayesian
framework. However, CNN-based approaches require very time-consuming training process
with millions of parameters to be optimized.

Table 1 summarizes state-of-the-art approaches on the fingerprint classification problem during
the last decade. It contains the following information: author(s), year, feature extractor, classifier,
database, classification accuracy, and evaluation time of the artificial neural machine. Whereas the
first group (feature extractor along with classifier) allows exceeding 90% as classification performance
without increasing the complexity time, the CNN-based approaches are near to 100% accuracy but
with large learning time, in the order of hours. It should be noticed that this drawn-back comes
from even in the presence of high-performance computing methods [1,3,4,13]. Furthermore, it can
be seen than the most of works consider some version of fingerprint databases from the National
Institute of Standard and Technologies (NIST) [27] or the FVC [28], which obey to uniform and
natural class distribution, respectively. Furthermore, an specific version of both databases is composed
by small images of fingerprints (from 1000 to 3000 samples approximately), which limits overall
observations (a real fingerprint identification system deals with extremely large databases) due to
training/validation/testing results can be optimistic and/or wrong. In other words, the origin
(database) of these studies, their solutions (feature extractors and/or classifiers), and conclusions can
not directly implement a fingerprint identification scheme.
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Table 1. Summary of the state-of-the-art approaches for the fingerprint classification problem.

Authors Year Feature Extractor Classifier Database Accuracy (%) Evaluation Time (s)

Tehseen et al. [1] 2019 None Bayesian deep CNNs NIST-DB4 (3300 samples)
and FVC2002 (1600
samples)

96.1 and 95.5 4393 and 3801

El-Hanmdi et al. [29] 2019 Conic Radon transform
(image functions are
integrated over conic
sections)

CNNs (4 convolutional layers with
3 max-pooling layers followed by a
fully-connected layer)

NIST-DB4 (3300 samples) 95.0 0.06

Saeed et al. [21] 2018 Orientation field with
histograms of oriented
gradients

Basic ELM with the radial
activation function

FVC2004 (3520 samples) 98.7 Not reported

Peralta et al. [3] 2018 None CNNs (a new network and a
modification of the CaffeNet
CNN [30]) with softmax
probabilities for the last layer

NIST-DB4 (3300 samples)
and SFINGE (120,000
samples)

93.73 and 94.58 960 and 2,306

Shrein [4] 2017 Normalized orientation
angles

CNNs with various convolutional,
max-pooling, and fully connected
layers

NIST-DB4 (3300 samples) 95.4 Not reported

Ge et al. [14] 2017 None Deep CNNs with 6 diverse layers NIST-DB4 (3,300 samples) 97.9 Not reported

Michelsanti et al. [13] 2017 None Pre-trained CNNs known as
VGG-F and VGG-S [31]

NIST-DB4 (3300 samples) 94.4 and 95.95 32,600 and 108,000

Alias et al. [32] 2016 Minutiae extraction Support vector machines FVC2000 and FVC2002
(each has 880 samples)

92.3 and 92.8 Not reported

Wang et al. [33] 2016 Orientation field based on
a support vector machine

Deep CNNs with 3 complex
hidden layers

NIST-DB4 (3300 samples) 98.4 Not reported

Gupta et al. [34] 2015 A combination of the
orientation field,
directional filtering, and
Poincare index

Support vector machines FVC2004 (1600 samples) 97.9 2.6 for input features
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Table 1. Cont.

Approach Year Descriptor Classifier Database Accuracy (%) Evaluation Time (s)

Galar et al. [5] 2015 Singular points, ridge
structure, and filter
response

Support vector machines NIST-DB4 (3300 samples)
and SFINGE (30,000
samples)

92.6 and 95.7 Not reported

Dorasamy et al. [35] 2015 Directional patters and
singular points

Decision tree FVC2002 and FVC2004
(each has 880 samples)

91.54 and 93.2 Not reported

Jung et al. [36] 2015 Ridges based on a block of
16 × 16 pixels

Regional local models using
conditional probabilities

FVC 2000, 2002, and 2004
(each has 10,304 samples)

97.4 Not reported

Vitello et al. [37] 2014 Fuzzy C-means based on
centroids

Naive Bayes NIST-DB4 (3300 samples)
and FVC2002 (3200
samples)

91.74 and 80.1 Not reported

Galar et al. [38] 2014 FingerCode and/or
singular points (cores and
deltas)

Fuzzy rule learning based on
linguistic terms

SFINGE (30,000 samples) 93.78 Not reported

Guo et al. [11] 2014 Singular points and
orientation field

Decision tree FVC 2000, 2002, and 2004
(7,920 samples in total)

92.74 Out of context

Luo et al. [39] 2014 Curvelet transform
together with gray-level
co-ocurrence matrices

K-nearest neighbors NIST-DB4 (3300 samples) 94.6 1.47

Saini et al. [40] 2013 Hu moments based
Wavelet designing

Probabilistic neural network along
with support vector machines

FVC 2004 (880 samples) 98.24 Not reported

Cao et al. [41] 2013 Orientation image,
complex filter responses,
and ridge line flows

Hierarchic network with five stages
(heuristic rules, K-nearest neighbor,
and support vector machines)

NIST-DB4 (3300 samples) 95.9 4.31

Liu [24] 2010 Multi-scale singularities
via complex filters

Addaboosted decision trees
(combination of weak classifiers)

NIST-DB4 (3300 samples) 94.1 1.6

Rajanna et al. [42] 2010 Orientation map and
orientation collinearity

Rank level fusion with K-nearest
neighbors

NIST-DB4 (3300 samples) 91.8 Out of context
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3. Background

In this Section, we outline the best feature extractors as well as the unweighted and weighed
ELMs because they are the fundamentals of this investigation. It should be highlighted that we focus
on ELMs because these networks are used for fingerprint classification for the first time.

3.1. Feature Extractors

Based on the classification given by Feng and Jain [43], there are three categories of fingerprint
features representation: global, local, and fine-detail. However, only global feature descriptors are
used for fingerprint classification because fingerprint classes are intuitively defined from global
characteristics [2]. Therefore, feature-based approaches for fingerprint classification are closely related
to the ridge orientations and the singular points representations. Ridge orientations are represented
in an orientation map (OM), which is a representation of the local flow of the ridges. On the other
hand, locations with ridge flow changes are selected as singular points, being two main types known
as cores and deltas. Thus, each fingerprint class can be defined based on the distribution of its ridge
orientations and singular points [2].

The OM extraction is the first step in any feature-based fingerprint classification system. OM-based
representations are obtained as a description of the local ridge flow for every block in the fingerprint.
The OM of a fingerprint sample of U ×V pixels is a matrix of U/u×V/v computed for orientation
blocks of u× v. The OM matrix stores the orientation angles expressed in radians in the range of [0, π)

or [−π/2, π/2). Once the OM is obtained, it is used for detecting singular points by analyzing the
behavior of the ridges [44].

Galar et al. [2] present a refined taxonomy of the feature extraction methods for fingerprint
classification. They classified the feature extractors into four categories: orientation image, singular
points, ridge-line flow, and Gabor filter responses. Besides, the authors of [3,5] extensively studied
the performance of different feature extraction methods for fingerprint classification. Thus, in order
to complement our proposed method based on ELMs, we use three global feature extractors with
the best-reported results in the literature [3,5], which have different characteristics and are described
as follows:

(i) Capelli02 [22] is based on the orientation map of the fingerprint. The approach registers the core
point by using the Poincare method [45]. Then, the fingerprint is represented by a vector of five
positions, which is computed by applying a set of dynamic masks directly derived from each
class. The feature vector also stores the orientations.

(ii) Hong08 [23] improves the FingerCode feature vector [46] by including ridge-tracing information
and singular points. Besides, the representation encodes the position and distance between the
endpoints of the pseudo-ridge relative to the primary core point.

(iii) Liu10 [24] represents the fingerprint by building a feature vector based on the relative measures
among the singular points. Singular points are detected by computing complex filter responses
at multiple scales [47]. Thus, the feature vector consists of the relative position, direction, and
certainties of each singular point for each scale.

3.2. Extreme Learning Machines

ELM results in an algorithm for single hidden layer feedforward neural networks (SLFNs),
massively popular for its fast learning speed and excellent performance in generalization.
Huang et al. [17] have shown that ELM outperforms gradient-based artificial neural networks and
support vector machines in terms of prediction performance.
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Given a training set with L samples, the basic ELM maps inputs (data samples) and outputs (labels)
by employing a single hidden layer composed by N nodes. As mathematical representation [7,48]:

Hβ = Tg(w1 · x1 + b1) · · · g(wL · x1 + bN)
... g(wj · xi + bj)

...
g(w1 · xL + b1) · · · g(wL · xL + bN)


βT

1
...

βT
N

 =

tT
1
...

tT
L

 ,
(1)

where H is the hidden layer output matrix, β denotes the output weights matrix between the hidden
layer and output layer, T represents the target output results of the output layer, g(·) refers to a
non-linear piecewise continuous function, such as the sigmoid function, wj is the input weight vector
between the input node and jth hidden node, xi ∈ Rn refers to the ith input data where n means the
dimension of the input layer, bj represents the bias of the jth hidden node, β j denotes the output weight
vector between the jth hidden neuron and output nodes, and ti ∈ Rm is the m-dimensional target
vector originated by xi. Furthermore, wj and bj result from any continuous probability distribution,
such as the rectangular distribution; the human intervention consequently decreases. To conclude, the
term wj · xi comes to be the inner product of wj and xi. For clarification purposes, the structure of the
traditional ELM is shown in Figure 2 where all layers are identified in detail.

Standard neurons

Nodes under 
the activation function𝑏𝑁

1 g1

gj

gN

𝛴1

…
…

𝑤1 𝛽

𝑏𝑗

𝑏1

𝑛 𝛴m

i 𝛴i

…
… …

…

𝑥𝑖 𝑡𝑖

Figure 2. General architecture of a single hidden layer feedforward neural network (SLFN) with the
extreme learning machine (ELM) algorithm.

The least square solution with minimal norm can be analytically calculated through the
Moore–Penrose generalized inverse of H as follows [16,17]:

β =

{
(HT H + I/C)−1HTT if L > N

HT(HHT + I/C)−1T otherwise
, (2)

with I and C being a unit matrix and regularization parameter ∈ R+, respectively. The I dimensions
depend on the relationship between N and L, and C is added in order to balance the training error and
the norm of output weights, by avoiding the over-fitting.

Like the rest of conventional learning algorithms, the learning capability of the original ELM can
be affected by the class distribution [19]. It provides superior performance in the case of balanced
datasets; however, the unbalanced classification can be difficult. To this end, samples with high training
errors must be related to small weights and vice-versa in the ELM algorithm [20]. According to the
Karush–Kuhn–Tucker theorem, the solution to β acquires the form of [10]:

β =

{
(HTWH + I/C)−1HTWT if L > N

HT(WHHT + I/C)−1WT otherwise
, (3)
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where W denotes the misclassification cost matrix. It is a L× L diagonal matrix according to the class
distribution as follows [19]:

Weighted ELM1: Wii = 1/N(ti), (4)

Weighted ELM2: Wii =

{
0.618/N(ti) if N(ti) > mean[N(ti)]

1/N(ti) otherwise
, (5)

where N(ti) refers to the number of samples in the class ti. In the weighted ELM1 (W-ELM1), the
unbalanced datasets reach a cardinal balance. To further decrease the weights of the majority class
data, the weighted ELM2 (W-ELM2) is more suitable, which considers the golden ratio. The trade-off
between the ELM and W-ELM1 is given by the W-ELM2.

Numerous techniques have been developed to properly solve the unbalanced data classification
in ELMs such as improved weighted ELM [49], improved neutrosophic weighted ELM [50], dual
activation function-based ELM [51], weighted regularized ELM [19], among others. In terms
of simplicity and improvement, the decay weighted ELM (DW-ELM) must be highlighted [20].
For balance and optimization learning, an extra degree of freedom is inserted to the weighted ELM,
which is known as the decaying parameter d. The weighted matrix may be written as [20]:

Decay weighted ELM: Wii =
d
√

N(ti)/max[N(ti)]

N(ti)
. (6)

As the decaying parameter increases, the minority class is more relevant than the majority class.
Namely, by varying this parameter, the classifier would get better boundary positions. If d = 1, the
DW-ELM converges to the original ELM. Note that any weighted ELM increases the computational
cost respect to the standard ELM, comparing Equations (2) and (3). Finally, the training stage of any
version of the ELM has the following steps (Algorithm 1):

Algorithm 1 ELM learning procedure.
Given the training set Ω = {(xi, ti) | i = 1, .., L}, activation function g(·), regularization parameter C,
and hidden neuron number N.

1: Arbitrary generate the input weights wj and biases of the hidden nodes bj.

2: Determine the hidden layer output matrix H for xi, refers to the first matrix of expression (1).

3: Calculate the output weights of β. For the basic ELM employs Equation (2). Instead, the weighted
ELMs requires the use of expression (3) where the elements of the weighted matrix W are given by
Equations (4)–(6). In particular, the DW-ELM demands the establishment of the decay parameter.

4. Methodology

In this Section, we expose the experimental set-up employed to carry out the experiments and,
hence, to develop the results and discussion displayed in Section 5.

4.1. Fingerprint Database

We replicate the experiments carried out in [3] by using the SFINGE software [25,26]. Following
the natural class distribution (refer to Figure 1), it can generate synthetic fingerprints with a real
appearance of quality levels (translations, rotations, and geometric deformations), and with true
class labels. Consequently, the performance of the classifiers can be easily evaluated thanks to this
software. To emulate various scenarios, we have taken into account three different quality profiles
in the generation of the fingerprints, labeled as HQNoPert, Default, and VQAndPert, see Figure 3.
The HQNoPert database is formed by high quality, no perturbations fingerprints. In the Default
database, a fingerprint is characterized by middle quality, slight localization, and rotation perturbation.
Fingerprint captions of varying qualities are presented in the VQAndPert database, where location,
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rotation, and geometric perturbations also occur. The scanner and generation parameters employed for
the generation of the fingerprints in SFINGE software can be seen in [3,5]. The quality of the generated
images is the only difference between the databases. To conclude, we generate 10,000 fingerprints of
each quality, being a total of 30,000 fingerprints.

HQNoPert Default VQAndPert

Figure 3. Fingerprint examples of the different studied databases.

4.2. Results Evaluation by the Five-Fold Cross-Validation Scheme

To assess the quality of the novel technique, we follow a perspective oriented to machine learning
known as five-fold cross-validation approach [52]. This scheme results in an unbiased and accurate
measurement of the classifier performance due to the training and testing are not developed on fixed
parts. To this end, the database is split into five-folds, each one containing 20% of the samples of
the database. For each split, the classification model is trained by using the 80% of fingerprints from
the rest of the folds, whereas testing is done on the current fold. For each database and classifier,
the overall results are reported from averaging five executions. In particular, in order to estimate
the optimal hyper-parameters of the ELM (see Section 5.1), we destine the 20% of each training set
for validation purposes according to the methodology exposed in [18]. Hence, the validation set is
intended to find the ELM hyper-parameters (e.g., the regularization parameter C and the number of
hidden nodes N) that will maximize its performance. The previous scheme allows a direct comparison
with results obtained by the benchmark proposal [3] since the experiments are performed on the same
testing sets. Figure 4 depicts the five-fold cross-validation approach proposed in this section for the
experimental evaluation, where the validation set is discarded for a better understanding.

Execution

Partitio
n

𝑚𝑒𝑎𝑛(𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖)

Testing set

Training set

Figure 4. Representation of the five-fold cross-validation scheme, validation set is discarded.

4.3. Performance Metrics

To assess the fingerprint classification of the new approach (feature extractors along with ELMs)
and the comparative CNNs-based methods [3,53], the geometric mean (G-mean), root mean square
error (Acc), and the absolute error of the Penetration Rate (PR) metrics are utilized as evaluation
criteria. While values of G-mean and Accuracy near to 1 indicate that the corresponding model has
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better classification performance, it happens for the PR closest to 0. These metrics are defined as
follows [1,10,54]:

G-mean =

√
TP

TP + TN
× TN

TN + FP
, (7)

Acc =

√√√√ 1
K

K

∑
i=1

(ti − ti)2 , (8)

PR =| 0.2948−
M

∑
i=1

pi[1 + Acci(pi − 1)] | , (9)

where TP, TN, FP, and FN in Equation (7) respectively stand for true positive, true negative, false
positive, and false negative in a binary classification problem for example purposes. In other words, it
can be interpreted as the square root of majority class accuracy times minority class accuracy. For the
multi(M)-classification context, the G-mean becomes the Mth root of the product of the accuracies
within each class, which are denoted as Acci in the following. In Equation (8), K denotes the number
of fingerprint samples, while ti and ti denote the real and the prediction values of the fingerprint
classification process, respectively. Finally, M means the number of classes and pi is the relationship of
fingerprint belonging to the ith class in Equation (9). We adopt the absolute error of the penetration
rate (termed as PR in the rest of the manuscript) to easily contrast classifiers. The 0.2948 constant
results from the ideal penetration rate by following the natural class distribution of the SFINGE
fingerprints [3,5].

As mentioned, the accuracy calculates the total deviation between the real and estimated values,
being the most preferred criteria for assessing the performance of classifiers in the literature [55,56].
Indeed, the overall accuracy can be considered as de facto metric adopted by fingerprint recognition
systems, as can be seen in all works of Table 1 as instances. Nevertheless, the G-mean is more suitable
than the accuracy for unbalance data classification due to the possible presence of significant class
unbalanced (minority samples is more numerous than majority samples by a large margin) [19], as it
happens in fingerprint databases (see Figure 1). Namely, the accuracy can be affected by the class
distribution and could give misleading results in certain cases. Instead, it does not occur for the G-mean
metric (refer to observations provided in Section 5.2 for demonstration purposes). Consequently, we
also consider the G-mean as many studies regarding weighted ELMs oriented to regression and
classification problems also do [10,20,49,50]. Finally, in the context of fingerprint classification, the
PR metric has been recently adopted [1,3] in order to give propitious information regarding the
effectiveness of CNNs along with unbalance datasets.

To summarize, all materials and methods (Section 3 along with Section 4) are depicted in Figure 5
where the fingerprint classification system (the combination of a feature extractor and ELM) is proposed
for the first time.

Database

* HQNoPert 
SFINGE

* Default SFINGE

* VQAndPert 
SFINGE

Feature 
extractor

* Capelli02

* Hong08

* Liu10

Classifier

* ELM

* W-ELM1

* W-ELM2

* DW-ELM

Evaluation 
scheme

5-fold          
cross-validation

Performance 
metrics

* G-mean

* Accuracy

* Penetration 
rate

Fingerprint classification system

Figure 5. Outline of the methodology where the proposed fingerprint classification system is highlighted.

5. Results and Discussion

Throughout the manuscript, the sigmoid excitation function: g(x) = 1/[1− exp(x)] is adopted
since it guarantees the universal approximation capability of SLFNs prone to any ELM algorithm [48],
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and the weights of the input layer wj and the biases in the hidden layer bj randomly come from a
rectangular distribution defined in the interval [−1,1] [17].

5.1. Estimation of Optimal Hyper-Parameters of the ELMs

In order to maximize the G-means metric, the hyper-parameters of ELMs to be estimated are the
regularization parameter (C) and the number of neurons in the hidden layer (N) in the validation set.
Remember that the G-means makes sense in unbalanced datasets because it allows the normalization
of the accuracies of each class. As mentioned in the Section 4.2, the dataset was divided into three
subsets: training, validation, and testing. Figures 6–8 show the validation results using G-mean in
terms of these hyper-parameters for the standard ELM, W-ELM1, and W-ELM2, respectively. Aiming
to establish overall observations, the regularization parameter varied from 2−12 to 212 (very-small
and very-large positive numbers based on its definition, see Equation (2)), and the number of hidden
nodes gradually increased. All studied feature extractors (Capelli02, Hong08, and Liu10) and datasets
(HQNoPert, Default, and VQAndPert) were taking into account.

According to each subfigure, an ELM could achieve higher performance for some values of
the hyper-parameters that mostly form a continuous and irregular region. For resolution reasons,
determining the relationship of C and N that maximizes the G-mean was unfeasible. Fortunately, the
ELM performance within the maximization zone could be considered as invariable. Note that this
brute-force optimization procedure was only feasible in ELM algorithms since parameters of neurons
were arbitrarily generated. Instead, the input weights and biases of other learning algorithms required
iterative processes and/or high-performance computing methods [15,17].

Table 2 illustrates the G-means metric with the optimal values of the number of hidden nodes
and the regularization parameter for all artificial neural networks. Once again in the study, the results
for each dataset and feature extractor were exposed. The best values of N and C were determined
through the intersection of the best performing areas on the datasets. This procedure was carried out
aiming for the optimization of hyper-parameters that did not depend on the fingerprint quality. For all
types of ELMs, the highest performance was obtained on the best quality database, resulting in the
best feature extractor corresponds to Hong08. In a general sense, it appears that the W-ELM2 (refer to
Table 2c) achieved the best classification performance. This result is explained by the fact that studied
databases were comprised of unbalanced data (i.e., they did not follow a uniform distribution), and
W-ELM2 could effectively classify this kind of data thanks to considering the golden ratio in its matrix
of weights (see Equation (5)). On the other hand, as expected, the basic ELM was the worst classifier
because it was prone to outlier interference, which naturally occurred for fingerprint datasets (refer to
Table 2a). Finally, it can be seen that the adoption of the Hong08 and W-ELM2 as the feature extractor
and classifier, respectively, produced the highest G-mean for any fingerprint quality.
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Figure 6. Validation results obtained by the standard ELM as a function of the regularization parameter
and number of hidden neurons. Each subfigure illustrates the database and feature extractor.
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Figure 7. Validation results obtained by the weighted ELM (W-ELM1) as a function of the regularization
parameter and number of hidden neurons. Each subfigure illustrates the database and feature extractor.
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Figure 8. Validation results obtained by the W-ELM2as a function of the regularization parameter and
number of hidden neurons. Each subfigure illustrates the database and feature extractor.
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Table 2. Results of the G-means metric obtained by (a) Standard ELM, (b) W-ELM1, and (c) W-ELM2
on the testing sets for the combination of optimal hyper-parameters (N and C). All datasets and feature
extractors are considered.

(a) Standard
ELM

Capelli02 Hong08 Liu10

N C G-Mean N C G-Mean N C G-Mean

HQNoPert
3000 210

0.64
3000 210

0.86
5000 28

0.65
Default 0.54 0.80 0.62

VQAndPert 0.31 0.58 0.40

(b) W-ELM1
Capelli02 Hong08 Liu10

N C G-Mean N C G-Mean N C G-Mean

HQNoPert
4000 26

0.64
5000 24

0.92
5000 215

0.67
Default 0.54 0.88 0.63

VQAndPert 0.37 0.65 0.49

(c) W-ELM2
Capelli02 Hong08 Liu10

N C G-Mean N C G-Mean N C G-Mean

HQNoPert
4000 26

0.66
5000 24

0.93
5000 215

0.69
Default 0.57 0.89 0.64

VQAndPert 0.40 0.67 0.51

Figure 9 and Table 3 present the previous study for the DW-ELM. This network has three
hyper-parameters, the extra degree of freedom comes to be d (see expression 6), which is related
to the weights of the misclassification cost matrix in the ELM algorithm. The rest of the adopted
hyper-parameters (i.e., N and C) correspond to those of the W-ELM1 that are displayed in Table 2b
since the DW-ELM is an extended version of the W-ELM1. It can be seen that the additional parameter
does not affect the classification performance. In general terms, the G-mean metric of the DW-ELM
ranges between the values reported by the WELM1 and WELM2. Hence, a modified version of the
original weighted ELM, which can augment the computational complexity of the neural network, is
not necessary. In the following, the ELMs composed of their optimal hyper-parameters are adopted.

Figure 9. Graphics of the obtained G-mean against the decaying parameter of the decay weighted ELM
(DW-ELM) for each feature extractor and database during the validation stage. The number of hidden
neurons and regularization parameter are adopted from the optimal weighted ELMs.
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Table 3. Results of the G-means from the optimal decaying parameters in the testing stage for each
studied databases and feature extractors.

DW-ELM Capelli02 Hong08 Liu10

d G-Mean d G-Mean d G-Mean

HQNoPert 9 0.67 16 0.93 15 0.69
Default 11 0.58 15 0.89 4 0.65

VQAndPert 10 0.40 20 0.71 12 0.50

5.2. Evaluation and Comparison by Using Classical Metrics: Accuracy and Penetration Rate

Firstly, Table 4 presents the Acc and PR results for the different databases, feature extractors, and
ELM variants. While the accuracy is commonly used for regression and classification problems, the
PR is recently adopted in the fingerprint classification context [1,3]. Apart from the reasons exposed
in Section 4.3, both metrics were considered for comparison purposes with the CNNs proposed by
Peralta et al. [3]. It is observed that the Hong08 feature extractor and W-ELM2 must be positively
highlighted. In fact, the combination of these produced again the superior metrics, especially for the
PR. Instead, the Capelli02 feature extractor and standard ELM hadve the lowest performances. Among
the ELM models, the W-ELM2 is able to enhance the recognition rate of minority class to maximize the
G-mean and PR values, as well as to guarantee the proper classification of the majority class, keeping a
superior Acc (see the outcomes of Section 5.1 and Table 4). Additionally, it is worth to note that the
differences among ELMs in terms of Acc and PR metrics were minimum in contrast to the G-mean
metric given a feature extractor. Consequently, the relevance of the G-mean as a performance metric
for unbalanced datasets is demonstrated.

Table 4. Accuracy and absolute-error penetration rates in terms of database and feature extractor by
adopting the optimal hyper-parameters of the studied ELMs.

(a)
Capelli 02

ELM W-ELM1 W-ELM2 DW-ELM

Acc PR Acc PR Acc PR Acc PR

HQNoPert 0.80 0.1788 0.79 0.1650 0.81 0.1500 0.79 0.1645
Default 0.79 0.2112 0.74 0.1969 0.76 0.1785 0.64 0.1942

VQAndPert 0.61 0.2913 0.60 0.2522 0.63 0.2349 0.61 0.2521

(b)
Hong08

ELM W-ELM1 W-ELM2 DW-ELM

Acc PR Acc PR Acc PR Acc PR

HQNoPert 0.95 0.0485 0.94 0.0340 0.95 0.0332 0.95 0.0330
Default 0.94 0.0662 0.93 0.0412 0.94 0.0406 0.94 0.0412

VQAndPert 0.86 0.0954 0.88 0.0519 0.88 0.0512 0.88 0.0521

(c)
Liu10

ELM W-ELM1 W-ELM2 DW-ELM

Acc PR Acc PR Acc PR Acc PR

HQNoPert 0.78 0.2060 0.79 0.1727 0.80 0.1651 0.79 0.1711
Default 0.79 0.2220 0.77 0.1866 0.77 0.1751 0.78 0.1787

VQAndPert 0.66 0.2696 0.67 0.2327 0.68 0.2166 0.68 0.2315

For comparison purposes, a benchmark work of the state-of-the-art is considered. Peralta et al. [3]
introduce a novel CNN-based model and, also, exploit a modification of the CaffeNet CNN [30] for the
fingerprint classification problem. Fingerprint images without computing an explicit feature extractor
were processed by both CNNs. The classification performance in terms of the accuracy and penetration
rate was only calculated by considering the NIST and SFINGE databases. This paper implements the
five-fold cross-validation scheme, and the reported performance was averaged from the five testing
sets, which are the same experimental settings used in our work (refer to Section 4.2) by allowing a
proper comparison.
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Table 5 presents the comparison between the best results obtained in our study (W-ELM2 with
Hong08 feature extractor) and the CNN-based models proposed in [3]. The results of [3] were extracted
from the last columns of its Table 8. In general, the results of our proposal were slightly lower than
those obtained with CNNs, being more competitive in terms of the classification accuracy.

Table 5. Comparison of the results achieved by the best combination (feature extractor and type of
ELM), the modified CaffeNET CNN [3,30], and the CNN model proposed in [3].

Hong08 and W-ELM2 Modified CaffeNet CNN New CNN

Acc PR Acc PR Acc PR

HQNoPert 0.94 0.0332 0.99 0.0051 0.99 0.0031
Default 0.93 0.0406 0.97 0.0211 0.98 0.0153

VQAndPert 0.88 0.0512 0.96 0.0329 0.96 0.0279

5.3. Complexity Analysis

In order to contrast the degree of complexity of CNN-based classification methods [3] with
our best performance proposal (Hong08 feature extractor in combination with W-ELM2), we have
evaluated the learning speed on each studied database, see Table 6. While the results provided
by Peralta et al. [3] were obtained by using one Nvidia GeForce GTX TITAN GPU (2688 cores, 6144 MB
GDDR5 RAM), our training times were evaluated without parallel computing in a simple computer
with the following characteristics: an Intel Core i5 processor at 2.6 GHz clock speed and 4 GB RAM.
Furthermore, the observations of CNNs and our approach were computed by utilizing the Caffe library,
which is written in C++ software, and MATLAB R2018a environment, respectively. Due to MATLAB
being a high-level programming language, it demands more computational cost than C++ applications.
Despite the previous hardware/software disadvantages, our results have been achieved in shorter
training times than those required by CNNs. In addition, there are several studies that confirm that
ELMs can be trained in very short times for any classification or regression task [7,15,18,20,57,58].
As mentioned in Section 1 and as presented in Section 3.2, it occurs owing to the input weights and
hidden layer biases are generated randomly in the ELM and, then, its training process results in a
single linear system thanks to the Moore–Penrose generalized inverse matrix, which means a very
fast learning process. Instead, the CNN learning comes to be the optimization of the weights of each
neuron in order have the desired value for each input [1,3,4,13,14,29], which is based on an improved
of the next algorithm: back propagation with gradient descent. Consequently, the dimensionality of the
search space is given by very-large number of weights. Finally, in order to properly assess our results,
it should be noticed that the studied ELMs had a single hidden layer, while CNNs had numerous fully
connected, convolutional, and pooling layers, each of which had diverse number of nodes subject to an
activation function to introduce a nonlinearity. Notice that given a classifier method, the training times
were almost the same for the diverse databases owing to these sets have the same number of samples.

Table 6. Comparison in terms of the model learning time expressed in seconds.

Hong08+WELM2 Improved CaffeNet CNN [3,30] Novel CNN [3]

HQNoPert 880 2306 960
Default 885 2329 957

VQAndPert 882 2328 960

6. Conclusions

In this work, we have carried out an extensive study to address fingerprint classification problems
by introducing basic and weighted ELMs as classifiers for the first time. Regarding this purpose, we
have considered fingerprint databases of high, normal, and low qualities, and three feature extraction
methods, which have been reported in the literature as the top performers. The weighted ELMs
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are able to deal with data with unbalanced class distribution, such as fingerprint databases. Three
weighting schemes are tested in terms of the geometric mean, accuracy, and penetration rate, which
demonstrate the better performance of weighted ELM contrasted with standard ELM. All the highlights
presented in the study open the possibility of using our introduced classifier for large-scale fingerprint
identification systems.

Investigations regarding the standard and improved ELMs can be directed towards the
introduction of multilayer ELMs for fingerprint recognition systems in order to increase overall
effectiveness while maintaining a fast learning speed [59,60]. As CNNs, multilayer ELMs can ignore
the feature extraction stage, i.e., the image processing will be included in the training of the classifier.
Comparison results with CNNs in terms of the computational cost are still open questions. To this end,
the same hardware and software should be used to establish non-questionable conclusions. For the
purpose of emulating real and complex identification problems, finally, the analysis with very-large
fingerprint databases (in the order of hundreds of thousands) is proposed as a pending task.
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