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Abstract: Label Propagation Algorithm (LPA) is a fast community detection algorithm. However,
since each node is randomly assigned a different label at first, there is serious randomness in the
label updating process of LPA, resulting in great instability of detection results. This paper proposes
a modularity-based incremental LPA (MILPA) to address this problem. Unlike LPA, MILPA first
assigns all nodes the same label, and then repeatedly uses divide strategy to split locally dense
connected nodes into a community and give them a new label. After that, MILPA uses modularity
gain as the optimization function to fine-tune the label of nodes so as to obtain an optimal partition.
The proposed MILPA has been compared with LPA and other known methods. Experimental results
show that MILPA has the best and most stable performance in LFR benchmark networks and is
comparable to the best algorithm in many real networks.
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1. Introduction

Community structure is an important feature of complex networks [1,2]. It can help us understand
the nature or function of networks [3]. For instance, communities are likely to group proteins having the
same specific function within the cell and they play a particularly important role in our understanding
of how specific biological functions are encoded in cellular networks [4–6]. In most cases, however,
the community structure of a network is not known in advance and needs to be detected by algorithms.
Therefore, developing algorithms to detect community structure, i.e., community detection, has been
one of the most widely studied topics in network science. From a classical view, community detection
is a clustering process to detect communities in a large network, because the edge density of nodes
inside each community is greater than that between communities. However, the current view focuses
on the probability that edges may be generated between nodes. It indicates that community is a
preferential linking pattern [7,8].

In the last two decades, many scholars have performed extensive studies on how to identify the
community structure of a complex network. A number of powerful methods have been put forward
to address this problem, which can be generally divided into three categories: divisive, modularity
optimization based, and agglomerative algorithms.

Divisive algorithms aim to detect inter-community edges and then remove these links from
the network, including the GN algorithm proposed by Newman [9]. However, GN has a high
computational complexity, O(n3), where n is the number of nodes in a network. To improve the
efficiency of GN, Radicchi et al. [10] proposed a fast splitting algorithm to find the edge set with the
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minimum clustering coefficient (C) by calculating the C of each edge in a network, and then removing
these edges to uncover the community structure.

The second category of algorithms are based on modularity optimization [11–14]. Modularity
was originally introduced by Newman and Girvan to define a stopping metric for the GN algorithm,
and then Newman built on it to design a fast greedy algorithm (Fastgreedy) [15], which improves
the execution speed of GN. Yet, in a later study [16], Clauset et al. pointed out that the update of
the adjacency matrix in Newman’s algorithm involves a great number of useless operations. Thus,
they utilized complex data structure, such as balanced binary trees and the largest heap, to store
data, drastically reducing the complexity of the Fastgreedy algorithm. Another well-known and fast
approach is the Louvain algorithm proposed by Blondel et al. [17], which involves two steps. In the
first step of modularity optimization, each node is put into the community of the neighbor that yields
the largest increase of modularity as long as it is positive. In the second step of community aggregation,
communities resulted from the first step are aggregated into new nodes to reconstruct a new network.
The two steps of this algorithm are then repeated until the communities do not change.

Examples of agglomerative algorithms include LPA proposed by Raghavan et al. [18].
The advantages of LPA are simple and easy to realize, and it is unnecessary to predefine the number
and the size of communities. It only needs to use the similarity of neighbor nodes, that is, whether they
are closely connected in this community, to determine whether they belong to the same community.
In addition, LPA has linear time complexity so it can identify the community structure of large
networks. However, as LPA always randomly selects a node to start spreading labels, which makes
some nodes that are neither tightly connected nor sparsely allocated to different communities during
each update process, resulting in some instability of detection results. To solve this problem, Barber
et al. [19] proposed a modularity-specialized LPA (LPAm) which uses modularity as an objective
function for optimization, so that the results of community detection are always in the direction of
increasing modularity. However, one obvious defect of this algorithm is that it is easy to fall into a
local optimal and it may misclassify the community of nodes. Based on LPA and LPAm, Li et al. [20]
proposed another improved LPA, called LPAMP, which first optimizes the modularity to obtain a
coarse clustering of nodes and then performs label propagation. LPAMP can reduce the randomness
of the LPA and improve the stability and accuracy of the community detection results, but it is slow
and cannot be used for large networks.

To solve the instability problem of LPA mentioned above, a modularity-based incremental LPA
(MILPA), is proposed in this paper. First, the node degree and the node membership are introduced
to determine initial community of nodes. After all nodes have initial labels, we define an objective
function based on modularity gain to guide the label updating of nodes. Experiments on both synthetic
networks and real-world networks show that the proposed MILPA greatly reduces the randomness of
the label updating process and has stable and great performance in community detection.

2. Methods and Materials

2.1. LPA

Here, we first introduce the basic steps of LPA [21]. Nodes in a network are initially given unique
labels. All nodes, in a random sequential order, perform this operation where each node takes the label
shared by the majority of its neighbors. If there is no unique majority, one of the majority labels is picked
randomly. In this way, labels propagate across the network: most labels will disappear, and others will
dominate. The process reaches a convergence when each node has the majority label of its neighbors.
Communities are defined as groups of nodes having identical labels at convergence. By construction,
each node has more neighbors in its community than in any other communities. The algorithm does
not deliver a unique solution. Due to the random initialization of labels and many ties encountered
along the process of label propagating, it is possible to derive completely different partitions every
time running the LPA on the same network, resulting in an instability problem, as mentioned above.
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2.2. Evaluation Metrics

2.2.1. Normalized Mutual Information

For a network with a known community structure, normalized mutual information (NMI) [22]
can be used to evaluate the coincidence degree between the ground truth and the result detected by
one algorithm, so as to measure the quality of this community detection algorithm. NMI is defined as

NMI(A, B) =
−2

∑CA
i=1

∑CB
j=1 log

(
Ni jN
NiN j

)
∑CA

i=1 Nilog
(Ni

N

)
+

∑CB
j=1 N jlog

(
N j
N

) (1)

where CA represents the ground truth, CB denotes the result detected by one algorithm N is a mixing
matrix where its row number is the number of real communities and its column number is the number
of communities detected by the algorithm. Ni j represents the number of nodes in real community i in
community j obtained by the algorithm, Ni and N j denote the sum of i row and the sum of j column,
respectively. Following can be known by analyzing Equation (1):

1. NMI = 1 when the community partition generated by one algorithm is consistent with the real
community structure.

2. NMI = 0 when the community partition generated by one algorithm is the opposite of the real
community structure.

3. NMI ∈ [0, 1] when the community partition generated by one algorithm is partly similar to the real
community structure. The closer to 1 the NMI value, the closer to the real community structure
the community detection result, and the better the performance of the algorithm.

2.2.2. Modularity

When the real community structure of a network is unknown, modularity [23] proposed by
Newman is the most popular quality function to assess the community detection result of one algorithm.
According to the general definition of community structure, nodes within the same community are
densely connected, and nodes in different communities are sparsely connected. Modularity is used to
measure whether a network has such a community structure, defined as

Q =

nc∑
c=1

 lc
m
−

(
dc

2m

)2 (2)

where m is the total number of edges in a graph, nc is the number of communities, lc is the number of
edges joining nodes of community lc and dc is the sum of degrees of the nodes of C. In Equation (2),
the first term of each summand is the part of edges of the network within the community, whereas
the second term represents the expected part of edges that would be there if the network was a
random graph with the same expected degree for each node. High values of modularity indicate good
community structure.

2.3. MILPA

To solve the instability problem mentioned in the introduction, this paper proposes the MILPA
to improve the performance of LPA. There are two steps in the label propagation process of MILPA.
The first step is incremental label propagation, and the other step is modularity-based label updating.
At the starting point, N nodes are given N unique labels in LPA. Unlike LPA, MILPA uses the opposite
strategy that all nodes are assigned the same label so that there is only one label at first. Then the
whole graph is partitioned into two groups and a new label is emerged. As this procedure goes on,
the number of labels increases gradually, so it is called incremental label propagation. After the end of
this process, our algorithm uses the modularity gain as the optimization function to fine-tune the label
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of nodes, i.e., modularity-based label updating, which greatly reduces the randomness of the label
updating process. The entire label propagation process of the algorithm is shown in Figure 1 and the
flow chart of the proposed algorithm is shown in Figure 2.
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Given an undirected network G with n nodes and m edges, the relationship between nodes u and
v is denoted by

Wuv =

{
0
1

}
(3)

where Wuv = 1 indicates that there is a connection between nodes u and v, while Wuv = 0 indicates
that there is no connection between them. The goal of the algorithm is to find a good partition with k
communities, C1, C2, . . . , Ck, to maximize the modularity. Note that there is no overlap between any
two communities Ci and C j, that is, each node belongs to only one community.

There are two important concepts in MILPA, intensity and membership degree. The intensity of
node u is defined as

Iu =
∑

v∈F (u)

wuv (4)

where F (u) denotes the neighbors of u. In an undirected network, Iu is the degree of u, i.e., ku.
The membership degree of a node indicates the degree to which it belongs to a community C, defined as

M(u, C) =

∑
v∈F (u) and v∈C wuv

Iu
. (5)

In fact, M(u, C) is equivalent to the ratio between the number of the neighbors of node u in
community C and the degree of u. A high value of membership degree indicates that the node is more
likely to belong to the community.
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Figure 2. The flow chart of MILPA.

Incremental label propagation. The detailed steps of this process are as follows:

1. All nodes in the network are assigned into a set τ and given the same label i = 1.
2. The intensity of all nodes in set τ is calculated according to Equation (4).
3. Among the nodes in τ, the node with the highest intensity and its neighbors are put into a new

set, denoted by C.
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4. For any node v ∈ C if the membership degree of v to C is less than ε, it indicates that node v is not
closely connected with other nodes in C, and then node v is deleted from C. When all nodes in C
satisfy M(u,C) ≥ ε, they are marked F.

5. A new label, i = i + 1, is assigned to these nodes in C, and then the set C is cleared.
6. Steps (2) to (5) are repeated to create new densely connected subgraphs until no new label is

generated, resulting in the initial community partition. The threshold of membership degree
ε = 0.5 in this paper since it is proved to be the best for most networks.

Modularity-based label updating. Incremental label propagation can greatly reduce the
randomness of LPA to obtain more stable community partition. However, when there are two
or more nodes having the highest intensity in step (3), one has to randomly select one from them so that
the solution derived from incremental label propagation may not be unique. Moreover, the solution
may not be the best partition. To improve the performance of our method, MILPA uses the modularity
gain as an optimization function to fine-tune the labels of nodes based on the initial community
partition. In particular, one calculates the modularity values before and after a node is moved to the
community of its neighbors from its original community. This can be seen in Figure 1, before and after
node i in community C1 is moved to community C2, the modularity respectively is

Qbe f ore =
lc1

m
− (

dc1

2m
)

2

+
lc2

m
− (

dc2

2m
)

2

, (6)

Qa f ter =
lc1 + ki,c1

m
− (

dc1 + ki

2m
)

2

+
lc2 − ki,c2

m
− (

dc2 + ki

2m
)

2

. (7)

where ki,c1 denotes the number of edges connected to node i in community C1 and ki,c2 denotes the
number of edges connecting node i with nodes in community C2.

Therefore, one has the modularity gain

∆Q = Qa f ter −Qbe f ore =
1
m

[
ki,c1 − ki,c2 −

ki(dc1 − dc2 + ki)

2m

]
. (8)

If the number of the label of a node’s neighbors is more than two, there will be multiple communities
for the node to move in. One can compute the ∆Q generated by each move and select the community
with the largest ∆Q (if ∆Q > 0). If there are two or more communities with the optimal ∆Q, then
one moves this node to one of them randomly. If the maximum of ∆Q is not positive, then this node
remains in the original community. Besides, when a node is moved to a new community, its label
is also updated. Until the labels of all nodes no longer change or a specified number of iterations is
reached, our MILPA method yields the final community partition.

2.4. Experimental Datasets

To verify the performance of the proposed MILPA, experiments are implemented on both LFR
benchmark datasets [24] and eight real network datasets, as shown in Tables 1 and 2. The performance
of various community detection algorithms, MILPA, LPA, LPAMP, Fastgreedy, GN and Louvain were
compared in this paper.

Table 1. LFR benchmark network parameters.

Networks N Mink Maxk Minc Maxc Mu

Group A 1000 20 50 20 100 0.1~0.5
Group B 5000 50 100 20 100 0.1~0.5
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Table 2. Real-world network datasets.

Networks Node Number Edge Number

Karate 34 78
Dolphins 61 159
Polbooks 105 441
Football 115 616

Email 1133 5451
Hamsterster 2426 16631

DM-CX 4040 76717
Facebook 4039 88234

2.4.1. LFR Networks

LFR benchmark is a widely used program to build artificial networks to test the performance of
community detection algorithms. It can flexibly generate high quality synthetic networks which are
close to the real networks. The LFR program provides a series of configuration parameters for users to
define, including the size of a network N, i.e., the number of nodes in a network; the maximum and
minimum of nodes’ degree, maxk and mink respectively; the maximum and minimum of nodes in a
community, maxc and minc respectively; the ratio of the number of links between communities and the
total number of edges in the network, mu, which indicates the significance of community structure in
the network. The smaller the value of mu is, the more obvious the community structure of a network is.
In this paper, the LFR program is used to generate two types of benchmark datasets, i.e., Group A and
Group B. Each network in Group A has 1000 nodes and different mu values ranging from 0.1 to 0.5.
Similarly, Group B has five networks with 5000 nodes. The two sets of data simulate small networks
and large networks, respectively.

2.4.2. Real-World Networks

The real network is not random but has some characteristics. For example, many nodes have
a small degree and also several nodes have a large degree. The nodes with a large degree play a
very important role in the entire network. In addition, the distribution of edges is not all uniform,
but is distributed more within the community, but less between the community. The network has
a community structure, which means that the nodes in the community are likely to have some
common attributes or play a similar role in the network. Community structures exist in many real
networks, such as social networks, biological networks, engineering networks, and political networks.
These real-world networks that are often used in community detection problems are applied to test
MILPA, which are Karate [25], Dolphins [26], Polbooks [27], Email [28], Football [29], Hamsterster [30],
DM-CX [31] and Facebook [32], as shown in Table 2.

3. Results

All the experiments were implemented in pycharm with python3.6 on a PC with 16 GB memory,
Intel core i7 processor and Win10 system. In the process of writing the algorithm, the networkx library
was mainly used.

3.1. NMI

In this experiment, LFR networks are applied to test the performance of MILPA, LPA, LPAMP,
Fastgreedy and Louvain. GN has a worst-case complexity y(n3) on a sparse graph that is infeasible in
large networks, so it is not taken into consideration. The NMI of each method in different networks of
each group is shown in Figure 3. The mu value in Every group is sampled at intervals of 0.1 at [0.1, 0.5].
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Figure 3. NMI of five methods in LFR networks of Group A and B.

From the results of Figure 3, the proposed MILPA is proved to be the best, followed by Louvain
and LPAMP. Especially in those networks with 5000 nodes, the NMI values of other methods show
a significant downward trend, whereas that of MILPA are always close to 1 as the mu varies. LPA
and Fastgreedy have rather worse performance that the NMI values of the two methods significantly
decrease as mu grows in both groups. Besides, LPA is unstable due to its large performance gap
between the two groups. In those networks with 1000 nodes, when mu ≥ 0.3, LPA has a sharp decline
of NMI and finally cannot detect communities at all.

MILPA, LPAMP and Louvain, as modularity-based methods, all have relatively stable performance
in the LFR networks. MILPA and LPAMP which are based on LPA show their improvements comparing
to LPA. As a greedy algorithm, Fastgreedy is easy to fall into local optimal solutions, resulting in the
worst performance.

3.2. Modularity

To test the ability of MILPA to detect the community structure of real networks, eight real-world
datasets are applied, including four small networks and four large networks. To better show the effect
of community division, three small networks are selected and their results of community detection are
shown in Figure 4. The nodes in a community are marked with the same color and form a circle. It can
be seen that most edges are inside the community and a few of edges are between the communities.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 
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Then, to show the stability of the proposed MILPA, twenty independent tests are performed on
these networks with LPA, LPAMP, and MILPA, and the results of three small networks are shown
in Figure 5. Firstly, it can be clearly seen from this figure that the average modularity of MILPA is
much higher than that of LPA and LPAMP. Secondly, the modularity distribution of LPA is relatively
scattered, and the difference between the maximum and minimum of its modularity in each network is
much larger than MILPA. Besides, while the modularity of LPAMP may sometimes be greater than
that of MILPA, the overall stability of MILPA is better than that of LPAMP. The same observations can
be obtained from other networks.
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For a further comparison, three other methods are also used for community detection, i.e.,
Fastgreedy, GN, and Louvain. To ensure the effectiveness of the results, every experiment is performed
ten times independently and the average modularity of each method in each network is shown in
Figure 6. These methods are sorted according to their modularity in descending order in each chart
of this figure. Note that in four large networks, GN and LPAMP take a lot of time, so they are
not considered. It is evident that, among these networks, MILPA shows outstanding performance
compared to LPA, LPAMP, GN, and Fastgreedy, and it is only second to the best method Louvain.
Moreover, in four small networks, MILPA is almost as good as Louvain and always better than other
methods. Another significant phenomenon is that with the rise of network size, the performance
gap between methods becomes larger. For instance, the performance of MILPA is improved by no
more than 14% in four small networks compared with LPA, while it achieves 16.6%, 23.9%, 32.3% and
58.1% improvement in four large networks, Email, Facebook, DM-CX, and Hamsterster, respectively.
There is no doubt that LPA is the worst of these methods since its modularity is the lowest in six of
eight networks.

It can be observed from above results that, no matter in a small network or a large network,
MILPA can achieve a high modularity value and greatly improve the stability of the standard LPA in
community detection.
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4. Conclusions and Future Work

This paper proposed a new approach, namely MILPA, to detect community structures in networks.
While it is an improved version of LPA, MILPA has several unique features. The major difference
is that it takes the incremental strategy to carry out label propagation which is the opposite of LPA.
In the incremental strategy, MILPA always centers on the node with the highest intensity and starts to
find other neighbors that are closely connected, so it greatly reduces the randomness of the algorithm.
Experiment results have shown that this strategy can speed up the convergence of label propagation
and greatly reduce the randomness of the process. Another feature of MILPA is the introduction of
modularity optimization, which enables some nodes to be moved into more appropriate communities
to produce a better partition. This is a key factor of the proposed method to have better performance
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than LPA. Due to this operation, however, MILPA is slower than LPA which has linear time complexity.
Complexity analysis and improvements of MILPA will be important tasks in our future research.

One point that cannot be ignored is the execution order of the algorithm, that is, incremental
label propagation first and modularity-based label updating later. This combination, i.e., staged
operation, makes MILPA outperform GN, LPAMP, and Fastgreedy which are also based on modularity
optimization. The three existing methods do not take this operation but find the best community by
modularity optimization every time they move nodes, so it is easy for them to fall into local optimal
solutions. Interestingly, Louvain, the best algorithm which is based on modularity optimization, takes
the staged operation too. Thus, this phenomenon sheds some light on the design of community
detection algorithms.

There is also one important advantage of MILPA. Experiments on LFR benchmark networks
demonstrated that it can find community structure of a network even it is not obvious. As the community
structure of synthetic networks becomes more and more difficult to distinguish, the performance of
other algorithms (including Louvain) declines significantly, but the proposed algorithm maintains a
high detection performance. MILPA therefore may be viewed a high-quality competitor when new
methods are tested in LFR networks.

In summary, the proposed MILPA has a number of major improvements over traditional LPA
and it can be considered as an important supplement of community detection techniques for its
performance superiority to many modularity-based methods. In the future work, we will focus on the
time complexity of the algorithm to further improve the performance of the algorithm. We will also
consider developing our algorithm to weighted networks and directed networks and generalizing it to
larger networks.
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Abbreviations

LPA Label propagation algorithm
MILPA Modularity-based label propagation
Q Modularity
v Node
C Community(set)
I Intensity
M Membership degree
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