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Abstract: Persistent congestions which are varying in strength and duration in the dense
traffic networks are the most prominent obstacle towards sustainable mobility. Those types of
congestions cannot be adequately resolved by the traditional Adaptive Traffic Signal Control (ATSC).
The introduction of Reinforcement Learning (RL) in ATSC as tackled those types of congestions by
using on-line learning, which is based on the trial and error approach. Furthermore, RL is prone to
the dimensionality curse related to the state–action space size based on which a non-linear quality
function is derived. The Deep Reinforcement Learning (DRL) framework uses Deep Neural Networks
(DNN) to digest raw traffic data to approximate the quality function of RL. This paper provides a
comprehensive analysis of the most recent DRL approaches used for the ATSC algorithm design.
Special emphasis is set to overview of the traffic state representation and multi-agent DRL frameworks
applied for the large traffic networks. Best practices are provided for choosing the adequate DRL
model, hyper-parameters tuning, and model architecture design. Finally, this paper provides a
discussion about the importance of the open traffic data concept for the extensive application of DRL
in the real world ATSC.

Keywords: deep reinforcement learning; adaptive traffic signal control; multi-agent systems;
intelligent mobility; deep neural networks; open traffic data; big data

1. Introduction

In the last decade, significant progress has been made in the development of the advanced traffic
control methods due to persistent problems with intense congestions and their negative impact on
sustainable mobility. The most prominent breakthrough in traffic control has been made by introducing
methodologies that do not require an exact empirical model for complex traffic flows interactions.
Those methodologies have enabled a self-adaptation ability, pro-active strategies, and coordinated
control in the traffic control that was not possible with control approaches that heavily dependent
upon the accuracy of the traffic models. Most of those methodologies are based on Machine Learning
(ML) so its effectiveness depends on the computational power and extensive data that accurately and
comprehensively describe the current and past traffic states.

Currently available traffic datasets can be categorized as big data since they are even at this point
very large, complex, and originate from numerous different sources that can generate large quantities
of data in short time intervals. These characteristics make those datasets very difficult or impossible to
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process by the traditional ML approaches applied in traffic control without the need for an extensive
pre-processing in the form of adequate data structuring and feature extraction. The aforementioned has
led to the need for a novel approach that will retain the ability of classic ML in performing prediction
or classification based on the non-linear function approximation, but simultaneously it must remove
the need for manual feature extraction.

The deep learning is the latest ML approach that is based on the learning representations of data.
This approach attempts to model high-level abstractions in the data by using multiple processing layers
with complex structures or otherwise composed of multiple non-linear transformations [1]. The model
which contains multiple processing layers with complex structures based on the concept of the human
cerebral cortex is known as Deep Neural Network (DNN). The DNN integrates feature extraction,
and classification (or prediction) process in a single framework by using information-dense input
datasets. Those raw datasets are usually formatted as tensor-like labeled data entries. The digestion
and learning process of such large datasets by using complex DNN is computational expensive so
it requires extensive GPU processing power (or use of clusters and cloud computing) in order to
increase the learning stability and induce sufficiently fast convergence towards the desired goal. In the
recent decade with the advancements in GPU processing power, deep learning has become the most
prominent research direction in a ML-driven traffic control problems, mainly due to its scalability
potential and automatic feature extraction directly from raw traffic data.

This paper is focused on traffic signal control since the impact of congestions is most noticeable
in the dense urban traffic networks. The most used machine learning methodology for traffic signal
control is Reinforcement Learning (RL). This approach is used due to its relatively simple algorithmic
structure which is based on the real-time “trial and error” experiments where the errors are used to
compute quality estimations of each trial. Those quality estimations are computed and stored in the
table-like data structures in accordance with the trials defined as state–action pairs. That approach
enables support for on-line learning which is a necessary feature for the self-adaptation to the constant
temporal and spatial fluctuation in traffic demand, and at the same time, it does not require large
historic datasets. The previously mentioned table-like structure represents the data containers based on
which quality function can be computed. With the large possible state–action space such as in the case
of traffic control systems, those table-like structures can suffer from high-dimensionality. The DNN
models are used as the efficient quality function approximators. That approach eliminate a need for a
mentioned table-like structure in the RL framework. The integration of RL and DNN is known as the
term Deep Reinforcement Learning (DRL).

An overview of DRL frameworks for traffic signal control provided in this paper represents an
extension of traditional RL approaches for the same purpose described in [2]. Furthermore, this
paper provides an analysis of the several most representative DRL frameworks used for traffic signal
control. Those frameworks are analyzed with respect to their learning hyper-parameters, DNN model
design, and optimization algorithms. All those parameters are evaluated according to characteristics
of the use case scenarios used to validate each of the analyzed DRL control frameworks. Additionally,
special emphasis is set on the multi-agent DRL frameworks which enable coordinated control over
several intersections in the traffic network. The main focus is set on detailed analysis regarding the raw
intersection data pre-processing which must be in line with the DNN model digestion requirements.
This analysis is necessary for giving the design guidelines for high-level image-like data formatting
in the context of Open Traffic Data [3]. The exchange of mentioned standardized data-structures in
the Open Traffic Data framework is especially important for establishing interoperability and flexible
scalability between the various DRL approaches applied for the holistic traffic signal control.

The remainder of this paper is organized as follows. Section 2 looks into the background of the
RL with a description of its drawbacks and theoretical approach for its augmentation with the use of
deep learning. This section is concluded with an overview of the latest DRL frameworks commonly
used in the traffic signal control. Section 3 explains the benefits of using DRL based algorithms
over the traditional approaches for traffic signal control. Special emphasis is set on the DRL based
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algorithms that can conduct coordinated control over several intersections in the traffic networks.
Section 4 provides deeper insight into the current approaches for the design of the traffic signal control
which is based on the DRL. The proposed framework based on Open Traffic Data for raw traffic data
pre-processing and sharing in the context of deep learning and large intersection networks is described
in Section 5. Finally, this paper is concluded with the discussion and conclusions.

2. Reinforcement Learning

The RL can be described as the discrete, stochastic control process in which future states depend
on the current states and taken actions. Transitions between states are governed by the policy function
π(st) in a given time step as defined by the Markov Decision Process (MDP). The RL is the most used
traditional ML approach for traffic signal control since it does not need an exact model of the stochastic
traffic flows behavior in a network of intersections. The RL based agent is able to gain a knowledge
troughs the learning process and iteratively model the dynamics of the controlled traffic environment
just by interacting with it [4].

Actions are usually generated randomly at the beginning of the learning process; thus, initially,
there is no knowledge about the control policy. Therefore, there is a need for extensive exploration
of state–action space. The likelihood of choosing random actions decreases over the learning time,
thus the action is increasingly being selected according to the learned policy function as the learning
process progresses through time. In other words, the probability that a policy function reproduces
a good solution increases during the learning process, thus it is logical to exploit it more frequently.
The problem of modeling the relationship between the random exploration of state–action space
and exploitation of learned policy function during the learning process is known under the term
“exploration vs. exploitation” trade-off. The ε− greedy algorithm is the most used approach for modeling
the “Exploration vs. exploitation” trade-off problem in learning process for choosing actions [5]. The RL
algorithms should always retain the ability to conduct exploration in order to achieve control robustness
to potential new states in a controlled environment. This feature of RL algorithms is especially
important for control over the traffic flows which are prone to sudden spatiotemporal fluctuations.

The traditional RL agent receives a scalar reward after performing an action in the controlled
environment. The goal of RL agents is to learn an optimal control policy; thus, the discounted
cumulative reward is maximized via repeated interaction through the learning process with its
environment [4]. Supervised and unsupervised machine learning approaches are usually one-shot,
myopic, considering instant reward, while RL is sequential, far-sighted, considering long-term
accumulative reward [6]. One of the most used value-based or off-policy RL approaches for traffic
control is known as the Q-learning algorithm [7]. It is commonly used due to its efficiency and simple
logical architecture which does not require an explicit definition of policy function. Its long-term
state–action value function is parameterized and updated using the step-wise experience [8]. In other
words, it iteratively updates the optimal Q (Quality)-value by using the newly received learning
sample (st, at, st+1, rt) according to the Bellman equation defined as

Q∗(st, at) = Q(st, at) + αn(rt + γ max
a′∈A

Q(st+1, a′)−Q(st, at)), (1)

where Q∗(st, at) is a new Q-value, Q(st, at) is current Q-value of state–action pair, αn is learning rate,
rt is the reward received from the environment, γ is discount rate which can be static or change over
time in order to model process in which the earlier rewards are worthier than the rewards in the
future, max

a′∈A
Q(st+1, a′) is the maximum expected future reward, and A represents possible action space.

After every learning iteration, Q-values are updated and then stored in a Q-table (or look-up table) in
accordance with the corresponding state–actions pairs. At this point, it is possible to conclude that
Q-values for each state–action pair represent their expected future rewards derived as the long-term
accumulative rewards.
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Since the Q-learning is the off-policy based RL algorithm it is characterized by efficient updating
according to the bootstrapped sampling of Experience Replay (ER). However, its update is based on a
one-step temporal difference, so the good convergence relies on a stationary MDP transition, which is
found to be less likely in Adaptive Traffic Light Signal Control (ATSC), as remarked in [9]. As a
contrast, in policy-based RL methods, such as REINFORCE (also known as Monte Carlo variant of
policy gradients), the policy is directly parameterized and updated with sampled episode return
so it does not use a value function [10]. The REINFORCE is an on-policy RL algorithm so it can
make the non-stationary transition within each learning iteration. This is useful for stochastic and
continuous action space, but it is hard to define a scoring system which will adequately evaluate a
learned policy since the rewards are computed after the end of the episode. For example, one episode
represents one traffic simulation, and the one-step denotes one control action during this simulation.
The on-policy algorithm requires many episodes and a well-defined scoring function to converge
towards the desired results. This is the reason this algorithm is not extensively applied in the traffic
control systems. An Actor–Critic logical architecture integrates a value-based approach as its Critic part
and policy-based approach as its Actor part in a single RL framework usually by using two separate
models for each of its parts. This framework is popular since it provides additional reduction of bias
and variance during the policy-based model learning by using another model for parameterization of
the value function which provides an adequate assessment of the learned policy function [9].

2.1. Drawbacks of Reinforcement Learning

The traditional Q-learning algorithm in every learning iteration requires a brute force grid search
trough the entire Q-table. Exponential enlargement of the Q-table in traffic control problems is induced
due to the discretization of the action space since the traffic control decisions must be made in equal
time intervals. The discretization of traffic control actions is also important for easier implementation
in simulation environments. Numerous macroscopic traffic parameters (e.g., speed, density, incoming
vehicles to each intersection bound, queue length, and their values in several previous time steps)
can be arranged in the vector-based state representation while the actions are mainly modeled by the
finite number of scalars (e.g., a predefined number of traffic signal phases denoted by indexes). It is
possible to conclude that Q-table in the majority of the ATSC problems for the large urban networks
can be affected by high-dimensionality. Visitation of each state–action pair in table-like structures
by using the classical grid-search approach can become computationally infeasible and this problem
is known as curse of dimensionality [11]. To tackle problems with high-dimensionality of continuous
space, numerous non-linear function approximation methods are considered. The idea of function
approximation is to avoid computing the exact Q-value by calculating its approximation which
covers the whole state–action space. Usually, this is done by fine partitioning of state–action space.
This approach computes scalable fitting over continuous states and design heuristic state features.
Function approximation methods are also suitable to create an estimation of the Q-values in regions of
the state–action space that were not visited during the learning process [12]. Application of function
approximation in RL produces significant results only in cases where the states are low-dimensional
and handcrafted with linear value or policy functions. In the context of machine learning, the following
approximators are used: decision trees, Artificial Neural Networks (ANN), and k-Nearest-Neighbor
(kNN) regression methods. Application of the traditional ANN as the function approximator has
shown problems in the stability of RL [13].

2.2. General Deep Reinforcement Learning

Recent publications [11,13] propose an integration of deep learning methodologies with RL under
the term DRL. The main purpose of this integration is the policy function approximation by the
use of DNN based models. In early studies [14], DNNs models for DRL are represented by a deep
Stacked-AutoEncoders (DeepSAE), while the recent models are based on Convolution layers (Conv),
which are stacked along with the flatten one and several Fully Connected (FC) layers. The flatten
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layer converts two-dimensional features computed by convolution layers into the one-dimensional
vector suitable as the input for FC layers. Those DNN models are known as the Convolutional
Neural Networks (CNN) since they contain convolution layers that conduct feature extraction from
the image-like inputs by simulating biological convolution processes in human visual cortex [15].
Additional Convolution layers in the CNN model allows the development of features from the features
extracted in previous layers by the process of sub-sampling, transforming low-level features of the
data to high-level ones. This process can potentially increase the overall CNN performance [16].
The FC layers in CNN have the role to provide a structural condition classification and eventually
assess the probability for the execution of each possible action according to the passed inputs to the
CNN. The configuration of the CNN model used in DRL does not contain pooling layers which are
mandatory for example in image classification. Those layers are not needed in CNN setup for DRL
since the exact positions of traffic fluctuation in the image-like inputs are essential for traffic control.
The CNN model applied in DRL for traffic control along the all mentioned type of layers can contain
Long Short-Term Memory (LSTM) layers based on Recurrent Neural Network (RNN) architecture.
They have the ability to process data sequentially and keep hidden state through time. The LSTM
layers are used in CNN for traffic control in [17], while the Residual Networks (ResNet) as the unique
setup for CNN are used in [6]. The ResNet architecture for CNN models introduces a skip connection
among a group of layers (ResNet blocks) in order to jump over some layers and reuse activations from
a previous layer from which jump is made until the adjacent layer learn its weights. The addition of
LSTM layers and the introduction of ResNet architecture in the CNN models is proposed in order
to tackle vanishing gradient problem and induce a more stable learning process. Furthermore, it is
possible to introduce the Batch Normalization (BN) process in the form of an added Normalization
layer between layers in DNN models. The mentioned normalization has to be done separately for each
dimension of the input layer in order to adjust and scale its activations. The application of BN can
improve the stability and speed of any DNN model, as proposed in [18].

The integration of complex DNN models with the RL can enhance its learning capacity in order to
tackle complex tasks such as control over the stochastic traffic flows at the numerous intersections [9].
In general, the following RL approaches are extended by the use of DNN models for the sake of
traffic control: value-based, policy-based, and Actor–Critic methods [19]. Deep Q-learning (DQL) is an
augmentation of the vale-based Q-learning algorithm where Q∗(st, at) is approximated by the use of
DNN model with weights θ. This setup is described as:

Q(st, at; θ) = Q∗(st, at) (2)

The DNN digest input states arranged as the image-like matrix or one-dimensional vectors
which may contain several channels if it is needed. If the input state contains several channels then
it can be considered as the tensor—represented by the stack of several image-like matrices. Usually,
each mentioned matrix is populated with different types of traffic parameters describing the same
traffic scenario in the current action interval. The DNN model has a predefined number of outputs
that correlate with the number of possible actions. The Q-value is computed for each action after every
learning iteration. The DNN model is learned to minimize the expected squared error (also known as
loss) between the predicted Q-value and the target Q-value, as described by the following equation:

L = E
[
(rt+1 + γ max

a′∈A
Q(st+1, a′)−Q(st, at; θ))2

]
(3)

Target Q-values are usually computed based on the separate target DNN model, which has
the same architecture as the Q-value DNN model. The weights of the target DNN model are
updated periodically by copying weights θ

′
from the Q-value DNN model (which updates its

weights during each learning iteration). Keeping the fixed weights in target DNN model for a
predefined period of time ensures a temporally static Q-value target. That eliminates the moving
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target problem and consequentially provides stabilization of the DQL learning process. Additionally,
the described approach reduces drastic oscillations in the control policy design upon small changes of
the Q-value [20]. The use of the two DNN models in the DQL framework is commonly known under
the term Double DQL. It is shown that Double DQN effectively mitigates over-estimation of rewards in
noisy controlled environments such as traffic flows in complex traffic networks, and therefore improves
its overall performance [5]. The target Q-value is described as

Qtarget(st, at) = rt + γQ(st+1, arg max
a′∈A

Q(st+1, a′; θ); θ′). (4)

In Double DQL framework, the output of Equation (4) replaces the max
a′∈A

Q(st+1, a′) from

Equation (3). Another important part of the general DQL is Experience Replay (ER). The ER is
used as the memory buffer for storing the experience tuples {st, at, rt, st+1} during the observation phase
in DQL learning process. The observation phase starts with the operational work of DQL, while the
end of this phase means that the ER is full. At the end of the observation phase, it is possible to sample
Mini-Batches from ER. Mini-Batches are used as the learning sets of inputs for the Q-value DNN model.
The ER has a predefined size; thus, when the new experience tuple is added, the last stored tuple is
removed. Furthermore, many studies use reward clipping procedure which scales and clips the rewards
in a specific range (commonly [−1; +1]). The described procedure is done to avoid the boosting of
weights when back-propagating [20]. Functional scheme of general DQL can be seen in Figure 1.

Figure 1. General DQL framework scheme.

The most commonly used algorithms for the update of DNN weights are based on the
first-order gradient optimizers such as Stochastic Gradient Descent (SGD) algorithms [14,16],
and RMSprop [21,22], but it is possible to include a more advanced optimization method such as
ADAM [23] and AdaBound [24]. The weights must be optimized in every learning iteration to induce
the minimization of Equations (3).

2.3. Advanced Approaches for Deep Reinforcement Learning

The Rainbow algorithm is a colloquial name for the DQL framework which employs a full
spectrum of DQN extensions: previously described Double Q-learning, Prioritised Replay Memory
(PRM), Dueling DNN, multi-step learning, distributional RL, and noisy nets. In the traffic signal
control problems, the following DQL extensions from the Rainbow algorithm are commonly applied:
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• Prioritized Experience Memory (PER) allows the RL based agent to consider state–action
transitions with the different frequency that they are experienced [25]. It increases the replay
probability of samples stored in RM that have a high Temporal-Difference (TD) error, and therefore
possible high impact on learning convergence. The TD error is computed based on the difference
between the current and targeted Q-values. Mentioned prioritization can lead to a loss of diversity.
This problem can be alleviated by introducing the stochastic prioritization, and biased outputs
can be corrected by importance sampling, as described in [26].

• Dueling Deep Q-Networks (DDQN) represents the special architecture of DNN models used
in DQL. The Q-value is estimated according to the value of the current state and each action’s
advantage of taking this action a in state s. The value of state V(s; θ) is the overall expected
reward in the case of taking probabilistic action in the future steps. Advantage, denoted by
A(s, a; θ), is computed for all possible actions in accordance with the given state and with the
main task to describe how important particular action is to the value function compared to
the other actions. The final Q-value is computed by summing the value V, and advantage A.
The dueling architecture is able to improve the performance of DQL as it can be seen in the
following studies [5,27].

Recently, Actor–Critic architecture based on the discrete state representation is the most used
approach for the design of the DRL frameworks. This approach can be understood as the architectural
methodology which augments on-policy algorithms such as REINFORCE with the ability to make an
update at each time step by using two DNN models. One of these two DNN models perform the role
of Critic which approximates the value function for each learning step. This value function is adopted
instead of the total session reward function used in the policy gradient. The main idea of Critic is to
evaluate the impact of the current state on bringing the agent control policy closer to its long-term
objective. This assessment is based on the TD error presented as:

TD = rt+1 + γV (st+1)−V (st) , 0 ≤ γ ≤ 1 (5)

where γ is s the discount factor that represents the difference in importance between future and instant
rewards, rt+1 is the instant reward, and V (st+1) is the state value which indicates how well the state s
at time t + 1 is based on the long-term objective [28].

The second DNN model has the role of an Actor. It is used as a policy function approximator or.
in other words, it governs how agents select actions. Commonly, both DNN models are trained in
parallel with the different sets of weights that must be optimized independently. A novel approach in
Actor–Critic DNN model architecture includes sharing the lower layers (usually convolution layers)
between the Actor and Critic parts in the same DNN model. Those two parts are differentiated at the
higher layers of the same DNN model usually by the use of LSTM layers, as presented in [17].

The general idea of the Actor–Critic architecture is to deliver current state representation from
the controlled environment to both models. Policy (Actor) model computes the action according
to the mentioned state and consequentially affects the environment. Changes in the environment
induce a new state for the next action interval. This new state is evaluated with the appropriate
reward. Computed reward and the new state is passed to the value (Critic) model. Critic computes
the Quality (Q-value) of transition from taken action to that particular state, while Actor updates its
policy parameters (weights of its own DNN model) by using Q-value computed by Critic. The actor
computes the next action according to the updated Q-value and new state, and at the same time Critic
model updates its own wights. Conceptual scheme of the Actor–Critic architecture in DQL applied at
the two signalized intersections can be seen in Figure 2:
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Figure 2. Conceptual scheme of the DQL Actor–Critic architecture applied to two signalized intersections.

There are two possible modifications of Actor–Critic architecture to reduce the variability of
the value-based method and to increase its learning stability. Both are based on the advantage
function application instead of the value function, and they all have a focus on parallel learning in the
multi-agent framework.

• Asynchronous Advantage Actor–Critic (A3C) approach is based on the central agent with global
DNN model parameters. Its workers are copies of the Actor part of this agent; thus, this approach
does not use ER since it requires a lot of memory. In A3C, there is only one Critic that learns the
value function while multiple copies of actors are learned in parallel as his workers. Each worker
in the A3C framework is executing in parallel in different instances and each of them is periodically
asynchronously synced with the global DNN model. Due to independent exchange data between
workers and the global parameters, there can be an issue related to the policy inconsistency
among some workers.

• Advantage Actor–Critic (A2C) approach implements the coordinator module between workers
and global DNN model parameters, which waits for all workers to finish their segment of
experience before updating the global DNN model. This approach enables all workers to
synchronously start with the same policy. In A2C, all workers are the same and they have the
same set of weights since all workers are updated at the same time. This approach requires several
versions of the environment that must be executed in parallel. Additionally, one worker should
be assigned for each of them. Since the traffic flows are described by complex spatiotemporal
datasets there is a danger that MDP may become non-stationary if the agent only knows the
current state [9]. Furthermore, it is infeasible to input all historical inputs to A2C so it is common
to include LSTM layers in its DNN models, which maintains hidden states in order to memorize
short history [29]. Such a setup of A2C approach makes its learning process more cohesive
and faster.

However, DQL frameworks still suffers from the poor data-efficiency. That attribute limits its
possible real-world application and reduces its scalability potential [30]. The multi-step learning
approach in [17] is used to build an Actor–Critic framework for controlling the large network of
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intersections. In the context of TD error computing, machine learning is usually thought in terms of
an average value of many multi-step returns with differing lengths, and are often associated with
eligibility traces. Furthermore, this approach is known as the multi-step return procedure since it can
be spectated in the terms of individual n-step returns with their associated n-step backup. Each of
these individual backups is refereed as an atomic backup, whereas the combination of several atomic
backups of different lengths creates a compound backup [31].

In 2017, Uber AI Labs published several papers that are oriented towards the optimization of the
DNN model by the use of evolutionary algorithms. This approach is known as Deep Neuro-Evolution.
One of the previously mentioned papers [32] presents a study which introduced the concept of
using the Genetic Algorithm (GA) from the domain of evolutionary inspired algorithms, in order to
optimize/evolve weights of the DNN model in the context of DRL framework. The scalability of
GA enables the parallelization of optimization computations over many CPU which results in much
faster learning convergence of the DNN model compared to the traditional gradient-based methods.
In the traffic control, this approach has been applied for the cooperative control between commonly
used motorway control methods (ramp metering, differential speed limit control, and lane change
control), and has initially shown better results compared to the traditional DQL. It is a policy-oriented
approach with multi-agent structure and novel Knowledge Sharing Graph Convolutional Networks
(KS-GCN) for the generation of coordinated actions between different motorway control methods [33].
Potentially, this approach could be a new direction in DQL design dedicated to ATSC.

3. Adaptive Traffic Light Signal Control Based on DRL

ATSC algorithms at the beginning of their development were based on rule-based methods.
The rule-based methods were firstly implemented within the fixed signal time strategies,
e.g., changing the predefined signal plans in accordance with the characteristic period of the day
(non-peak and peak-hours, night- and daytime, working days and weekends, the season in the
year, etc.). The heuristic rule-based methods such as Longest-Queue-First (LQF) or Greedy policy
conduct traffic light phase switching in accordance to the measured traffic demand at each intersection
bound [34]. Those types of algorithms provide improvements over the aforementioned algorithms
since they take into account the information about the local traffic scenario by processing the data
from sensors installed at the controlled intersection. It is noticed that those ATSC algorithms have
reduced effectiveness in dissolving traffic congestions which are affecting urban traffic environments.
Those environments are characterized by the strong fluctuations in the increased traffic demand over
the day [35,36]. Those poor results are the product of the modeling process which is mostly based on
common traffic scenarios without the inclusion of human errors and sudden increase in traffic demand
due to various social reasons. The stochastic nature of traffic flows is tackled by the RL based algorithm
such as Q-learning since they do not require a model of the controlled system. That control approach
has shown constraints regarding computational efficiency, learning stability, and scalability [37–39].
The core problem with the Q-learning algorithm is linearly parameterized function approximation,
which requires a set of carefully handcrafted features from sensory data to perform optimal control [34].
The use of the DNN model in the RL context enables the feature extraction directly from the raw traffic
data, which allows a more comprehensive ATSC independent of the Q-table usage and human errors
related to feature extraction. Even early results achieved by the application of a DRL approach in
ATSC for one isolated signalized intersections are promising.

3.1. Traffic Signal Control on a Larger Scale

The poor scalability of DRL frameworks dedicated to ATSC originates from their RL roots.
The main problem is an extremely large discrete action space which emerges in the case when one
wants to gain control over the larger number of intersections. Training a centralized DRL agent for
control over several signalized intersection is still infeasible for the large scale traffic signal problems,
and finding a feasible solution to that problem is still an open area for research [40,41]. In the case
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of large scale traffic networks, it is computationally infeasible to train one DNN model for each
signalized intersection. Furthermore, it is very unlikely that the resulting policy would be globally
optimal without the coordination between local learning/optimization processes [34]. The various
Shallow-ANN (SANN) models presented in [42] were the first non-DRL approaches used to address
the aforementioned problem. Those models were based on a lower number of hidden layers and they
used only macroscopic traffic variables such as a number of vehicles at each bound of the controlled
intersection as its inputs. Each SANN model was assigned to one intersection. Those models had two
shortcomings. The first addresses the need for manual identification of the general traffic features
and arrangement of those features within fixed time frames. The second implies that the weights are
updated according to the most usual daily traffic patterns. Thus, every sudden fluctuation in the traffic
demand which diverges from those patterns can reduce its efficiency.

The introduction of coordinated Multi-Agent RL (MARL) framework was the robust approach for
holistic control over several intersection compared to previously used methodologies [43]. The MARL
frameworks are mostly based on the Q-learning algorithm. MARL frameworks can be designed based
on: (1) decentralized architecture that is based on the dynamical partitioning of the traffic networks
into smaller regions where each RL agent control one of those regions; (2) transfer learning techniques;
and (3) allocation of one simple RL agent for each intersection. A problem with decentralized
architecture is the assumption that global network-level action-value function is simply a linear
summation of regional action-value functions [34]. One of the first approaches for MARL design is
described in [44] where the migration from single- to multi-intersection control was made by the use
of transfer planning and the max-plus coordination algorithm for inter-agent optimization. The DQL
agent was firstly trained on two intersections; then, by the use of transfer learning, it was extended up
to the four intersections. The shortcoming of that approach was the complex reward function which
is hard to implement in the real world, and the inability of efficient scaling up to the larger number
of intersections.

In the third MARL approach, an agent conducts local observation and limited communication
with other agents usually by distributing the global Q-function over the local agents. This is done by
the use of coordination rule which governs trade-off between the optimization level and scalability
rate, or it is possible to introduce the Independent Q-learning (IQL) approach. In the IQL approach,
each local agent learns its own policy independently and enable modeling of other agents as the parts
of the environment dynamics [9]. The drawback of this approach is related to the appearance of the
non-stationarity environment from the point of view of each agent since the controlled environment is
affected by the actions of other agents which themselves also learning [45].

That approach can be extended by the use of DQN for RL in the form of Independent DQN
(IDQN). In that approach, each agent observes its nearby environment (known as the partial state),
then computes individual action, and finally receives a group reward that is shared among all
agents. Furthermore, the IDQN approach in [25] achieves learning over the multiple heterogeneous
agents by the use of Dueling Double Deep Q-Network (3DQN) for each agent. Approaches that are
based on IDQN are prone to the RM relevance reduction because the data generation dynamics
in the local agent’s RM no longer reflect the current dynamics in which learning is done [45].
The problems with IDQN convergence stability induced due to the mentioned drawback can be
alleviated by the introduction of two approaches proposed in [9]. The first is known as fingerprinting,
which is based on information about neighborhood policies to improve the observability of each
local agent thus each local agent has more information about the regional traffic distribution and
usage of cooperative strategy. That approach consequently reduces the non-stationarity nature of the
multi-agent environment [25]. The second is based on the inclusion of a spatial discount factor with
the main goal to weaken the state and reward signals from other agents. The most advanced IDQN
technique for the deep MARL control over the several traffic intersections is the Independent A2C
(IA2C) approach which is based on the Actor–Critic architecture for DQN.
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The most prominent issue with the ATSC over the larger number of intersections is related to the
feasible processing of input traffic data that is continuously sampled by the numerous traffic detectors.
The Deep Deterministic Policy Gradient (DDPG) as the one type of off-policy DRL is proposed in [20]
as the conceptual approach that can tackle the large scale ATSC problem which relies on the aggregated
data from the road traffic sensors. It combines the Actor–Critic approach with the Deterministic Policy
Gradient (DPG). Deterministic policy as opposed to stochastic is approximated by an ANN-based
Actor π(s; θπ) usually designed with a fully connected Multi-Layer Perceptron (MLP) and Leaky ReLU
activation function. Thus, its actions depend on the state of the environment s and has weights θπ .
The size of the first layer in the Actor model is defined by the number of detectors in the traffic
network and the number of available TSPs, while the final layer size corresponds to the number of
actions. The DDPG off-policy nature combined with the aforementioned structure of the Actor model
can provide a framework for continuous traffic data digestion from numerous sensors on a large
traffic network. That structure enables the computation of actions in the form of the vector with N
components. Each of those components is a real number that has a scaling effect on the duration of
each TSP with the main purpose to preserve the duration of the total cycle. Those scaled values for TSP
duration are stored in the phase adjustment matrix. They are coded in the final layer known as “Phase
adjustment”. The Actor network is updated according to the applied chain rule to the loss function,
and the update of weights θπ) is based on gradient loss. The second separate model based on fully
connected layers is implemented within the Critic part which computes the value Q(s, a; θπ) according
to the current state. It is updated by the means of the Bellman equation as is the case with the DQN.
The mentioned study does not provide results regarding the comparable traffic parameters but only
shows favorable convergence of reward under the traffic scenario with 43 intersections.

Furthermore, Tan et al. [34] proposed a decentralized-to-centralized architecture for traffic signal
control problems in a large traffic network. The main idea in this approach is to tackle large-scale
control problems by transferring learned base models into the sub-regional grids. The first step is to
conduct a partitioning of the large traffic grid into several sub-regional grids of the same topology.
Each sub-region is paired with a single DRL agent for the local optimal policy learning within a
sub-regional grid. The DRL agent is created according to the Wolpertinger Actor–Critic architecture
which uses MLP model with ReLU activation functions instead of CNN, and Deep Deterministic
Policy Gradient (DDPG) inspired approach for learning. Deep collaboration between locally computed
minimal regional costs expressed trough traffic congestion is done by a hierarchical architecture based
on the added global dense layer which concatenates the latent states of all local agents in order to form
a global action-value function (or Q-function) for the entire controlled traffic network. The same study
concludes that it makes more sense that a global RL agent in ATSC should be learned based on the
global Q-value function rather than local/regional rewards aggregation. In Table 1, it is possible to see
most representative approaches for ATSC design based on the DRL framework that are chronologically
listed. In the same table, improvements are denoted according to the first control methodology listed
in the compared against column.
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Table 1. The most representative DRL frameworks for ATSC design.

Paper Year DRL
Method

Number of
Intersections

Compared
against

Control
Strategy Improvements

[17] 2019
Regional A3C

+ PER 2 42

Hierarchical
MARL,

Rainbow DQL,
Decentralized
multi-agents 1

Acyclic TSP
selection and
TSP duration
computation

8.78% lower
Average Delay

[9] 2019 Stabilised IA2C 3 30
IA2C,

IQL-LR,
IQL-DNN

Acyclic TSPs
with fixed
duration

63.7% lower
Average Delay

[34] 2019
Hierarchical

regional A2C 6 24
Regional

DRL
Acyclic TSPs with

fixed duration
44.8% lower
Waiting time

[46] 2019 3DQN + PER 1
Actuated and

fixed time
controller

Acyclic TSPs with
fixed duration

10.1% lower
Average Delay

[18] 2018
ResNet
based
A2C

9
Actuated
controller

Cyclic fixed
TSP switch

16% lower
Waiting time

[20] 2017 DDPG 43
Q-learning
algorithm

Cyclic TSPs
with computed

duration
No data

[21] 2017 DDQN + ER 1
LQF,

fixed time
controller

Cyclic TSPs
with fixed
duration 4

47% lower
Overall Delay

[16] 2016 DDQN + ER 1 STSCA 5
Acyclic TSPs

with
intermediate TSPs

82% lower
Overall Delay

[14] 2016 DeepSAE + RL 1
Q-learning
algorithm

Two TSPs with
dynamic
duration

14% lower
Overall Delay

1 The decentralized multi-agent approach is based on distributed constraint optimization. 2 Multi-step
return and Off-policy A3C. 3 It is stabilized by fingerprinting technique and spatial discount factor.
4 The intermediate TSPs are dependent on the current phase and the chosen actions are used due to safety
reasons. 5 It is compared to Shallow Traffic Signal Control Agent (STSCA) based on shallow ANN. 6 Each
Agent uses Wolpertinger Actor–Critic MLP architecture and DDPG algorithm.

4. Design of the DRL Algorithm for the Traffic Signal Control

To design the DRL algorithm for traffic signal control, it is necessary to assess the use case
model with respect to the traffic network complexity. After that step, one must conduct deep analysis
regarding the legislative-technical constraints which must be incorporated into the algorithm design.
The results of the mentioned analysis are used to select an appropriate DRL framework for ATSC.
Additionally, it is necessary to select adequate architecture for the DNN model, which will be used
in selected DRL framework along with the optimization algorithm selection. In Table 2, a detailed
configuration of the most representative DRL frameworks used for ATSC is shown. The next step is
to tune hyper-parameters by using a grid search procedure in the context of simulation experiments.
The final step is to select appropriate state and action representations. That decision highly depends on
the selected DRL framework, available data structure, and traffic network complexity. In that decision,
one must keep in mind the state–action space size and available computational power. Finally, it is
mandatory to adequately model a reward function which will steer the learning process towards the
desired goal.

It is important to emphasize that prior to real-world implementation all mentioned DRL methods
applied for ATSC are trained and eventually evaluated in the traffic simulators. Traffic simulator can
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be constructed based on three distinctive traffic models: microscopic, mesoscopic, and macroscopic.
Macroscopic models compute only aggregated macroscopic traffic parameters at a high level [47].
Since those models cannot provide raw traffic data (e.g., position of each vehicle in network) they
are not suitable for DRL. Simulators based on microscopic traffic models such as Simulation of
Urban Mobility (SUMO), PARAMICS [14], Aimsun, and PTV VISSIM simulate each vehicle behavior
independently. These simulators can be used with DRL based algorithms since they provide raw data
for each vehicle during the whole simulation run. The SUMO is the most used microscopic simulators
applied for ATSC algorithms based on DRL [17,21,48,49]. Its DFROUTER tool can heuristically
compute a list of routes and a list of vehicles associated with each route according to the network-wide
real-world traffic data [47]. The mentioned tool enables resembling the real traffic distribution which
can increase the simulation accuracy and consequently provide better learning convergence of the DRL
frameworks applied for ATSC. Simulation of the complex traffic network with the microscopic model
can be computationally expensive due to numerous vehicles for which behaviors must be computed
independently by using CPU. The overall computational cost is even higher since it is necessary
to run a demanding deep learning process in parallel with the complex traffic network simulation.
The slow simulation of complex traffic networks can be partially tackled by using simulators based on
mesoscopic models. Those models simulate road traffic at the level of individual vehicles, but with an
aggregated behavior on links. This approach can significantly increase simulation speed but somewhat
reduce its accuracy. The overall performance of mesoscopic models for multi-intersection control can
be improved by introducing hybrid microscopic–mesoscopic traffic simulations.

4.1. State Representation

The DNN, as the essential part of DRL, reacquires a pre-processing step for obtained raw data.
These data must be structured as the image-like matrices (2D matrices) or sounds-like vectors (i.e., 1D
signals) to be digested by the DNN input layer (usually, it is convolution layer). Transformation of
the obtained raw traffic data into the mentioned data structures can be difficult since the natural
representation of the traffic flow measurements is done by the use of a labelled graph. The common
approach for mentioned data transformation is to pixelate or segmentate the surface of the road (and
sometimes its nearby road surrounding) into the small segments, partitions, or cells. The next step is to
assign obtained raw traffic data to those segments with respect to their measurement location [5,13,25].
The height of each segment is usually specified by the width of the traffic lane (or several lanes which
are close to each other), and its length depends on the technique that is used for obtaining the traffic
data. When these data contain parameters of each vehicle such as position, acceleration, speed, etc., as
described by the early applications in [4,16,50], the length of a segment corresponds to the average or
minimum length of the vehicle, as illustrated in Figure 3a. Furthermore, the same road segmentation
approach can be used for traffic data such as the number of passengers per road segment [13] and
the direction of the moving vehicles [17], or to conduct raw vehicle speeds post-processing in the
form of their normalized values. It is also possible to use a larger uniform length of a segment if the
traffic data are aggregated to some extent, e.g. the number of halting vehicles, occupancy of road
segments, cumulative waiting time per segment, and percentage of the vehicles that have achieved
maximum allowed speed [25]. The above-mentioned road segmentation is illustrated at Figure 3b. It is
possible to conclude that both approaches conduct spatial discretization of each intersection bound in
a cellular automata fashion. Furthermore, a novel approach based on the aggregated traffic data and
variable road segmentation is proposed in [51], which is illustrated in Figure 3c. Incoming lanes at
each intersection bound are divided into segments with different sizes. The further the segment is
from the stop line, the longer it is since it is less important for the traffic control. This approach enables
longer lane length coverage for each intersection bound [51]. The segment is marked as occupied if it
is at least one vehicle in it.
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Figure 3. Illustration of general approaches for road segmentation in image–alike matrices.

Additionally, several image-like matrices can be stacked as the single multi-channel input
sequence or tensor-like object for the DNN model digestion. It is possible to stack several image-like
matrices for the current time step, but with different content regrading the traffic data or it is possible
to stack several image-like matrices with the same content but measured in several consecutive time
intervals within the one action step. There are several methodologies for coding traffic scenarios
through the use of image-like matrices. Figure 4a illustrates the most basic approach where the
segmented quadratic region corresponds to the intersection and its nearby surrounding. Segments
that correspond with the intersection bounds are highlighted in grey. If they are occupied by vehicles,
they have value 1; otherwise, they have value 0. The drawback of this approach is the appearance
of the redundant parts in the image-like matrix denoted by the white color in the aforementioned
figure. They represent areas that are not part of the particular intersection road surface thus they are
not significant for learning

Shabestary and Abdulhai [13] proposed segmentation into the smaller uniform segments of each
intersection bound per traffic lanes starting from the stop line at each bound. All those segmented
lanes are stacked below each other into the one image-like matrix according to their intersection-bound
affiliation. This image-like binary matrix contains zeros and ones, depending on whether the segment
is occupied by the vehicle or not, as illustrated in Figure 4b. Both mentioned illustrations represent only
one channel in a possible multi-channel image-like input sequence or stack. For example, Shabestary
and Abdulhai [13] used the number of passengers per each segment as the second stack channel.
The same study addresses the problem in which the image-like matrices represent traffic scenarios
that might have a different meaning for each element in a single row or column, in comparison to the
real image of the traffic scenario. For example, one element in a column might show a vehicle waiting
on the north-bound movement and the next element in the same column might represent a vehicle
waiting on the east-bound movement. This problem is tackled by the approach in each every traffic
lane represented by the one row in image-like input is analyzed separately by the one-dimensional
filters in the input convolution layer that are moved for one row in a vertical direction. Additionally,
this approach can be used to evaluate a set of traffic lanes in one direction independently of the others
by using two-dimensional filters, for which the height corresponds to the number of lanes, and filters
should be moved vertically in image-like input for that same number of lanes.

The most recent approach presented in [46] is inspired by the definition of Discrete Traffic State
Encoding (DTSE). It proposes a Discrete Time Traffic State Encoding (DTTSE) method which defines the
state by using the event driven data. Unlike the previously described approaches, it uses traffic detector
to create two different vectors. The first vector contains a binary representation of the vehicle-detection
event existence in each discretized time step, while the other vector records the detectors occupancy at
each time step [46]. An additional vector is used for storing the green light indication for each lane.
Specifically, for each discretized time step, the ratio between green, yellow, and red light duration is
stored. Those vectors are adequately transposed and stacked one below the other to form an image-like
matrix, as shown in Figure 4d. Additionally, this matrix is extended by the set of mentioned joint
vectors from the other traffic lanes at the same intersection. Each mentioned image-like matrix is
created for one pre-defined time interval.
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Figure 4. Most used traffic state configurations for one intersection in the context of deep learning.

Most of the approaches for state representation in coordinated control over several intersections
require information about the current traffic lights configuration. That information can be placed at the
center of the image-like binary matrix, as illustrated in Figure 4c). Ideally, the information about current
traffic light configuration would be an extra layer to the state space, with binary features for each
traffic light color. However, this increases the size of the state space significantly and leads to memory
problems induced by large RM size, as well as slower computation during the learning process [44].
In [50], traffic data are obtained from the different sensors and formatted into a two-dimensional
HxW tensor. More precisely, traffic data collected at the time step t are stored into a triple 〈C, H, w〉,
where C is the number of channels which represents the traffic data such as halting vehicle number,
and mean speed of vehicles, while H and W denote the height and width of single-channel, respectively,
expressed as the number of segments. The sub-state of overall state tensor represents one intersection
in the traffic network in which each bound is expressed with two segments. Each of those segments
denotes one set of traffic lanes per each direction at particular intersection bound and they contain
aggregated traffic data with respect to channel affiliation regarding traffic parameter. The complete
setup of the mentioned state representation with emphasized sub-states can be seen in Figure 5a.

A novel approach presented in [9] is based on the DTSE and WAVE-like state representation for
the application of a multi-agent DQL control framework in the complex traffic networks. The network
of intersections is represented as the grid in which each link between nodes (intersections) denotes the
traffic flow which can belong to the four possible time-variant traffic flow groups. Intersections can be
connected with two or one lanes with predefined speed limits [9]. States for the time interval t and
intersection i are defined by the following expression:

st,i = {wwait,t[l], wwave,t[l]}j,i∈ε,l∈Li,j
, (6)

where l is each incoming lane at intersection i, wwait,t[s] is the measurement of the cumulative delay
achieved by the first vehicle, wwave,t[veh] is measure for total number of approaching vehicles in
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each incoming lane at distance of 50 m to the intersection according to Chu et al. [9], where each
agent dedicated for intersection i communicates to the edge j neighbor j, i ∈ ε. The described state
representation concept for a large traffic network is illustrated in Figure 5b.

Figure 5. Most used traffic state configurations for the large network of intersections.

4.2. Action Representation

Actions for the DRL approach applied in ATSC are configured to tackle two major problems related
to traffic signal plan design: (a) scheduling strategy for Traffic Signal Phases (TSP); and (b) computation
of each TSP duration. Most of the current DRL approaches applied in ATSC design use a discrete action
space. That approach ensures easy implementation of the mentioned traffic signal control approach in
simulation and real-world environment. The TSPs are usually denoted by the numerical indexes in
the DRL framework. Compared to the active one, all other TSPs are in the red state. Scheduling of
the TSPs sequencing can be fixed/cyclic (e.g., [18,21]) or acyclic (e.g., [46]). In cyclic TSP sequencing,
it is possible to conclude that there are only two possible actions: (1) switch to the next phase in
the predefined sequence order; or (2) stay on the same TSP. In the DRL environment that control
strategy is known as the binary control decision since there are only two possible outputs of the DNN
model. Furthermore, this approach usually requires additional intermediate TSP with a yellow and
red light when the currently active TSP is about to change. However, the binary control decision does
not clearly indicate which specific traffic streams the agent can control in the case of a multi-phase
signalized intersection [52]. In binary control decisions, it is possible to get different rewards for similar
state–action pairs what can lead to non-stationary distributions and consequently induce instability in
the learning process.

In the acyclic TSP approach, it is necessary to index each TSP with a unique value, since the agent
chooses a TSP from predefined TSP space [9,18]. In this case, TSPs scheduling is done exclusively
according to the current state without any need for following predefined TSP sequencing. Furthermore,
one TSP can have numerous versions of itself regarding its green light duration. Action space in the
aforementioned case contains a set of predefined feasible green light duration setups for each TSP,
as described in [9]. Since there is no need for computation of each TSP green light duration this
approach is suitable for the DRL frameworks which evaluates each TSP modification as the one
possible action. Furthermore, there is usually an additional yellow phase with a fixed time duration
which is activated if the traffic light is switched from green to red and vice versa. The drawback of
this approach is an extensive enlargement of the state–action space, which can dramatically increase
computational cost. Furthermore, this approach in some cases can violate the traffic regulations which
proscribe a fixed phasing sequence.
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Duration of each TSP can be presented by n-tuple, where n denotes the number of TSPs.
Each element of this tuple represents one TSP, and value of this element represents duration of
green light in that particular TSP. Furthermore, these values can represent scaling factors for each
existing TSP what preserves total duration of the cycle [20]. Yang et al. [17] introduced a significance of
the distance between adjacent intersections. The impact of interactions between different intersections
will weaken as the distance becomes larger between them. The same study proposes a concept of
Adjusting Matrix of Traffic Signal Phase Control (AMTSPC). Firstly,MTSPCt matrix for all agents’
control action at the time step t is given as follows MTSPCt = [A1t, A2t, ..., ANt]

T where N is the
number of agents. Adjusted action matrix MTSPCit is created by applying the impact coefficient
computed as (1− dik

D ) at the particular row of MTSPCt, where dik is the distance from intersection i
to the adjacent intersection k and D is a radius within which the other intersections are relevant for
particular intersection i.

It is also needed to emphasize that most of the current DRL frameworks for ATSC do not consider
the problem related with breaking the normal routing rules. The traffic lights have to be synchronized
so that the different intersection exit routes do not interfere with each other [20]. Furthermore, some city
authorities require to favor specific urban arterial roads or urban motorways at the cost of worsening
the traffic situation on the adjacent smaller roads regardless of their traffic load [53]. Current work
regarding the DRL action design does not take into consideration those requirements.

4.3. Reward Function

The reward function in RL is used to evaluate the impact of an action on its environment [54]. It is
represented by the set of scoring values computed for each action interval. During the learning process,
RL must maximize its cumulative reward that agents receive in the long run. In early studies regarding
the application of DRL for the ATSC algorithm design, the reward function for one intersection was
defined as the change in the cumulative vehicle delay between the actions [16]. Furthermore, in some
early studies, the reward was computed as the cumulative waiting time of vehicles measured from
the point of time when those vehicles have entered particular intersection bound until the start of
green light [21]. Kim and Jeong [48] extended the previously mentioned reward design by using
delay instead of waiting time, and simultaneously introduced the concept of team reward for several
intersections. The mentioned approach is described as follows:

rt = R(St, At) = Wt −Wt+1. (7)

Wt =
N

∑
i=1

wi
t, Wt+1 =

N

∑
i=1

wi
t+1, (8)

wi
t =

Mt

∑
jt=1

wi
jt ,t, wi

t+1 =
Mt

∑
jt=1

wi
jt+1,t+1, (9)

where jt is the the jth observed vehicle in the tth time step, Mt is the total number of vehicles until the
end of tth time step, wi

jt ,t is the computed delay of the vehicle j at the ith intersection until the end of
tth time step, N is the number of intersection at the one region (under condition that traffic network is
divided into the several regions), wi

t is the the sum of delay of all vehicles at the ith intersection until
the tth time step, and Wt is the sum of cumulative delay of all vehicles at all intersections until tth
time step.

The latest reward functions used for the complex traffic networks are commonly based on the
following Key Performance Indicators (KPIs); (1) the average delay, which is computed for all vehicles
according to the average waiting time of each vehicle at a single of multiple intersections; (2) the
throughput, which is computed as the total traffic flow at one or multi-intersection scenarios; (3) the
Average Travelling Time (ATT) of vehicles, which denotes the average traveling time through the one
or more intersections; (4) the number of arrival vehicles, which indicates the number of vehicles that
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have arrived at their destination through the controlled area in a given period of time [18]; and (5) the
number of queuing vehicle at each intersection bound [54].

Liu et al. [55] addressed the problem related to global vehicle delay minimization since the DRL
based agent can favor specific TSPs affected by the large traffic load. That might cause an unusual
long extension of red signal time for TSP with lower traffic load. To alleviate that problem, the reward
function, inspired by the U.S. Bureau of Public Roads (BPR) function used for transportation planning,
is introduced as follows:

rt =
1
N

N

∑
i=1

Tu

[
η − η

(
wi

C

)τ
]

. (10)

where wi is current waiting time for vehicle i, Tu is one unit of time, C is the generally acceptable
waiting time, and η and τ are constants which are set as η = 0, 15 and τ = 2, respectively, according to
the BPR. multi-objective reward function.

Gu et al. [52] concluded that it is hard to compute average delay in real-life traffic environment
without the presence of Connected and Autonomous Vehicles (CAVs). It is very difficult to measure
sufficiently accurately waiting time for each vehicle at the intersection. The same study proposes a
novel and simple approach for reward computation based on the difference between the number of
vehicles that passed through the stop line during the last time interval and those that could not pass the
intersection and therefore they stayed in the queue. Additionally, the agent for the final reward uses
the values of the mentioned differences for each intersection bound but computed for two consecutive
time steps. The same idea is indirectly addressed in [22], where Equation (7) is reformulated to use the
aggregated queue lengths in two consecutive time steps at each intersection bound. Those approaches
require one pair of traffic detectors at each intersection bound for each lane. One of them is installed at
the stop line and the other one is placed at the predefined distance (usually 50 m away from the stop
line) with the main role to count incoming vehicles to the particular intersection bound. This traffic
detector setup is common for signalized intersections so there is no need for additional traffic data
sources. In cooperative control, agents primarily compute their local rewards and store them into the
reward vector. The shared reward is computed based on this vector. The mentioned reward is used for
adjustment of the agent’s local rewards. Reward also can be conceptualized as the

In [46], the mentioned reward approach is proposed to maximize the vehicle throughput and
minimize the trip delay through the learning process. Those two objectives are represented by the
number of vehicles that have entered the intersection, and the waiting time of vehicles at two measuring
stations. One station is set near the stop line and the second is placed at a predefined approaching
distance, usually 50 m away from the stop line. Both measuring stations are on the same intersection
bound. The results of waiting time at the same detection locations in the same TSP are summed and
weighted. Finally, those two weighted waiting time values for each bound are subtracted from the
weighted value of cumulative vehicles number that has entered those bounds.

The concept of disaggregated reward presented in [20] is based on the idea that the local scalar
rewards are computed for each detector in the traffic network. All those rewards are stored into
the one vector of a dimension 1xN, where N is the number of detectors; thus, it is now possible to
have r : SXA→ RN . In this case, valuable information regarding the relation between the location
and effect of taken action is preserved and leveraged by the structure of DDPG. This is analogous
to the configuration with N agents that are sharing the same Actor and Critic DNN model weights
θπ and θQ, and being trained simultaneously over N different uni-dimensional reward functions.
The disaggregated reward can be understood as the novel approach for enabling multi-objective RL.
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Table 2. The detailed configuration of the most representative DRL frameworks used in the ATSC design.

DRL Method/Year DNN
Configuration

DNN
Parameters 1

Optimization
Algorithm

ER/
Batch
Size

Learning
Episodes

Regional A3C + PER 2019 [17];

Single A3C
CNN

(1: 3×Conv,
2: 1×FC,

3: 2×LSTM 2)

1: (32, 4×4, 2)
(64, 2×2, 1)
(128, 2×2, 1)

2: 128
3: (128, 128)

AdaBound
50.000

TS
/32

1 Million
TS;

Stabilised IA2C 2019 [9];

Single A2C
3 inputs

per 1×FC,
1×LSTM 3

1 input 128
2 input 32
3 inputs 64
LSTM: 64;

Orthogonal
initializer,

RMSprop as
gradient
optimiser

1000
TS

/20 ;

1400
episodes

(1 episode
is 720 TS);

Hierarchical regional A2C 2019 [34];

Regional
A2C agents:

2×(3×MLP+ReLU) 4

Global layer:
1×FC+ReLU

Agent:
Critic net:

(300, 200, 200)
Actor net:

(200, 200, 100)

Adam
-

/64

250
episodes

(1 episode
is 1000 TS);

3DQN + PER 2019 [46];
Dueling CNN:

3×Conv
2×FC

1: (32, 3×15, 3,1)
2: (64, 2×2, 2)
3: (128, 2×2, 1)
FCs (464, 64)

Adam
100.000

TS
/32 ;

1000
episodes 5

ResNet based A2C 2018 [18];

Single A2C DNN,
4×ResNet Blocks

(2×Conv, 2×BN, ReLU)
Actor and Critic each:

(1×Conv, 1×BN, 2×FC)

Filters
for Conv
in ResNet

(32, 64,
128, 256)

Adam
-

/64x×
(16 agents)

50 episodes
(1 episode is 3600 TS)

DPG 2017 [20]

(4×FC+LeakyReLU,
1×BN+ReLU

Gaussian Noise)
(4×FC+Leaky ReLU) 6

Critic: (4×nd
+ np, 1×nd)

Actor: (2×nd
+ np, 1×np,

1×nd) 7

Adam
-

/-
1000

episodes

DQN + ER 2017 [21];
Each input

2×Conv
merged with 2×FC;

1: (16, 4×4, 2)
2: (32, 2×2, 2)
3: 128, 4: 64

RMSprop
200

episodes
/32

2000
episodes 5

DQN + ER 2017 [16];
2×Conv
+ 2×FC;

1: (16, 4×4, 2)
2: (32, 2×2, 2)
3: 128, 4: 64

RMSprop
111

simulations
/16

100
simulations

(1 simulation
is 4500 TS)

DeepSAE + RL 2016 [14]
4 layer

SAE
(32, 16,
4, 2) 1 SGD

-
/- -

1 Convolution layer (Conv) has the notation “(number of filters, filter size, stride)”, Fully Connected (FC)
layer notation denotes the number of neurons for each layer in an FC stack, LSTM layer notation denotes
only an output size, MLP layer stack is denoted by a number of neurons in each layer, and SAE layer notation
includes a number of neurons per each layers starting from the input layer. 2 Differentiation of the Actor and
Critic models is done by the two separate LSTM layers; the Actor part is designed in the form of Dueling
network. 3 Differentiation of Actor and Critic is done by the single LSTM layer; for each of the three inputs,
there is one FC layer. 4 These are per each Actor and Critic; their design is based on Wolpertinger architecture
with DDPG. 5 One episode lasts for 1.5 h. 6 Each set of parameters is for a separate Actor–Critic DNNs. 7 np is
the total number of phases and nd is the number of detectors at the traffic network.

5. Open Traffic Data Framework in the Context of Deep Learning

Most recently, a significant increase in the availability of real-time traffic data can be noticed in
the complex and ever-expanding traffic environments. This increase corresponds with the two modern
trends that are happening in parallel. The first trend is related with a high percentage of smartphone
ownership, implementation of innovative traffic sensors, and development of infrastructure for fast
and secure data exchange, while the second trend is related with the increase in traffic demand for
daily migrations due to a growing number of personal vehicles and traffic network capacity expansion
in overpopulated urban regions. Datasets obtained from those evolving traffic environments are
nowadays mainly stored at the cloud-oriented data lakes. Those datasets contain various traffic
data such as GPS trails of vehicles/mobile phone users; vehicle positioning and queue counting
at intersections by using advanced video processing [56] and other sensor technologies such as
inductive loops, weather, and condition of road surface data; satellite and drone imagery; social
network data; etc. The existing traffic datasets will be significantly expanded by the upcoming CAVs.
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Those vehicles are equipped with advanced on-board sensors that can generate more accurate traffic
data and they have the ability to extend its sensory range by exchanging data with other CAVs and
road-side-sensory-units [57].

According to the above, current traffic datasets can be categorized as big data considering their
volume, variety, and velocity. Traffic big data are created based on mobile users data, live traffic video
signal processing, CAVs, and other traffic sensors telemetry, and it can complete missing pieces of data
through the data fusion process. The DNN models in DRL frameworks dedicated for traffic control
require a lot of raw traffic data which must be systematically extracted from different sources, fused,
and arranged in the large sets of image-like data structures. This study is oriented towards finding a
suitable standardized approach for the image-like state formatting related with traffic flows dynamics
at the large traffic networks.

Both image-like representations of intersection network in Figure 5 are recognized as the possible
approaches for standardized formatting of raw or aggregated traffic data into a high level image-like
network-wide traffic state representation. Those holistic traffic state representations dedicated for deep
learning could be directly used by the DNN models or they can be additionally processed. In the context
of Open Traffic Data, those standardized image-like data structures can be a potential platform for
data sharing among regional data centers interested in network-wide deep learning. Those image-like
data structures shared across mentioned data centers will enable a more extensive learning dataset
which will enable a more comprehensive, and robust learning. Consequently, this could lead to flexible
scalability among various multi-agent DRL approaches applied in ATSC. Additionally, the seamless
exchange of image-like state representation at the level of intersection network could enable easier
integration between various deep learning applications within the domain of traffic engineering.
The whole mentioned data platform is extended up to the novel concept of Deep Open Traffic Data
(DOTD) framework, which is illustrated in Figure 6.

Figure 6. The concept of Deep Open Traffic Data framework applied for intersection network.

6. Discussion

Fixed traffic signal plans can produce satisfying performance when traffic conditions are consistent
in a temporal and spatial context. However, their performance degrades in cases when the traffic
conditions are subject to the rapid fluctuations in mobility demand or in the case when intersection
throughput is reduced. Those disruptions in traffic flows can occur due to the various types of
traffic incidents, public events of great interest, or unanticipated road obstructions. The RL as one
of the approaches for on-line machine learning provides an optimal ratio between the complexity
and efficiency among various model-free data-driven traffic control methods. It introduces needed
self-adaptation features to tackle control problems related to the new unforeseen traffic scenarios.

Conventional RL based approaches store records that contain the described relationship between
the states and actions by using a 2-dimensional matrix. In the case of a large traffic network, this matrix
or table can become too vast to learn. An estimation of the return with respect to the mentioned table
is introduced and it is known as the value function [28]. Those types of RL algorithms are known
as Critic-only. They depend on the efficiency of value function approximation since they do not use
the explicit function for the policy. The RL algorithms based on the policy function are known as
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the Actor-only algorithms and they use a large continuous action spectrum. The drawback of those
algorithms is high variance in the gradient estimation what makes their learning slow [28]. There are
numerous methodologies that can reduce the high-dimensionality of Critic-only RL algorithms by
conducting the value function approximation schemes in a form of an empirical balance between
representational power and computational costs such as Tile Coding and Radial Basis Functions
(RBF). However, they still require manual feature extraction from the raw traffic data. During this
process, it is possible to lose a lot of useful information about traffic flow. The introduction of DNN
models that utilize the feature extraction and estimation/classification has enabled direct learning
from the information-dense input data. Furthermore, the use of the DNN model in the DRL framework
as the function approximator within a Critics-only RL setting removed the need for searching vast
tables what consequently mitigate the problem with dimensionality explosion. Currently, the most
used architecture for the DRL framework is based on the Actor–Critic approach since the Critic part
evaluates the quality of the used policy and the Actor uses the Critic’s information to update its policy
parameters. Those two integrated parts are capable of producing continuous actions while the high
variance in the estimation of gradients of Actor-only methods is reduced by considering the value
function of the Critic part as it is represented in [58].

The main efficiency measure for novel ATSC algorithms is their effectiveness in holistic
traffic signal control since the poor scalability is the most prominent drawback of those types of
algorithms [59]. During the last five years, according to Table 1, it is possible to notice an increase in the
number of intersections that ATSC based on the DRL approach can handle. The scalability of the latest
ATSC approaches which are based on DRL is tackled by the deep MARL frameworks. In most cases,
those frameworks are based on the global Q-function distribution to the local DRL agents in the form of
the IA2C, transfer learning, or introducing a hierarchical regional A2C/A3C approach. Simultaneously,
over the past five years, it is possible to notice the growing complexity of DNN models which are used
in the advanced Actor–Critic architectures. All mentioned advancements are proof of the growing
interest of the scientific community in that field. Furthermore, most recent research results achieved
in the ATSC based on the multi-agent DRL are compared not just with the traditionally used ATSC
algorithms but with the other inferior DRL approaches. The growing maturity of DRL applications
in ATSC is additionally proven by the transition from the synthetic traffic simulations towards the
simulations which are tuned by using real-world traffic data (e.g., the Monaco traffic network use case
study presented in [9] and the Sants area case study in the city of Barcelona presented in [20]).

The most noticeable limits of DRL frameworks applied in ATSC are the following: (1) slow and
computationally expensive learning; (2) difficulties in optimal reward design for stochastic control
environments, e.g. multi-intersection network; (3) over-fitting to unusual patterns which can be
common in traffic flow, e.g. effects of aggressive overtaking or lane changing, impacts of lesser
incidents, etc.; (4) absence of explanation how the control decision was made; and (5) control decision
can be unstable and hard to reproduce. Additionally, the DNN models in DRL frameworks can digest
only adequately pre-processed raw traffic data. The efficiency of DRL framework strongly depends
upon the positional arrangement of raw data in image-like input structures suitable for the DNN
model digestion. A large network of intersections require aggregation of raw traffic data up to a
certain level in order to be arranged in the image-like format which can represent overall traffic state
at such networks. Furthermore, all obtained traffic data should be processed/formatted by using
the standardized image-like format and be freely shared in line with the Open Traffic Data concept.
The process of sharing should be done through the local traffic data centers to achieve flexible and
broader scalability over various DRL oriented ATSC approaches. The DOTD as a conceptual framework
for processing and exchanging standardized higher-level image-like formats will be essential for more
extensive application of DNN based approaches in the traffic engineering such as prediction of traffic
demand [60,61], detection of traffic anomalies [62], optimization of transportation processes [63],
and application of DRL in real-world traffic control problems [64]. The DOTD framework potentially
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can be a data platform for establishing interoperability between all mentioned traffic engineering fields
related to deep learning.

7. Conclusions

The core part of this paper is an overview of the recent applications of DRL in ATSC. Although the
application of DRL in ATSC is a relatively new field, the papers reviewed show promising results
compared to the traditional ATSC algorithms and ATSC algorithms that are based on RL methodologies.
During the last five years, it is possible to notice an increase in the number of intersections
controlled by the use of various multi-agent frameworks based on DRL. Transfer learning, multi-agent
frameworks, and complex DNN model structures based on the Actor–Critic architecture are the
most prominent approaches for improving the effectiveness of the DRL in the holistic traffic signal
control. The development of the advanced DRL frameworks for large-scale ATSC is proof that the
scientific community has recognized this approach as a promising direction for future traffic signal
control. Furthermore, this study presents recent advancements in the state, action, and reward
modeling, which is currently a very open area for research. Additionally, this study provides an
assessment of the issues concerning the relationship between the learning convergence, DNN model
complexity, data availability, and scalability for large intersection networks. Feasible solutions to
those issues are key for a possible real-world application of those complex traffic signal control
frameworks. Standardized image-like state representation is found to be important for interoperability
and flexible scalability between the various ATSC approaches that are based on DRL. The availability
of the larger traffic data spectrum generated by the various sensors and upcoming CAVs will create
information-dense traffic data environments. Data from those environments must be obtained in
a centralized fashion, pre-processed, and formatted up to a higher level of image-like traffic state
representation. Each application of DRL in ATSC can directly use those image-like data structures
or additionally process them in order to be digested by the used DNN model. This paper provides
several existing DTSE approaches suitable for initial high-level pre-processing of the raw traffic data.
The legislative and technical framework for gathering and sharing mentioned pre-processed traffic
data must be in line with the Open Traffic Data concept in order to enable network-wide, inter-operable,
and multi-agent ATSC based on information dense state representation. Future improvements in
DRL frameworks for ATSC are expected to be based on the integration of Deep MARL approaches
with multi-objective reward function and transfer learning to address the problem regarding the
multi-intersection signal control. Mentioned complex DRL frameworks are expected to be optimized
by the multi-objective evolutionary algorithms that can potentially enable integrated control between
multi-intersection traffic signal control and traffic control methods at nearby motorway (e.g., ramp
metering, variable speed limit control, etc.). The DOTD as the conceptual approach is expected to
provide network-wide tensor-based data structures that will integrate fused traffic data, weather data,
and road condition data in order to proved robust and more comprehensive inputs for advanced DRL
frameworks applied in ATSC.
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