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Abstract: This paper aims to design an online, low-latency, and high-performance speech recognition
system using a bidirectional long short-term memory (BLSTM) acoustic model. To achieve this,
we adopt a server-client model and a context-sensitive-chunk-based approach. The speech recognition
server manages a main thread and a decoder thread for each client and one worker thread. The main
thread communicates with the connected client, extracts speech features, and buffers the features.
The decoder thread performs speech recognition, including the proposed multichannel parallel
acoustic score computation of a BLSTM acoustic model, the proposed deep neural network-based
voice activity detector, and Viterbi decoding. The proposed acoustic score computation method
estimates the acoustic scores of a context-sensitive-chunk BLSTM acoustic model for the batched
speech features from concurrent clients, using the worker thread. The proposed deep neural
network-based voice activity detector detects short pauses in the utterance to reduce response latency,
while the user utters long sentences. From the experiments of Korean speech recognition, the number
of concurrent clients is increased from 22 to 44 using the proposed acoustic score computation.
When combined with the frame skipping method, the number is further increased up to 59 clients
with a small accuracy degradation. Moreover, the average user-perceived latency is reduced from
11.71 s to 3.09–5.41 s by using the proposed deep neural network-based voice activity detector.

Keywords: concurrent clients; low-latency; parallel decoding; voice-activity detector (VAD);
automatic speech recognition (ASR); bidirectional long short-term memory (BLSTM)

1. Introduction

1.1. Problem Definition

Deep learning with GPU and considerable speech data has greatly accelerated the advance
of speech recognition [1–5]. In line with this advancement, automatic speech recognition (ASR)
systems have been widely deployed in various applications such as dictation, voice search, and video
captioning [6]. The research on an ASR deployment can be classified into (a) an on-device system and (b)
a server-based system. For an on-device deployment, various optimizations have been proposed, such as
efficient and light architectures of an acoustic model (AM) or a language model (LM), network pruning
methods, parameter quantization, speaker-dependent models, and compiler optimizations [7–12].
Therefore, there exists a trade-off between ASR accuracy and real-time performance. For a server-based
deployment where an ASR system is based on a server-client model, the server performs speech
recognition using high-performance resources, whereas the client can be applied in various devices,
including embedded devices. Therefore, the trade-off between accuracy and real-time performance can
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be relaxed when compared to on-device deployment. However, issues on response latency or multiple
concurrent clients can arise when utilizing state-of-the-art ASR systems [13–22].

In order to employ one of the state-of-the-art AMs, a bidirectional long short-term memory
(BLSTM), this paper focuses on the deployment of an online server-based ASR, where the overall
structure is shown in Figure 1. Whenever an audio segment is captured from a client device, the client
sends the audio segment to an ASR server (which is connected over a computer network), and then
receives the decoded text from the server. On the ASR server, there exist a main thread and a decoder
thread for each connected client. The main thread communicates with the connected client, manages the
decoder thread, extracts the speech feature vectors from the received audio segments, and buffers the
feature vectors into a ring buffer. The decoder thread performs speech recognition using the extracted
feature vectors. More detailed description is explained in Section 2.1.
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Figure 1. Overall structure of the server-client-based online automatic speech recognition (ASR) system
used in this paper.

In short, our goal is to deploy an online ASR system using a BLSTM AM where the AM is usually
used in an offline ASR system since the vanilla AM requires a whole input speech during decoding.
For a real-time online ASR system with more concurrent clients, we aim to solve the two challenges
(a) a long decoding time and (b) long response latency, while the accuracy performance is maintained.

1.2. Literature Review

The BLSTM AM of an ASR system achieves better performance than a deep neural network
(DNN)- or long short-term memory (LSTM)-based AM. However, the use of BLSTM AM is limited
due to practical issues such as massive computational complexity, the use of a long speech sequence,
and long latency. Therefore, many previous studies on online ASR assumed a BLSTM AM to be
an offline AM having better performance but long latency [23–29]. In addition, there has been
considerable research on fast training and decoding for a BLSTM AM. References [30–32] proposed
a context-sensitive-chunk (CSC) BLSTM, a windowed BLSTM, and latency-controlled (LC) BLSTM,
respectively. The CSC BLSTM considers a CSC to be an isolated audio sequence where the CSC
comprises a chunk of fixed length and the past and future chunks. The windowed BLSTM is a variant
of the CSC BLSTM with jitter training, and it was found that the limited context is adequate rather than
an entire utterance. The LC BLSTM is decoded in a similar manner to a conventional unidirectional
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LSTM; however, it additionally decodes a fixed number of future frames for BLSTM. Reference [33]
reduced the computational complexity of the LC BLSTM by approximating forward or backward
BLSTMs as simple networks. Reference [34] utilized the LC BLSTM in an online hybrid connectionist
temporal classification (CTC)/attention end-to-end (E2E) ASR. Reference [35] proposed a CTC-based
E2E ASR using a chunk-based BLSTM where the chunk size was randomized over a predefined range,
and showed accuracy improvement and low latency.

Moreover, there has been considerable research on online ASR systems for increasing the
concurrency. Reference [13] proposed a CTC-based E2E ASR system, Deep Speech 2, and used
an eager batch dispatch technique of GPU, 16-bit floating-point arithmetic, and beam pruning for
real-time and low latency. Reference [14] proposed an online ASR architecture based on time-delay
neural network (TDNN) and unidirectional LSTM layers. Reference [15] proposed a recurrent neural
network (RNN)-based LM for an online ASR using a quantization of history vectors and the CPU-GPU
hybrid scheme. Reference [16] proposed beam search pruning and used the LC BLSTM for an RNN
transducer (RNNT)-based E2E ASR. Reference [17] proposed a monotonic chunkwise attention (MoChA)
model using hard monotonic attention and soft chunk-wise attention. Reference [18] employed the
MoChA-based approach in an E2E ASR using unidirectional LSTM and attention layers for streaming.
Reference [19] proposed an online E2E ASR system based on a time-depth separable convolution and
CTC for low latency and better throughput. Reference [20] proposed TDNN-based online and offline
ASR by proposing a parallel Viterbi decoding based on an optimized, weighted finite-state transducer
decoder using GPU, batching multiple audio streams, and so forth.

This paper adopts a CSC BLSTM AM that can decode not a whole input speech but segments
of an input speech in order to reduce the decoding latency. To solve the long decoding time, unlike
previous works for an online ASR which mostly degrade the accuracy performance [14,15,17,19],
we focus on accelerating a GPU parallelization while the accuracy performance is maintained. To solve
the long response latency to a user, we also utilize a voice activity detector.

1.3. Proposed Method and Its Contribution

This paper presents an online multichannel ASR system employing a BLSTM AM, which is hardly
deployed in industries even though it is one of the best performing AMs. Accordingly, our online
ASR system is based on the server-client model where the server can perform speech recognition
using high-performance resources and the client interacts with the user and server via various devices.
For the baseline server-side ASR system, we utilize a CSC BLSTM where the sizes of a chunk and
its left and right contexts of a CSC are 20, 40, and 40 ms, respectively [30]. In fact, the baseline ASR
performs in real time; however, the number of concurrent clients is limited. For more concurrent
clients, we propose a method for accelerating the GPU parallelization and reducing the transmission
overhead between the CPU and GPU based on the fact that a CSC is regarded as an isolated sequence.
Moreover, we propose a DNN-based voice activity detector (DNN-VAD) for a low-latency response
even though the client sends no end-of-utterance message. To evaluate the proposed online ASR
system, we use the test data recorded from Korean documentary programs. The performance in terms
of ASR accuracy, real time, and latency is measured as a function of the syllable error rate (SyllER),
number of concurrent clients, and the elapsed time in seconds until a user receives the recognized text
of they spoke.

The contributions of this paper are summarized as follows:

Fast BLSTM-based online ASR system A BLSTM based AM is commonly regarded as an
offline ASR system since a vanilla BLSTM can be decoded after an overall input speech is obtained.
This paper successfully deploys a CTC-BLSTM-AM-based online ASR by using the proposed
multichannel parallel acoustic score computation and DNN-VAD methods. It is noted that the
proposed system can be employed for any language if proper acoustic and language models are
prepared for the language though our experiments are conducted only for Korean in this paper.
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Parallel acoustic score computation using multichannel data Even though a BLSTM-based
online ASR system is successfully deployed using CTC-BLSTM, the number of concurrent
clients is still limited due to the massive computational complexity. The proposed acoustic score
computation method increases the number of concurrent clients by merging multichannel data
and by processing the data in parallel, which accelerates the GPU parallelization and reduces the
data transfer between CPU and GPU. From the ASR experiments, the number of concurrent clients
is increased from 22 to 44 by using the proposed parallel acoustic score computation method.
DNN-based voice-activity detector An online ASR system needs to send the recognized text
to a user as soon as possible even before the end of sentence is detected to reduce response
time. To this end, we propose a DNN-based voice-activity detector that detects short pauses in
a continuous utterance. The benefits of the proposed method are (a) to reduce user perceived
latency from 11.7 s to 5.41 s and 3.09 s respectively depending on the parameter with little
degradation in accuray and (b) this is done by the use of the acoustic model score used in ASR
without any auxiliary training or the additional computation while decoding.
ASR performance The proposed method maintains the accuracy performance whereas many
previous works degrade ASR performance.
Combination with additional optimization An additional optimization method that causes
performance degradation can be applied to the proposed ASR. For instance, we utilize a frame
skip method during Viterbi decoding to our ASR system. From the ASR experiments, the number
of concurrent clients is increased from 44 to 59 while the syllable error rate is degraded from 11.94
to 12.53%.

The rest of this paper is organized as follows. Section 2 describes our configuration of a server-
client-based ASR system, an acoustic score computation CTC BLSTM AM, and a baseline multichannel
acoustic score computation using a CSC BLSTM AM. Next, Section 3 proposes a fast multichannel
parallel acoustic score computation to support more clients and Section 4 proposes a DNN-VAD method
for a low-latency response. Section 5 shows our experimental setup and its performance comparison.
Finally, we conclude our findings in Section 6.

2. Baseline Multichannel Acoustic Score Computation of a CSC BLSTM AM

In advance to propose parallel multichannel acoustic score computation, we first introduce our
server-client-based ASR system and the use of a CTC BLSTM AM [30]. Then, we present a baseline
multichannel acoustic score computation method that is used in our CTC BLSTM-based online ASR.

2.1. Configuration of a Server-Client-Based ASR System

This section gives a detailed description on our server-client-based ASR system in terms of main
thread a decoder thread.

2.1.1. Main Thread of the Online ASR Server

When a client requests a connection to the ASR server, a main thread is created for the client,
which parses the messages from the client where the messages can be a begin-of-audio, audio segments,
an end-of-audio, and an end-of-connection. If the begin-of-audio message is received, the main thread
creates a decoder thread and prepares speech recognition. If an audio segment is obtained, the main
thread extracts a 600-dimensional speech feature vector for each 10 ms audio segment. That is, it extracts
40-dimensional log mel filterbanks for the 10 ms audio segment, and then stacks the features of the past
seven frames and the future seven frames. The extracted features are queued into a ring bufferR f eat,
to perform speech recognition whenever the decoding thread is ready. If the end-of-audio message
is received, the main thread waits to finish the decoder thread and terminates the decoder thread
and itself.
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2.1.2. Decoder Thread of the Online ASR Server

Whenever a decoder thread is in idle or ready state, the thread checks whether the size of the
speech features inR f eat is larger than a pre-defined minibatch size, Tbat. Tbat indicates the length of
the audio samples to be decoded at a time, and is defined during the initialization stage of the ASR
server. In this paper, we set Tbat as 200 frames, each of which is 2-s long [14,26,36].

If the decoder thread detects speech features that are larger than Tbat, the thread obtains the
speech features with a length of (Tbat+Tcxt), while those with a length of Tbat are popped fromR f eat.
Tcxt is the length of the audio samples for left or right context information [30]. In this paper, we set
Tcxt as 40 frames. The obtained features are used to calculate the acoustic scores of a CSC BLSTM AM
where the multichannel parallel decoding is proposed in Section 3. The acoustic scores are used in two
ways: (a) DNN-VAD and (b) Viterbi decoding. DNN-VAD aims to automatically send the decoded
text to the client even though no end-of-audio message is received from the client, where DNN-VAD is
proposed in Section 4. If DNN-VAD detects any short pause in an utterance, the thread finds optimal
texts up to the time, sends the texts to the client, and resets the search space of Viterbi decoding.
Viterbi decoding estimates the probabilities of possible paths using the acoustic scores and an n-gram
LM. The processes are repeatedly performed until the decoder thread receives an end-of-audio or
end-of-connection message.

2.2. The Use of a CSC BLSTM AM

To efficiently incorporate a BLSTM AM, our ASR system utilizes a CSC-based backpropagation
through time (BPTT) and decoding [30]. That is, a CSC comprises an audio chunk of fixed length
and its left/right chunks. The chunk size is relatively smaller than the input audio. The ASR system
employing the CSC BLSTM AM can reduce the training time and decoding latency as the CSC-based
approach regards a CSC as an isolated sequence.

Let us assume the speech features of an overall input sequence of length Ttot, as shown in Figure 2a.
As mentioned in Section 2.1.1, the decoder thread obtains a speech feature vector with length Tbat
+ Tcxt. The features of length Tbat and those of length Tcxt are used as the features to be decoded at
the time and its future context, which are drawn in yellow and in gray, respectively, in Figure 2b.
As shown in Figure 2c, each speech feature vector is split into a set of chunks of length Tchunk. Then,
CSC vectors are generated by appending the past features of length Tcxt and the future features of
length Tcxt for each split chunk, as shown in Figure 2d. The length (Twin) of a CSC vector and the
number (Nseg) of CSC vectors are defined in Equation (1) and Equation (2), respectively.

Twin = Tchunk + 2× Tcxt, (1)

Nseg = Tbat/Tchunk. (2)

For an efficient use of GPU parallelization, the CSC vectors are merged into a CSC matrix in the
form of Nseg × Twin, as shown in Figure 2e. By using the CSC matrix, the acoustic scores are calculated
using a CSC BLSTM AM. In this paper, Tchunk and Tcxt are set as 20 and 40 frames, respectively.
Therefore, Twin and Nseg are 100 frames and 10.
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Figure 2. Context-sensitive-chunk (CSCs) of our ASR system with Tbat of 200 frames, Tchunk of 20 frames,
and Tcxt of 40 frames: (a) extracted speech features from the overall input sequence, (b) a set of speech
feature vectors where each vector is obtained fromR f eat and the size is (Tbat+Tcxt), (c) a set of chunks
where the chunk size is Tchunk, (d) a set of CSCs where the CSC size is (Tcxt+Tchunk+Tcxt), and (e) a CSC
matrix for a speech feature vector.

2.3. Baseline Multichannel Acoustic Score Computation

When the decoder thread is initialized, the run-time memories are allocated. As shown in
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Figure 3. Main procedure of the baseline multichannel acoustic score computation based on CSC
bidirectional long short-term memory acoustic model (BLSTM AM). The green- and blue-shaded boxes
indicate the CPU and GPU memories, respectively.
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Moreover, the sizes of the run-time memories are summarized in Table 1. That is, the size of
MCPU

f eat_vec is Nbat, which is defined as

Nbat = Tbat/Tshi f t ×N f eat_dim, (3)

where Tshi f t and N f eat_dim are the sizes of frame shift and the speech feature dimension, respectively,
which are 10 and 600 frames, as described in Section 2.1.1. Therefore, Nbat is 12000. The size of
MCPU

f eat_mat orMGPU
f eat_mat is Nwin ×Nseg and that of a CSC, Nwin, is defined as

Nwin = Twin/Tshi f t ×N f eat_dim. (4)

thus, Nwin is 6000. The size ofMCPU
prob_vec andMGPU

prob_vec is Nnode, which is the number of output nodes
of a BLSTM AM and is set as 19901 in this paper.

Table 1. Summarization of the allocated run-time memories at CPU and GPU of the baseline
multichannel acoustic score computation.

Thread Name Device Size

Childi MCPU
f eat_vec CPU Nbat

Childi MCPU
f eat_mat CPU Nwin ×Nseg

Childi MCPU
prob_vec CPU Nnode

Childi MGPU
f eat_mat GPU Nwin ×Nseg

Childi MGPU
prob_vec GPU Nnode

Whenever a decoder thread is in idle state and R f eat contains speech features more than Tbat,
the decoder thread obtains a speech feature vector of length Tbat. The speech feature vector is reformed
into CSC vectors, which are merged into a CSC matrix. The CSC matrix is then transmitted from CPU
to GPU. On GPU, the CSC matrix is normalized using a linear discriminant analysis (LDA)-based
transform [37] and the acoustic scores of the matrix are calculated using the BLSTM AM. Next,
the acoustic scores are transmitted from GPU to CPU and used in the subsequent steps, such as
DNN-VAD and Viterbi decoding. The explained procedures are shown in Figure 3b.

For each feature with a duration of Tbat per client, the transmission sizes are Nwin ×Nseg and
Nnode for a CSC matrix from CPU to GPU and for acoustic scores from GPU to CPU, respectively,
as shown in Table 2. Moreover, the transmission frequency is increased byNchannel times if the number
of concurrent clients is Nchannel . However, the frequent data transfer tends to degrade the overall
computational performance of a system and causes a small utilization of the GPU [38,39].

Table 2. Summarization of the frequency and transmission sizes between CPU and GPU for each
feature with a duration of Tbat if the number of concurrent clients is Nchannel , when using the baseline
multichannel acoustic score computation.

Transmission Frequency Size

from CPU to GPU Nchannel Nwin ×Nseg
from GPU to CPU Nchannel Nnode

3. Proposed Fast Multichannel Parallel Acoustic Score Computation

Using the baseline acoustic score computation, the number of concurrent clients is restricted
due to the frequent data transfer between GPU and CPU and the low parallelization of the GPU [39].
To support more concurrent clients in real time, this section proposes a fast multichannel parallel
acoustic score computation method by accelerating the GPU parallelization and reducing the
transmission overhead.
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As shown in Figure 4, the proposed fast multichannel parallel acoustic score computation is
performed with one decoding thread per client and an additional worker thread, whereas the baseline
method is performed with no worker thread. When an online ASR server is launched, the server
creates a worker thread for a GPU parallel decoding and initializes the maximum number (N CPU

parallel)

of concurrent clients and that (N GPU
parallel) of the GPU parallel decodings. Once the worker thread is

initialized, the run-time memories are allocated, as shown in Figure 4a. These memories comprise
(a) three types of CPU memories—MCPU(W)

f eat_vec_ f for input feature vectors,MCPU(W)
f eat_vec for feature vectors

to be decoded, andMCPU(W)
prob_vec for acoustic scores, and (b) three types of GPU memories,MGPU

f eat_vec for

feature vectors to be decoded,MGPU
f eat_mat for a CSC-based matrix, andMGPU

prob_vec for acoustic scores.
As shown in Figure 4b, one run-time CPU memory is also allocated when a decoder thread for a client
is initialized. The run-time CPU memoryMCPU

prob_vec is for the acoustic scores. Moreover, the sizes of
the run-time memories are summarized in Table 3.
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Figure 4. Main procedure of the proposed fast multichannel parallel acoustic score computation
using a CSC BLSTM AM. The green- and blue-shaded boxes indicate a CPU memory and a GPU
memory, respectively.

Table 3. Summarization of the allocated run-time memories at CPU and GPU of the proposed fast
multichannel parallel acoustic score computation.

Thread Name Device Size

Worker MCPU(W)
f eat_vec_ f CPU Nbat ×Nchannel

Worker MCPU(W)
f eat_vec CPU Nbat ×N GPU

parallel

Worker MGPU
f eat_vec GPU Nbat ×N GPU

parallel
Worker MGPU

f eat_mat GPU Nwin ×Nseg ×N GPU
parallel

Worker MGPU
prob_vec GPU Nnode ×N GPU

parallel

Worker MCPU(W)
prob_vec CPU Nnode ×N GPU

channel

Childi MCPU
prob_vec CPU Nnode

Whenever a decoder thread is in idle state and R f eat contains speech features more than Nbat,
the decoder thread obtains a speech feature vector of length Tbat and stores it in the CPU memory of
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the worker thread,MCPU(W)
f eat_vec_ f . For instance of an i-th client, the vector is stored atMCPU(W)

f eat_vec_ f with
the offset index of

Nbat × i. (5)

Then, the decoder thread waits for the acoustic scores to be calculated by the worker thread.
On the other hand, whenever the worker thread is in idle state and there are buffered speech feature
vectors inMCPU(W)

f eat_vec_ f , the worker thread pops k speech feature vectors fromMCPU(W)
f eat_vec_ f in first-in,

first-out (FIFO) order where k is the number of feature vectors to be decoded at a time and the
maximum is N GPU

parallel . The obtained k vectors are merged atMGPU
f eat_vec, and then transmitted from CPU

to GPU (MGPU
f eat_vec). On GPU, the transmitted vectors are reformed into CSC-based vectors, which are

merged into a CSC-based matrix in the cascaded form of the CSC-based matrix of each speech feature
vector, as follows:

CSC(1)

...
CSC(k)

 =




CSC(1)

1,1 · · · CSC(1)
1,i · · · CSC(1)

1,Nwin
...

...
...

CSC(1)
Nseg ,1 · · · CSC(1)

Nseg ,i · · · CSC(1)
Nseg ,Nwin


...

CSC(k)
1,1 · · · CSC(k)

1,i · · · CSC(k)
1,Nwin

...
...

...

CSC(k)
Nseg ,1 · · · CSC(k)

Nseg ,i · · · CSC(k)
Nseg ,Nwin




, (6)

where CSC(i) indicates the CSC-based matrix of the i-th speech feature vector of MGPU
f eat_vec. Then,

the matrix is normalized using an LDA-based transform [37] and the acoustic scores are calculated
intoMGPU

prob_vec using the CSC BLSTM AM. The acoustic scores are in the following cascaded form:[
prob1 · · · probk

]
=[[

prob(1)1 · · · prob(1)i · · · prob(1)Nnode

]
· · ·

[
prob(k)1 · · · prob(k)i · · · prob(k)Nnode

]] , (7)

where probi means the acoustic scores of the i-th speech feature vector ofMGPU
f eat_vec. Next, the acoustic

scores are transmitted from GPU to CPU. For instance of probi, if it is for the m-th client, probi is stored
atMCPU(W)

prob_vec with an offset index of
Nnode ×m. (8)

If the waiting decoder thread detects the acoustic scores atMCPU(W)
prob_vec with the corresponding

offset index of Equation (8), the decoder thread copies them into its local memory (MCPU
prob_vec) and

proceeds the subsequent steps as the baseline method. The descried procedures are shown in Figure 4c.
As shown in Table 4, the transmission sizes are Nbat × k for k speech feature vectors from CPU

to GPU and Nnode × k for acoustic scores from GPU to CPU, respectively, when the worker thread is
ready andMCPU(W)

f eat_vec_ f contains k speech feature vectors. In addition, the frequency is varied according

to the size of k from Nchannel/N GPU
parallel to Nchannel .

Assuming that the number of concurrent clients is Nchannel and the number of decoded speech
feature vectors obtained by the proposed method is 1 ≤ k ≤ N GPU

parallel , the main differences between
the baseline and proposed acoustic score computation methods are as follows:

Decoding subject(s) The decoder thread of each client calculates acoustic scores in the baseline
method, whereas the additionally used worker thread does so in the proposed method.
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Transmission frequency The transmission occurs 2×Nchannel times in the baseline method
and 2× k times in the proposed method. Therefore, the proposed method reduces the transfer
frequency by k.
Transmission size For a transmission from CPU to GPU, the baseline method transmitsNwin ×
Nseg for each client, whereas the proposed method Nbat × k does so for each decoding turn.
The total transmission data size to GPU is reduced by the proposed method. On the other
hand, for the transmission from GPU to CPU, the baseline method transmits Nnode for each client,
whereas the proposed method transmits Nnode × k for each decoding turn. The total transmission
size to CPU is equal.
Decoding size at a time The baseline method decodes one speech feature vector, whereas the
proposed method decodes k vectors. This leads to more GPU parallelization.

Table 4. Summary of the frequency and transmission sizes between CPU and GPU for each feature
with a duration of Tbat if the number of concurrent clients is Nchannel and the number of decoded
speech feature vectors is k ≤ GPUparallel , when using the proposed fast multichannel parallel acoustic
score computation.

Transmission Min. Frequency Max. Frequency Size

from CPU to GPU Nchannel/N GPU
parallel Nchannel Nbat×k

from GPU to CPU Nchannel/N GPU
parallel Nchannel Nnode×k

4. Proposed DNN-Based VAD Method for Low Latency Decoding

Viterbi decoding involves two processes: one estimates probabilities of states in all possible paths,
and the other finds an optimal path by backtracking the states with the highest probability. The ASR
system yields the results only after both processes are completed, usually at the end of an utterance.

In an online ASR system recognizing long utterances, the end point of an utterance is not known
in advance and deciding the back-tracking point affects user experience in terms of response time.
If the backtracking is performed infrequently, the user will receive a delayed response, and in the
opposite case, the beam search will not find the optimal path that reflects the language model contexts.

In our system, VAD based on an acoustic model for ASR is used to detect short pauses in
continuous utterance, which will trigger backtracking. Especially, the acoustic model is built with
a deep neural network; hence, we call it DNN-VAD. Here, DNN includes not only a fully connected
DNN but also all types of deep models, including LSTM and BLSTM. As explained in previous sections,
in our ASR system, BLSTM is used to compute a posterior probability of each state of triphone for each
frame. By re-using these values, we can also estimate the probability of non-silence for a given frame
with little additional computational cost.

Each output node of the DNN model can be mapped into states of nonsilence or silence phones.
Let the output of the DNN model in the i-th node be oi. Then, the speech probability of the given frame
is computed as

log Pnonsil = max
i

oi, where i ∈ non-silence states (9)

log Psil = max
i

oi, where i ∈ silence states (10)

LLRnonsil = log Pnonsil − log Psil(t), (11)

where LLR is log likelihood ratio. Each frame at time t is decided to be a silence frame if LLRnonsil is
smaller than the predefined threshold.

s(t) =

{
1 if LLRnonsil(t) < Tl

0 otherwise.
(12)
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In addition, for smoothing purpose, the ratio of silence frames in a window of length (2W + 1) is
computed and compared to the predefined threshold Tr.

ŝ(t) =

{
1 if ∑W

w=−W s(t + w)/(2W + 1) > Tr

0 otherwise.
(13)

All computations in from Equation (9) to Equation (13) are performed within each minibatch,
and the frame at t when ŝ(t − 1) = 1 and ŝ(t) = 0 is regarded as the short pause in an utterance.
As will be explained in the Section 5.3, the frequent backtracking reduces the response time but also
degrades the recognition accuracy. Thus, a minimal interval is set between the detection of short
pauses to control the trade-off.

5. Experiment

We select Korean as the target language for the experiments conducted on the proposed methods
(Though our experiments are based on Korean speech recognition, the proposed method can be applied
to a CTC BLSTM based speech recognition for any language), and all experiments are performed on
two Intel(R) Xeon(R) Silver 4214 CPU @ 2.20 GHz and single NVIDIA GeForce RTX 2080 Ti. Section 5.1
describes the corpus and baseline ASR system and compares the performance of the ASR systems
employing different AMs. Next, Sections 5.2 and 5.3 present the performances of the proposed parallel
acoustic score computation method and the DNN-VAD method, respectively.

5.1. Corpus and Baseline Korean ASR

We use the 3440-h Korean speech and its transcription data to train the baseline Korean ASR
system. The speech data comprise approximately 19-million utterances, which are recorded in
various environments, such as speaker, noise environment, recording device, and recording scripts.
Each utterance is sampled at a rate of 16 kHz and no further augmentation methods are adopted.
To evaluate the proposed methods, we prepare a test set recorded from documentary programs.
The recordings include voices of narrators and interviewee with and without various background
music and noises. The recordings are manually split into 69 segments, each of which are 29.24-s long,
on average, and 33.63 min in total.

Each utterance of the training speech data is converted into 600-dimensional speech features.
With the extracted speech features, a CSC BLSTM AM is trained using a Kaldi toolkit [40], where the
chunk and context sizes of the CSC are 20 and 40 ms, respectively. The AM comprises one input
layer, five BLSTM layers, a fully connected layer, and a soft-max layer. Each BLSTM layer comprises
640 BLSTM cells and 128 projection units, while the output layer comprises 19901 units. For the
language model, 38 GB of Korean text data is first preprocessed using text-normalization and word
segmentation methods [41], and then, the most frequent 540k sub-words are obtained from the text
data (For Korean, a sub-word unit is commonly used as a basic unit of an ASR system [42,43]). Next,
we train a back-off trigram of 540k sub-words [41] using an SRILM toolkit [44,45].

During decoding, the minibatch size is set to 2 s. Although a larger minibatch size increases the
decoding speed owing to the bulk computation of GPU, the latency also increases. We settle into 2 s of
minibatch size as a compromise between decoding speed and latency [14,26,36].

To compare the baseline ASR system, we additionally train two types of AMs—(a) DNN-based
AM and (b) LSTM-based AM. A DNN-based AM comprises one input layer, eight fully connected
hidden layers, and a soft-max layer. Each hidden layer comprises 2048 units and the output layer
comprises 19901 units. An LSTM-based AM consists of one input layer, five LSTM layers, a fully
connected layer, and a soft-max layer. Each LSTM layer consists of 1024 LSTM cells and 128 projection
units, and the output layer consists of 19901 units. The ASR accuracy performance is measured using
SyllER, which is calculated as following,
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SyllER =
S + D + I

N
× 100, (14)

where S, D, I, and N are the numbers of substuted syllables, deleted syllables, inserted syllables,
and reference syllables, respectivey. As shown in Table 5, the BLSTM AM achieves an error rate
reduction (ERR) of 20.66% for the test set when compared to the DNN-based AM. In addition,
it achieves an ERR of 11.56% for the test set when compared to the LSTM-based AM. Therefore,
we employ the BLSTM AM as our baseline ASR system for achieving better ASR accuracy performance
(As for the comparision, the Korean speech recognition experiments with the same data set using the
Google Cloud API achieved an average SyllER of 14.69%).

Table 5. Comparison of SyllER (%) of the Korean online ASR systems employing deep neural network
(DNN), LSTM, and BLSTM AMs for the test set. Our baseline ASR system uses the BLSTM AM.

SyllER
ERR with

DNN LSTM

DNN 15.05 - -
LSTM 13.50 10.30 -

BLSTM 11.94 20.66 11.56

Next, we evaluate the multichannel performance of ASR systems employing the three AMs by
examining the maximum number of concurrent clients where an ASR system can be performed in real
time. That is, multiple clients are parallelly connected to an ASR server and each client requests to
decode the test set. We then measure the real time factor for each client using the following equation

RTFi =
The processing time for the client i

The total duration of the test set
. (15)

Next, we confirm that the number of concurrent clients are performed in real time if the average
real-time factors for the concurrent clients are smaller than 1.0. As shown in Table 6, the BLSTM AM
supports 22 concurrent clients for the test set, whereas the DNN- or LSTM- based AMs support more
concurrent clients. Hereafter, an experimental comparison is performed with only LSTM-based AM as
our ASR system is optimized for uni- or bidirectional LSTM-based AMs.

Table 6. Comparison of the multichannel performance of the Korean online ASR systems employing
DNN-, LSTM-, and BLSTM AMs for the test set. The evaluation metric is the maximum number of
concurrent clients where an ASR system can be performed in real time.

Max. Clients

DNN 27
LSTM 33

BLSTM 22

Moreover, we evaluate the CPU and GPU usages (%) of the ASR systems using the baseline
acoustic score computation method of Section 2 for (a) the LSTM-based AM and (b) the BLSTM AM.
The experiments are performed with the test set. From Figure 5, the averaged usages of the CPU and
GPU are 83.26% and 51.71% when the LSTM-based AM is employed, and 27.34% and 60.27% when
the BLSTM AM is employed. The low usages of GPU can result from the frequent data transfer and
low GPU parallelization. Moreover, the low usage of CPU can be observed for the BLSTM AM as CPU
takes a long time to wait for the completion of acoustic score computation.
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Figure 5. Comparison of CPU and GPU usages (%) of ASR systems using the baseline acoustic score
computation method for (a) LSTM-based AM and (b) BLSTM AM with the test set. The green and blue
lines indicate the CPU and GPU usages.

5.2. Experiments on the Proposed Fast Parallel Acoustic Score Computation Method

The proposed fast parallel acoustic score computation method can be utilized by replacing the
baseline acoustic score computation method with no AM changes in the baseline Korean ASR system.
As shown in Table 7, the ASR system using the proposed method of Section 3 achieves the same SyllER
when compared to the system using the baseline method of Section 2.3. No performance degradation
can be obtained since we only modify the way how the acoustic scores are calculated by accelerating
a GPU parallelization. Moreover, the ASR system using the proposed method supports 22 more
concurrent clients for the test set, when compared to the system using the baseline method. Therefore,
we conclude that the proposed acoustic score computation method increases the concurrent clients
with no performance degradation.

Table 7. Comparison of SyllER (%) and the multichannel performance of the Korean online ASR systems
using the baseline and proposed acoustic score computation methods of BLSTM AM, with the test set.

SyllER (%) Max. Clients

baseline 11.94 22
proposed 11.94 44

To analyze the effects of the proposed acoustic score computation method, we compare the
CPU and GPU usages (%) of ASR systems using the baseline and proposed methods for the test set.
The averaged usages of the CPU and GPU are 78.58% and 68.17%, respectively, when the proposed
method is used. By comparing Figure 5b and Figure 6a, the averaged usages of the CPU and GPU are
improved by 51.24% and 7.90%, respectively. It can be concluded that the proposed method reduces the
processing time of GPU and the waiting time of CPU by reducing the transfer overhead and increasing
the GPU parallelization. In addition, we examine the number (k) of parallel decoded feature vectors
at each time stamp when using the proposed method, as shown in Figure 6b. The parallel decoded
feature vectors varies from 2 to 26, which is depend on the subsequent step, an optimal path search of
Viterbi decoding.

For further improvement in the multichannel performance, some optimization methods can be
applied, such as beam pruning. In this study, we apply a simple frame skip method during a token
passing-based Viterbi decoding. That is, a token propagation is only performed in the odd time stamps
during Viterbi decoding. From the experiments of the proposed acoustic score computation, the ASR
system combined with the frame skip method supports up to 59 concurrent clients, although the
SyllERs are degraded by 4.94% for the set, when compared to the ASR system without the frame skip
method, as shown in Table 8.
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Figure 6. Performances of an ASR system using the proposed fast parallel acoustic score computation
method of BLSTM AM with the test set, in terms of (a) CPU and GPU usages (%) and (b) the number
(k) of parallel decoded feature vectors of the proposed method for each acoustic score computation
time. The green and blue lines indicate the CPU and GPU usages, respectively.

Table 8. Comparison of SyllER (%) and the multichannel performance of the Korean online ASR
systems using the proposed acoustic score computation method of BLSTM AM with/without the frame
skip technique on search space expansion during Viterbi decoding, with the set set.

SyllER (%) Max. Clients

proposed decoding 11.94 44
+ skip frame 12.53 59

Again, we measure the CPU and GPU usages (%) of the ASR systems employing the proposed
method with/without the frame skip method with the test set, as shown in Figure 7a. The averaged
usages of the CPU and GPU are measured as 47.24% and 71.87%. Note that the frame skip method
unburdens the CPU load, and thus, the GPU usage is accordingly improved. Moreover, Figure 7b
compares the number of active hypotheses during Viterbi decoding.

In addition, we examine the number (k) of parallel decoded feature vectors at each time stamp
when using the proposed method, as shown in Figure 7c. The parallel decoded feature vectors varies
from 22 to 35. When compared to the Figure 6b, the parallel decoded vectors are increased due to the
reduced computation during Viterbi decoding when combining the frame skip method.

5.3. Experiments on DNN-VAD

DNN-VAD is used to reduce the waiting time for a user to receive the ASR results of what they
said by triggering backtracking at the possible pause among user utterances. However, frequent
backtracking at an improper time can degrade the recognition performance. Hence, in the experiments,
the minimum interval between two consecutive backtracking points is set to various values. Table 9
shows the segment lengths divided by DNN-VAD and the recognition accuracy with and without
DNN-VAD for test set 1. For example, when the minimum interval is limited to 6 s, an utterance is split
into 3.6 segments of 8.2 s each, on average, and the word error rate (WER) is 11.13, which is slightly
reduced compared to the case in which VAD is not used, where WER is 11.02.

As the minimum interval reduces, the number of segments increases and the length of each
segment increases, which means more frequent backtrackings and smaller user-perceived latencies.
The accuracy degrades only slightly, which means that the backtracking point is selected reasonably.
The internal investigation confirms that the segments are split mostly at the pause between phrases.
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Figure 7. Performances of an ASR system using both the proposed fast parallel acoustic score
computation method of BLSTM AM and the frame skip method, with the test set, in terms of (a) CPU
and GPU usages (%), (b) number of hypothesis during Viterbi decoding, and (c) the number (k) of
parallel decoded feature vectors of the proposed method for each acoustic score computation time.
The green and blue lines indicate the CPU and GPU usages, and the straight and dotted lines indicate
the proposed decoding without/with frame skip.

Table 9. Average number and duration of split segments and syllable error rates (%) with and without
DNN-voice-activity detector (VAD).

Use of Minimum Number of Mean and Std. Dev.
DNN-VAD Interval(sec) Segments of Segment Durations(sec) WER(%)

No - 29.24 - 11.02
Yes 6 3.6 8.2 ± 3.1 11.13
Yes 4 4.7 6.3 ± 2.9 11.23
Yes 2 6.6 4.4 ± 2.6 11.34
Yes 1 8.3 3.5 ± 2.3 11.29

To measure the waiting time from the viewpoint of users, the user-perceived latency suggested
in Reference [19] is used. User-perceived latency is measured for each word uttered, and estimated
empirically by measuring the difference in the timestamp of when a transcribed word is available to
the user and that in an original audio. The aligned information in the recognition result is used as the
timestamp of a word.

The average user-perceived latency is 11.71 s for test set 1 without DNN-VAD, which is very
large since all results are received after the end of segments are sent to the server. When DNN-VAD
is applied, the average latency is reduced to 5.41 s with a minibatch of 200 frames and 3.09 s with
a minibatch of 100 frames. For a detailed analysis, the histogram of latency for each word is shown in
Figure 8.
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(a) (b) (c)

Figure 8. Histogram of the user-perceived latency for all words in test set 1. (a) Without VAD
(b) WithVAD, minibatch 200 (c) WithVAD, minibatch 100.

6. Conclusions

In this paper, we presented a server-client-based online ASR system employing a BLSTM AM,
which is a state-of-the-art AM. Accordingly, we adopted a CSC-based training and decoding approach
for a BLSTM AM and proposed the following: (a) the parallel acoustic score computation to support
more clients concurrently and (b) DNN-VAD to reduce the waiting time for a user to receive the
recognition results. On the designed server-client-based ASR system, a client captures the audio
signal from a user, sends the audio data to the ASR server, receives a decoded text from the server,
and presents it to the user. The client can be deployed in various devices, from low to high performance.
On the other hand, a server performs speech recognition using high-performance resources. That is,
the server manages the main thread and decoder thread for each client and an additional worker
thread for the proposed parallel acoustic computation method. The main thread communicates with
the connected client, extracts speech features, and buffers them. The decoder thread performs speech
recognition and sends the decoded text to the connected client. Speech recognition is performed in
three main steps: acoustic score computation using a CSC BLSTM AM, DNN-VAD to detect a short
pause in a long continuous utterance, and Viterbi decoding to search an optimal text using an LM.
To handle more concurrent clients in real time, we first proposed the acoustic score computation
method by merging the speech feature vectors collected from multiple clients, to reduce the amount of
data transfer between the CPU and GPU, and calculating the acoustic scores with the merged data to
increase GPU parallelization and to reduce the transfer overhead between the CPU and GPU. Second,
we proposed DNN-VAD to detect a short pause in an utterance for a low latency response to a user.
The Korean ASR experiments conducted using the broadcast audio data showed that the proposed
acoustic score computation method increased the maximum number of concurrent clients from 22 to
44. Furthermore, by applying the frame skip method during Viterbi decoding, the maximum number
of concurrent clients was increased to 59, although SyllER was degraded from 11.94% to 12.53%.
Moreover, the average user-perceived latencies were reduced to 5.41 and 3.09 s with a minibatch of
200 frames and 100 frames, respectively, when the proposed DNN-VAD was used.
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Abbreviations

The following abbreviations are used in this manuscript:

AM acoustic model
ASR automatic speech recognition
BLSTM bidirectional long short-term memory
BPTT backpropagation through time
CSC context-sensitive-chunk
CTC connectionist temporal classification
DNN deep neural network
E2E end-to-end
ERR error rate reduction
LC latency-controlled
LDA linear discriminant analysis
LLR log likelihood ratio
LM language model
LSTM long short-term memory
LVCSR large vocabulary continuous speech recognition
MoChA monotonic chunkwise attention
RNN recurrent neural network
RNN-T RNN transducer
SyllER syllable error rate
TDNN time-delay neural network
VAD voice activity detector
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