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Abstract: The dilation and erosion operations are the first fundamental step in classical image
processing. They are important in many image processing algorithms to extract basic image features,
such as geometric shapes; such shapes are then fed to higher level algorithms for object identification
and recognition. In this paper, we present an improved quantum method to realize dilation and
erosion in imaging processing. Unlike in the classical way, in the quantum version of imaging
processing, all of the information is stored in quantum bits (qubits). We use qubits to code the location
and other information of each pixel of the images and apply quantum operators (or quantum gates)
to accomplish specific functions. Because of quantum entanglement and other nonintuitive features
in quantum mechanics, qubits have many advantages over classical bits, but their nature presents
challenges in designing quantum algorithms. We first built the quantum circuit theoretically, and then
ran it on the IBM Quantum Experience platform to test and process real images. With this algorithm,
we are looking forward to more potential applications in quantum computation.

Keywords: quantum image processing; quantum algorithm; IBM quantum experience; quantum image
dilation and erosion

1. Introduction

Image analysis is a technique of extracting useful information from images [1,2] using various
computer vision algorithms. Image processing has been on the rise for many years [3]. The concept
of image analysis is applicable in multiple fields like health, technology, government sectors, etc.
The main objective of image processing is to analyze and capture the features of an image like its
size, shape and various other characteristics. It has majorly impacted the health industry by enabling
quicker analysis of blood cells to identify various diseases [4]. This technique is also being used by
governments to work towards road safety by using computer vision algorithms in radars to capture
the digits of vehicle number plates [5]. Morphological image processing is a crucial component of
image processing relating to shape or morphology features of the image [6]. Structuring element is a
central element of image morphology, in the form of a matrix of binary pixels. The structuring element
either fits or intersects the image based on the binary value of the pixels, and it is applied to the input
image to generate an output image. Dilation and erosion [2], in simpler terms, opening and closing,
are the two eminent morphological operators [7]. These operators are used for a variety of tasks like
eradicating noise, detecting outliers in the image, i.e., its depressions, holes etc. as well as linking and
separating various elements in the image. Erosion is done to remove details in a binary image which
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results in reducing the size of the image, whereas dilation enlarges the image by connecting the gaps
within the image pixels. Dilation and erosion act opposite to each other when applied on a binary
image, with the structural element being the deciding factor in the outcome of the image.

Quantum morphology operations [8] are propounded based on the novel enhanced quantum
representation model. The quantum logical operators are the base on which the quantum morphology
operations are implemented. These quantum logical operators perform operations on pixels based on
their corresponding pixel value within dual or multiple images. Logic gates are employed to transform
input qubits to the same number of output qubits depending on the computation of the gates. Here,
we will look at two quantum gates, the Toffoli gate and Swap gate. The Toffoli gate, aka CCNOT
(controlled-controlled-not) gate [9,10], is a reversible logic gate which inverses the output bits based
on the input bits. The swap gate interchanges the qubits based on their placement in the matrices.

In the paper written by Yuan et al. [11], a very interesting algorithm is proposed. They make
use of the quantum circuits to accomplish the functions of dilation and erosion. Compared with
the classical dilation and erosion algorithms, which are fundamental in classical image processing,
this algorithm is pure quantum; that is, all of the operations are realized by the quantum gates in a
quantum circuit. Although dilation and erosion are not very complicated algorithms, they require
many of the conditions we need in quantum image processing. In this algorithm, a system for using
qubits to code and process image information is built, so it could be easily applied to other algorithms
in quantum image processing. The idea for the algorithm could also be applied into many other fields.
This is a very practical attempt, or a good start, to the future use of real computers, which scientists all
over the world are working on. This fundamental application promises the transplant action of more
algorithms into quantum circuits in the future.

However, the proposed algorithm is not completely accurate due to the ambiguous definition of
the qubits for different information in the images, which we will discuss in this paper. Here, we propose
a more consistent algorithm for quantum dilation and erosion as well as its implementation in the IBM
quantum simulator.

2. Preliminaries

In this section we give a brief review of the basic theories on state vector and the quantum
representation of images [12–14].

2.1. Quantum Representation

In quantum computation, a system is represented by a vector in a Hilbert space. The vector is
denoted by a Dirac notation |u〉. The smallest unit of information in the vector (i.e., the quantum
system) is called a qubit which can be described as follows:

|ϕ〉 = α|0〉+ β|1〉 = α

(
1
0

)
+ β

(
0
1

)
, (1)

where α and β represent complex numbers satisfying |α|2 + |β|2 = 1. The notation of |k〉 in n qubit
system means |kn−1 · · · k1k0〉, where kn−1 · · · k1k0 designs the binary representation of k in n digits.

2.2. Morphological Image Processing

Morphological operators are a well established set of image processing operations often used to
extracting geometric features from binary and gray scale images.

In image processing literature basic geometric shapes (such as circle, triangles, etc.) are detected
by applying certain image operators; the output depends on whether or not the geometric shape is
present inside the given image.

Clearly, the image operators to detect certain geometric features depend on the shape and size of
the feature to be extracted.
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Morphological Set operators such as union, intersection, inclusion, and complement can be
directly generalized to gray-scale images of any dimension by considering the point-wise maximum
and minimum operators.

The shape detection process starts by developing a structure element (SE) which is a small binary
matrix with patterns of zeros and ones that represent the shape of interest. For example, to detect
circles in an image, the structure element can be defined as a matrix with all ones on the perimeter of
the circle and zero otherwise.

2.3. Operators in Set Theory

In image processing literature, the mathematical morphological operators are composed of few
simple mathematical concepts from set theory.

In set theory, the fundamental set operators are the intersection ∩ and the union ∪ operators.
For binary image, they are denoted by

C = A ∪ B , D = A ∩ B. (2)

For gray level images, the union operator is defined as the point-wise maximum operator ∨ and
the intersection operator is defined as the point-wise minimum operator ∧,

( f ∨ h)(x) = max[ f (x), h(x)] , ( f ∧ h)(x) = min[ f (x), h(x)]. (3)

The translation of set S by point z = (z1, z2), connoted (S)z, is defined as

(S)z = {c|c = s + z, s ∈ S}. (4)

2.4. Operators in Quantum Circuits

The quantum circuit is composed of “wires” and “gates”. Wires are represented by the qubits
that store information, while gates are utilized to execute computational operations. In some sense,
the quantum circuit presents some similarity to the classical circuit such as, the classical NOT gate
(Figure 1a) and the quantum NOT gate (X gate, Figure 1b). They act in the same way as flipping the
state of a bit/qubit.

𝑐 �̅�NOT

(a)

𝑞 𝑞"X
(b)

Figure 1. NOT gates in binary and quantum circuits. (a) NOT gate in a classical binary circuit, which has
input c and output c (the complement state of c). (b) NOT gate in a quantum circuit (X gate), which has
input q and output q.

Classical binary gates are irreversible and the input logic state cannot be uniquely inferred
from the output. For example if the output of the logic AND gate is logic 0, the input could be
one of three states (00, 01 or 10). On the other hand all the gates in quantum circuits are reversible.
NOT gate is considered as the central operation in both classical and quantum gate circuits. However,
NOT gate is defined for only a one-qubit operation, it is not adapted for interactions between different
qubits. By adding a control qubit to the NOT gate, we get the “controlled-NOT” gate, or CNOT gate.
If the control qubit is |0〉, the target qubit will not be changed. For the control qubit with value |1〉,
the target qubit is flipped. See Figure 2d for the representations and table truth of the CNot-gate.
The function of CNOT gate can be represented also as |q0, q1〉 → |q0, q0 ⊕ q1〉 where q1 represents the
control qubit, and ⊕ refers to the operation plus modulo 2. By adding another control qubit to the
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CNOT gate, we realize the “controlled-controlled-NOT” gate, which is also known as “Toffoli gate”.
The target qubit is flipped only if both control qubits have the value |1〉. This gate is also represented
by |q0, q1, q2〉 → |q0, q1, q2 ⊕ q0q1〉, where q0, q1 design the control qubits [10] (Figure 2e).

Toffoli gate is considered as a universal reversible classical gate [15,16]. A universal gate is defined
as a building block from which all other gates can be constructed. Nevertheless, toffoli gate is not
enough to built a universal quantum gate, we need to combine with the single qubit Hadamard gate in
order to obtain the universal quantum gate. We realize quantum circuit by using multiple gates in
order to simplify the implementation.

Input
𝑞"

Output
	𝑞" 

&

0 			1				
1			 			0				

𝑞" 𝑞"&

(a) NOT Gate
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(b) Hadamard Gate
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(d) CNOT Gate

Input
𝑞"	𝑞$	𝑞%

Output
	𝑞"&𝑞$&𝑞%&

0				0				0	 			0				0				0	
0				0				1	 			0				0				1	
0				1				0	 			0				1				0	
0				1				1	 			0				1				1	
1				0				0	 			1				0				0	
1				0				1	 			1				0				1	
1				1				0	 			1				1				1	
1				1				1	 			1				1				0	

𝑞"

𝑞$

𝑞%

𝑞"&

𝑞$&

𝑞%&

(e) Toffoli Gate

Figure 2. The symbols in quantum circuits and truth tables of the five quantum gates.

3. Quantum Dilation and Erosion Operations

3.1. Image Representation

In black and white images, referred as binary images, the gray has the value either 0 or 1.
The expression representing the 2n× 2n binary image is given by [17]:

|I〉 = 1
2n

2n−1

∑
Y=0

2n−1

∑
X=0
|GYX〉 ⊗ |YX〉, (5)

where |GYX〉 encrypts the binary information, and |YX〉 defines the position information.
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3.2. Quantum Logical Operations

Quantum AND and OR gates can be identified by the notations ∩ and ∪, respectively. The AND
operation can be accomplished by Toffoli gate, that is, when both of the control qubits are |1〉, the target
will be flipped. When we use an ancillary qubit initialized as |0〉 as the target qubit and the control
qubits for the two input states (representing two binary images A and B with the size 2n× 2n) |GA

YX〉
and |GB

YX〉 , we can obtain the result of AND gate operation |GA
YX ∩ GB

YX〉 after the SWAP gate in the
target qubit. Figure 3a presents the quantum circuit of AND operation. Similarly, according to the
symmetry of AND and OR operation, we can obtain the circuit for OR gate operation by Toffoli gate
with NOT gate (Figure 3b).

(a) Quantum AND (b) Quantum OR

Figure 3. The quantum circuits for AND and OR operations where X and Y represent the position
information (See the definition of the symbols in Figure 2).

3.3. Position Shifting Transformation

In order to shift the whole image, here we introduce the position shifting transformation (Figure 4).

Figure 4. Quantum circuit for position shifting transformation. The function of the circuit is to add
one to the n-qubit number. (a) The position shifting transformation of x. (b) The position shifting
transformation of y.

We can see the “add one” operation for a binary number is to flip the last “0” and all the following
serial “1”s; the circuit perfectly accomplishes this function. In addition, when the number exceeds the
maximum 2n − 1, it will return to 0 automatically, so this operation is good for image shifting. If we
swap all of the 0s and 1s the addition is changed to subtraction. Thus we can accomplish the “subtract
one” operation in a similar way. Since all of the positions are changed, the stored image would shift as
a whole. By applying the “add one” and “subtract one” operations, one can easily shift the image to
any position. It is an essential operation in both dilation and erosion.
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3.4. Dilation and Erosion

The pertinent structures of the image are extract by dilation and erosion which are considered as
morphological operators. This can be accomplished by probing the image with another set of given
shape - the structuring element (SE). The Dilation operation is defined as following: let us take the
structure element S as a mask. The reference point of the structure element is placed on all pixels in the
image that have the value 1 in A⊕ S. It is worth mentioning that this process is similar to convolution
or cross-correlation of the image A with the mask S. Here for every position of the mask, instead of
forming a weighted sum of products, we place the elements of S into the output image.

So, the dilation ”thickens" or "grows” objects in the binary image.
In contrast, erosion “shrinks” or “thins” objects in the binary image. consequently, we can

conceive the erosion operation as opposite to dilation.
The erosion of A by S, connoted by A	 S, is defined as: the output image A	 S is set to zero.

S is placed at every masked point in A. If A contains S (for non-zero A AND S) then S is placed in the
output image. The output image is the set of all elements for which S, translated to every point in A,
is contained in A.

3.5. Operations

Let us consider a 2n × 2n binary image A, and a (2k + 1) × (2k + 1) structure element S.
Their origin is located in the center point. The quantum dilation of A by S, denoted by A ⊕ S is
defined as

A⊕ S = {z|(S)z ∩ A 6= ∅}, z = |YX〉, (6)

where
(S)z = {c|c = s + z, s ∈ S}. (7)

The quantum erosion of A by S, denoted by A	 S, is defined as

A	 S = {z|(S)z ∩ Ac = ∅}, z = |YX〉, (8)

where Ac is the complement of A.

3.6. Yuan’s Algorithm Problem

Yuan et al. [11], proposed an “improved quantum binary dilation operation” which requires
replications of the quantum image state |IYX〉. However, in their demonstration, they replicated the
grey scale (color) qubits (|YX〉) as well as the location qubits(|G〉).

Therefore, given different copies of the image states, multiple copies of the location states |YX〉
were obtained as well, leading to the loss of the quantum correlations of the different images, i.e., all of
the images are actually independent of each other. When we apply the operations to the replicated
images, we do not obtain useful results.

We can see this from Figure 3. We can use the quantum AND and OR operations because the two
images, A and B, share the same location states |YX〉. In this way, they are correlated so that we can
produce the right outcome of using quantum AND and OR. Yuan’s algorithm uses multiple images
with different locations which can not be realized by the quantum AND and OR operations as the
authors stated. Let us consider for simplicity two images, |IA

YX〉 and |IB
YX〉, with two different location

states, |YXA〉 and |YXB〉, the procedure demonstrated in Figure 3 can not be done, since there is no
quantum correlation.

In the following section, we discuss how we fix this problem and thereby improve the procedure
of the “improved quantum binary dilation operation”.
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3.7. Our New Implement Procedure

Generally, suppose that the size of S is (2k + 1)× (2k + 1), and then the structuring element S can
be written in the form of matrix w as

w =



hY−k,X−k · · · hY−k,X+k
. . .

... hY,X
...

. . .
hY+k,X−k · · · hY+k,X+k


, (9)

where hi,j is either 0 or 1. Then, the quantum binary dilation of A by S can be obtained from the
following steps:

Step 1: Prepare the location state |YX〉 and h qubits for color information |GYX〉 of the same
quantum image |IYX〉 . These h qubits of |GYX〉 can be written as

{|GYX〉1, |GYX〉2, · · · , |GYX〉h}, (10)

and the value of h is given by

h = hY−k,X−k + hY−k,X−k+1 + · · ·+ hY,X + · · ·+ hY+k,X+k, (11)

where hi,j ∈ {0, 1}.
Step 2: Code the image information to the h qubits of |GYX〉. The position shifting transformation

is applied to shift the image, then we obtain the set as

{hY−k,X−k|GY−k,X−k〉, · · · , hYX |GYX〉, · · · , hY+k,X+k|GY+k,X+k〉}, (12)

where hi,j ∈ {0, 1}. When hi,j = 0, it means that |Gij〉 is not needed. When hi,j = 1, we need to obtain
quantum state |Gij〉 by performing the proper position shifting operation on the quantum state |GYX〉
obtained in step 1.

Note that all the images share the same location states |YX〉, so after coding we need to apply
another inverse position shifting transformation to restore the original |YX〉 . Then we have the h
|G〉 states.

Step 3. Obtain the improved quantum binary dilation and erosion operations. We need another
qubit(s) |O〉 to store the result of the new information.

For dilation, we apply the quantum OR operation, |O〉 = ∪h|G〉; for erosion, we apply the
quantum AND operation, |O〉 = ∩h|G〉. By measuring the output |O〉 as well as the location states
|YX〉, we can obtain the results of the quantum dilation or erosion.

4. Implementation on IBM QE

4.1. The “Quantum Score” on IBM QE

IBM Quantum Experience was used to implement our quantum circuit. This quantum computer
has its own symbols for the quantum gates. The blue stick with a big and a small circle on both sides is
the CNOT gate (shown in Figure 5a). Just like the general notation of CNOT gate, the bigger circle
with a plus sign is the target qubit, while the smaller circle denotes the control qubit. To measure the
value of the qubits. In this way, we can read out the results of every qubit in the quantum circuit.

Besides some basic gates, this platform also provides a function for users to write their own
self-designed gates. By this function one can make the quantum circuit more concise. A series of
simple quantum gates can be integrated as a single self-designed gate, so that we can use only one
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gate to indicate the whole subroutine. For example, the “ccX” gate (controlled-controller-X gate, or the
Toffoli gate), as shown in Figure 5b, can be represented by the blue box with the distinguished qubits
denoted by the letters “a”, “b” and “c”. In the following sections there are more examples about this
subroutine representation.

Figure 5. Quantum operators in the quantum scores of IBM QE. (a) The CNOT gate. The little dot
denotes the control qubit and the larger circle with a “+” denotes the target qubit. (b) The “ccX”
subroutine, which is actually the Toffoli gate. Letters in the blue blocks denote the different qubits in
the multi-qubit operation, like the a and b are the control qubits and the qubit c is the target qubit.

4.2. Image Coding

Here we give examples to show every detail of implementation. Suppose an image of 8× 8 = 64
pixels, which means we need three qubits for Y and three qubits for X, in total six qubits for the
location states. To simplify the system, we only use one qubit for the color information |G〉.

Suppose an image that has a white square of 4× 4 pixels in the middle, and rest of the image is
black. We denote black as |0〉 and white as |1〉 for |G〉, we can obtain the state of the image as

|I〉 = 1
2n

2n−1

∑
Y=0

2n−1

∑
X=0
|GYX〉 ⊗ |Y〉 ⊗ |X〉. (13)

In order to accomplish this image state, it is easy to find that the circuit in Figure 6 can construct
the state |I〉 from the initial state |I0〉 = 1

2n ∑2n−1
Y=0 |Y〉 ⊗∑2n−1

X=0 |X〉.
The “coding” subroutine in Figure 6 accomplishes the target image state from the initial state

with all |0〉s. Letters in the blue blocks denote the different qubits in this multi-qubit operation ,
where a is the qubit for color information, |G〉; the position qubits |Y〉 and |X〉 consist of bcd and
efg. The diagram in the middle of Figure 6 shows the composition in quantum IBM Q experience.
Its counterpart is represented in quantum circuit notation on the right. This coding process including
four CNOT gates and one Toffoli gate (“ccX”). By the first two CNOT gates, one can find that only
the states after |0〉 in Equation (13) can cause the target qubit to be flipped, so that the |G〉 is coded.
For example, if |Y〉 = |101〉 and |X〉 = |010〉 (i.e., bcd = 101 and efg = 010), the target qubit c of the
upper CNOT is flipped from |0〉 to |1〉 because its control qubit b = |1〉, and for the lower CNOT,
the target qubit f remains the input value |1〉 as the control qubit e = |0〉. While qubit c and f are
the control qubits of the following Toffoli (“ccX”) gate, the target qubit of the gate, which is qubit a,
will be flipped because both qubit c and f are |1〉 in this case. We put the other two CNOT gates at last
just to counteract the influence from the previous CNOT gates, so that after the whole subroutine the
states of qubit c and f will remain the same (if they are flipped by the first CNOT, they will be flipped
back). In this way, the coding subroutine only encodes the color information qubit a while remains the
position qubits unchanged.
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Figure 6. The “coding” subroutine. Letters in the blue blocks denote the different qubits in this
multi-qubit operation , where a is the qubit for color information, |G〉; the position qubits |Y〉 and
|X〉 consist of bcd and efg (note that the letters in a specific operation are irrelevant between different
operations, they only distinguish different qubits within the operations). The diagram in the middle
shows the composition in quantum IBM Q experience, and the counterpart in the quantum circuit
notation is shown on the right.

4.3. Structure Element and Position Shifting

After the original image, we have a structure element shown in Figure 7. In this structure element
we can see the number of ones h = 3, so we need three |G〉s for the image information with different
position shifting. The set of the image information states is

[H] {|GY−1,X−1〉, |GY,X〉, |GY+1,X+1〉} . (14)

Figure 7. Structure element.

Regarding the position shifting transformation circuit shown in Figure 4, if we want to add “add 1”
to a number, for this case a three-bit binary number, we have the circuit shown in Figure 8. The inverse
operation of “add one” is to “subtract one”; the circuit for subtracting 1 from a three-bit binary number
is shown in Figure 9. With the circuits for “add one” and “subtract one” operations, we can apply the
position shifting transformation to the states.
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Figure 8. The “add 1” subroutine, to add one to a three-bit binary number. The number is denoted by
the qubits as (abc)b. As explained before (Figure 5b), the “ccX” gate is the Toffoli gate in IBM quantum
score with a and c are control qubits while c is the target. The green X gate is the quantum NOT gate,
which simply flips the quantum state.

q[0]

q[1]

q[2]

c
3

210

ccX sub1 sub1 ccX

a

b

c a

b

c
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b

c a
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q[1]

q[2]

c
3

210

ccX sub1 sub1 ccX

a

b

c a

b

c

a

b

c a

b
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≡

Figure 9. The “sub 1” subroutine, to subtract one from a three-bit binary number. The number is
denoted by the qubits as (abc)b. The “”ccX” gate is the Toffoli gate (Figure 5b). Where the qubits
denoted by “a” and “b” are control qubits while “c” is the target.

Now we can prepare the image information states. For |GY,X〉, we directly apply the “coding”
circuit to obtain the result. For |GY−1,X−1〉, we apply the “add 1” operation to both |Y〉 and |X〉 to
shift the image, then apply the “coding” circuit, and apply the inverse operation “sub 1” to restore
the location states in the end. Because we shifted the image before “coding”, the result would be
|GY−1,X−1〉 rather than |GY,X〉. Similarly, by applying “sub 1” operations first and “add 1” operations
in the end, we can obtain the set of information states.

4.4. Dilation and Erosion

After all of the preparatory work, now we can implement the dilation and erosion operations
and obtain the result. Recall that the dilation is in fact the OR operation and the erosion is the AND
operation; by applying the quantum OR and AND gates (Figure 3) we can obtain the results of the
dilation and erosion, as shown in Figure 10.
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(a) Dilation

(b) Erosion

Figure 10. The circuits for dilation and erosion operation to the image (Equation (13)) by the structure
element shown by Figure 7. The qubit q[1] is for |GY,X〉, q[0] for |GY−1,X−1〉, q[2] for |GY,X〉, q[3]q[4]q[5]
for |Y〉, q[6]q[7]q[8] for |X〉 and q[9] for the result |O〉. To the very left side the Hadamard gates for
|Y〉 and |X〉 convert the all |0〉 state to |I0〉 = 1

2n ∑2n−1
Y=0 |Y〉 ⊗∑2n−1

X=0 |X〉. The “coding” subroutine can
code the |GY,X〉 by the location states while retain the quantum states for position qubits after the
operation. The blue blocks with “H” are the Hadamard gates, and the yellow blocks with “id” are
identical operations that actually do nothing to the qubits. They are put there only for the symmetry of
the circuit considering the possible errors from applying operations.The subroutines “coding”, “add1”
and “sub1” are discussed above. (See Figures 6, 8, and 9). The “cccx” subroutine is simply a NOT
gate with three control qubits, which is one more than a normal Toffoli gate, where a∼c are control
qubits and d is the target. The pink blocks denote the measurements, where we can see the grey arrows
showing that information is passed to classical bits. Then we can get the result |O〉 in q[9] which is read
out in the classical bit 6.

In the quantum circuit, we use qubit q[1] for |GY,X〉, q[0] and q[2] for |GY−1,X−1〉and |GY+1,X+1〉,
q[3]q[4]q[5] for |Y〉, q[6]q[7]q[8] for |X〉 and q[9] for the result |O〉. To the far left side, the series of
Hadamard gates for |Y〉 and |X〉 convert the all |0〉 state to |I0〉 = 1

2n ∑2n−1
Y=0 |Y〉 ⊗ ∑2n−1

X=0 |X〉, so as
to prepare the initial state of the qubits. At this moment, the position states |Y〉 and |X〉 have not
entangled with the color information state |G〉. The second part of the implementation is the coding
subroutine, as discussed in Section 4.2. Through this operation the color information state |G〉 is coded
according to the image information. After this step the quantum state of the whole image is obtained.

As we have stated in Section 3.7, we cannot use the same state for different shifting. So, when we
use three different states to store the two shifted images, they share the same position qubits. In the
third and fourth parts of the circuit the |GY−1,X−1〉 and |GY+1,X+1〉 are prepared. After all of the three
states are prepared, we apply quantum OR or AND operations to accomplish the dilation and erosion
processes, and then measure the results.
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5. Results

First, as we prepare and code the color of the pixels into the states, we convert the information
of the image to the different quantum states. This procedure is done by the proper coding operation
(Figure 6) according to the exact original image. Then, after the dilation and erosion operations,
we measure the final states and convert the information back to the pixels in the image. In this way,
we obtain the dilated and eroded states via the quantum circuit.

In the previous parts we have already shown how to build the circuits on the IBM QE. Once the
circuit is designed, it can be simulated by the simulator or run by the real quantum computers via the
IBM cloud. As it is an evolution process of the quantum states, the measurement will destroy the state
and makes it collapse to only one possibility. So we need to repeat the process many times to yield
final results. By simulating the circuit and analysis the result, we can obtain the dilation and erosion of
the target image, as shown in Figure 11.

(a) Target image. (b) Dilation of the target
image.

(c) Erosion of the target
image.

Figure 11. The target image and its dilation and erosion according to the structure element in Figure 7.
(a) A simple example with 8× 8 = 64 pixels and the central 4× 4 = 16 pixels being white and the rest
black. (b) The dilated image after applying the dilation operator to the original image. It’s actually the
union set of the original image and two images after applying position shifting operator at opposite
directions. (c) The eroded image after applying the dilation operator to the original image. It’s the
intersection of the original image and two position shifted ones.

6. Conclusions

In this work, a quantum algorithm is designed to accomplish the functions of image dilation
and erosion. Compared to classical image processing algorithms, the quantum algorithm has several
differences. First, rather than encoding the image by bits as in a classical computer, we use entangled
qubits to realize this coding process. Second, the operations to the classical bits are straightforward.
Because every single classical bit has only two different states. The coefficient of two quantum states
can take continuous values rather than only two discrete values. Beside, in a quantum circuit, the qubits
are significantly entangled. The change of any qubit will largely influence the states of the other qubits.
Both of the features of qubits tremendously contribute to the complexity of quantum algorithms, at the
same time, also largely expand the possibilities of the quantum algorithms.

The quantum algorithm in this paper realizes all of the functions of the image dilation and erosion
processes via an improved method. It illustrates an efficient way to transplant classical algorithms
into the quantum pattern. In this way, we can make full use of the quantum computer and promote
understanding of this new field, which holds great potential.



Appl. Sci. 2020, 10, 4040 13 of 13

Author Contributions: Conceptualization, H.E., H.H., S.-Y.M. and A.K.; methodology, S.-Y.M., H.E., H.H. and
A.K.; software, S.-Y.M.; validation, H.E., H.H. and A.K.; formal analysis, S.-Y.M.; Writing—Original draft
preparation, S.-Y.M., A.K., and H.E.; Writing—Review and editing, H.E., H.H. and A.K.; project administration,
H.E., H.H. and A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Baxes, G.A. Digital Image Processing: Principles and Applications; John Wiley & Sons: New York, NY, USA, 1994.
2. Ngan, K.N.; Meier, T.; Chai, D. Model-Based Coding. In Advanced Video Coding: Principles and Techniques:

The Content-based Approach; Elsevier: Burlington, NJ, USA, 1999; Volume 7, pp. 183–249.
3. Li, H.; Chen, X.; Xia, H.; Liang, Y.; Zhou, Z. A Quantum Image Representation Based on Bitplanes. IEEE Access

2018, 6, 62396–62404. [CrossRef]
4. Chen, S.; Zhao, M.; Wu, G.; Yao, C.; Zhang, J. Recent Advances in Morphological Cell Image Analysis.

Comput. Math. Methods Med. 2012, 2012, 101536. [CrossRef] [PubMed]
5. Anagnostopoulos, C.; Anagnostopoulos, I.; Loumos, V.; Kayafas, E. A License Plate-Recognition Algorithm for

Intelligent Transportation System Applications. IEEE Trans. Intell. Transp. Syst. 2006, 7, 377–392. [CrossRef]
6. Zhao, D.; Daut, D. Morphological hit-or-miss transformation for shape recognition. J. Visual Commun.

Image Represent. 1991, 2, 230–243. [CrossRef]
7. Zhou, R.G.; Fan, P.; Tan, C.; Hu, W. Quantum gray-scale image dilation/erosion algorithm based on quantum

loading scheme J. Comput. 2018, 29, 220–227.
8. Yuan, S; Mao, X; Li, T; Xue, Y; Chen, L; Xiong, Q. Quantum morphology operations based on quantum

representation model. Quantum Inf. Process. 2015, 14, 1625–1645. [CrossRef]
9. Barenco, A.; Bennett, C.; Cleve, R.; DiVincenzo, D.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.; Weinfurter, H.

Elementary gates for quantum computation. Phys. Rev. A 1995, 52, 3457-3467. [CrossRef] [PubMed]
10. Nielsen, M.; Chuang, I. Quantum Computation And Quantum Information; Cambridge University Press:

Cambridge, UK, 2010.
11. Yuan, S.; Mao, X.; Chen, L.; Wang, X. Improved Quantum Dilation and Erosion Operations. Int. J. Quantum Inf.

2016, 14. [CrossRef]
12. Srivastava, M; Moulick, S.R.; Panigrahi, P. K. Quantum image representation through two-dimensional

quantum states and normalized amplitude. arXiv 2015, arXiv:1305.2251v4.
13. Yao, X.-W.; Wang, H.; Liao, Z.; Chen, M.-C.; Pan, J.; Li, J.; Zhang, K.; Lin, X.; Wang, Z.; Luo, Z.; et al. Quantum

Image Processing and Its Application to Edge Detection: Theory and Experiment. Phys. Rev. X 2017, 7.
[CrossRef]

14. Yan, F.; Iliyasu, A.; Jiang, Z. Quantum Computation-Based Image Representation, Processing Operations and
Their Applications. Entropy 2014, 16, 5290–5338. [CrossRef]

15. Miszczak, J.A. Models of quantum computation and quantum programming languages. Bull. Pol. Acad.
Sci.-Tech. Sci. 2011, 59, 305–324. [CrossRef]

16. Dragoman, D.; Dragoman, M. Quantum-Classical Analogies; Springer: Berlin/Heidelberg, Germany, 2004.
17. Yang, Y.; Zhao, Q.; Sun, S. Novel Quantum Gray-Scale Image Matching. Optik 2015, 126, 3340–3343. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2018.2871691
http://dx.doi.org/10.1155/2012/101536
http://www.ncbi.nlm.nih.gov/pubmed/22272215
http://dx.doi.org/10.1109/TITS.2006.880641
http://dx.doi.org/10.1016/1047-3203(91)90025-B
http://dx.doi.org/10.1007/s11128-014-0862-3
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://www.ncbi.nlm.nih.gov/pubmed/9912645
http://dx.doi.org/10.1142/S0219749916500362
http://dx.doi.org/10.1103/PhysRevX.7.031041
http://dx.doi.org/10.3390/e16105290
http://dx.doi.org/10.2478/v10175-011-0039-5
http://dx.doi.org/10.1016/j.ijleo.2015.08.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Quantum Representation
	Morphological Image Processing
	Operators in Set Theory
	Operators in Quantum Circuits

	Quantum Dilation and Erosion Operations
	Image Representation
	Quantum Logical Operations 
	Position Shifting Transformation
	Dilation and Erosion
	Operations
	Yuan's Algorithm Problem
	Our New Implement Procedure

	Implementation on IBM QE
	The ``Quantum Score'' on IBM QE
	Image Coding
	Structure Element and Position Shifting
	Dilation and Erosion

	Results
	Conclusions
	References

