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Abstract: Current research aims to investigate the mechanical properties of rare earth perovskite
ferrites (RFeO3, R = La, Eu, Gd) utilizing density functional theory (DFT) calculations. Using the
revised Perdew–Burke–Ernzerhof approximation for solids (PBEsol) approximation, the elastic
constants, bulk, Young’s, and shear modulus, Poisson’s ratio, and anisotropic properties are calculated.
The quantum theory of atoms in molecules (QTAIM) is employed to analyze the stability of chemical
bonds in the structures subjected to an external loading. Based on these calculations, Fe-O and R-O
bonds can be considered as nearly ionic, which is due to the large difference in electronegativity of R
and Fe with O. Additionally, our results reveal that the charge density values of the Fe-O bonds in
both structures remain largely outside of the ionic range. Finally, the mechanical response of LaFeO3,
EuFeO3, and GdFeO3 compounds to various cubic strains is investigated. The results show that in
RFeO3 by increasing the radius of the lanthanide atom, the mechanical properties of the material
including Young’s and bulk modulus increase.

Keywords: density functional theory; quantum theory of atoms in molecules; rare-earth ferritic
perovskite; mechanical properties; sound velocity; Debye temperature

1. Introduction

Metal mixed oxides (ABO3), in particular RFeO3 (R = La, Eu, Gd) structures, have been considered
as one of the most attractive semiconductors for a wide range of applications such as catalysts, hazardous
gases sensors, quantum electromagnets, and microelectronic devices due to their outstanding physical,
chemical, mechanical, optical, and magnetic properties [1]. Tang et al. [2] introduced LaFeO3 perovskite
as a potential candidate for using in photocatalytic applications because of its strong absorption
in the visible light spectrum. GdFeO3 possesses ultra-low-temperature thermal conductivity (κ) of
1W/Km at 1 K, which makes it a suitable candidate for the thermoelectric applications [3]. Moreover,
it has been known that the EuFeO3 perovskite has a great performance to use in the microelectronic
industry due to its high dielectric constant of 315, and a low dielectric loss of 1.7 [4]. One of the
most important applications for these materials is high-temperature electrochemical devices, where
the thermal expansion and mechanical properties of the material are crucial [5]. Differences in the
thermal and chemical expansion coefficients of the constituent materials introduce compressive or
tensile stresses to the compound, which can potentially cause a destruction in the device. Therefore,
the effect of such stresses should be investigated on the mechanical properties of the materials. This is
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our motivation to study the mechanical properties of RFeO3 and their response to the external stresses.
To predict the mechanical behavior of RFeO3, it is important to calculate the parameters such as fracture
strength, Young’s and shear modulus, and fracture toughness under mechanical loading. In the
current study, the mechanical properties of the LaFeO3, EuFeO3, and GdFeO3 perovskites in the cubic
symmetry are first studied by exerting first-principles calculations based on density functional theory
(DFT). In the next step, the topological analysis of electron density is performed utilizing quantum
theory of atoms in molecules (QTAIM) to investigate the role of chemical bonds on the mechanical
properties of RFeO3 perovskites.

2. Computational Methods

All calculations in the present study are carried out exploiting the plane-wave pseudopotential
procedure within the framework of the density functional theory (DFT) using Quantum ESPRESSO
software package [6]. The exchange correlation potential is contemplated by the generalized
gradient functional (GGA) with the correction of Perdew–Burke–Ernzerhof approximation for
solids (PBEsol) approximation [7]. An optimum cutoff energy of 90 Ry is considered in the all
calculations. The integration of the Brillouin zone is carried out with 12 × 12 × 12 k-points using
the standard Monkhorst–Pack special grids [8]. The geometry optimizations are done with the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (for stress minimization). The total energy
convergence occurs at the energies less than 1 meV/atom. For geometry relaxation, the force on atom is
converged below a threshold of 0.01 eV ◦A-1. Cubic unit cell with the space group Pm3m containing
5 atoms (Figure 1) is used for the calculations.
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The elastic constants of cubic RFeO3 (R = La, Eu, Gd) structures are calculated using continuum
mechanics method, which are explained in detail in our previous work [8]. Conforming to this approach,
the unit cell is exposed to a series of deformations η based on the crystal structure. The following
equation shows how to calculate the elastic energy of a deformed structure:

E(ηI) = E(0) + V0

3∑
I=1

τ
(0)
I ηI +

V0

2!

3∑
I,J=1

CIJηIηJ (1)

where V0, E(0), τ, and C are, respectively, denoting the volume, energy of the equilibrium state,
Lagrangian stress tensor, and the elastic stiffness constant. To abbreviation in indexing, we utilize
Voigt notation in this equation. Using Equation (1), the elastic constants of the material (Cij) can be
calculated as:

Cij =
1

V0

∂2E
∂ηI∂ηJ

(2)

According to the high-symmetry structure of the cubic phase of RFeO3, only three independent
elastic constants (C11,C12, and C44) are calculated using Equation (2). The elastic constants for the
cubic, orthorhombic, and monoclinic deformations can be obtained using the following deformation



Appl. Sci. 2020, 10, 4008 3 of 12

tensors [9]. For each deformation mode, different magnitudes of deformations from −10% to 20%
were applied.

DCubic =


η 0 0
0 η 0
0 0 η

, DOrtho =


η 0 0
0 −η 0

0 0 η2

1−η2

, DMono =


0 η 0
η 0 0

0 0 η2

1−η2


3. Results and Discussion

The calculated optimum values for the lattice parameters of the cubic RFeO3 (R = La, Eu, Gd)
structures as well as the previous experimental and theoretical values are given in Table 1. There is
befitting compliance between our calculated results with the reported experimental data the literature
with a nearly 0.5% underestimation. The weakness of DFT in describing the dispersion forces causes
an underestimation in the prediction of the electronic, structural, and physical properties of materials.

Table 1. Comparison between our calculated, and reported the experimental and theoretical results in
the literature for the lattice parameters of LaFeO3, EuFeO3, and GdFeO3.

Experiment Data Theoretical Data

LaFeO3

3.89 [10] 3.82
3.92 [11] 3.92 [5]
3.93 * [9] 3.95 [12]

EuFeO3
3.75

3.68 * [9] 3.83 [5]

GdFeO3
3.74

- 3.82 [5]

* Pseudocubic structure.

It can be seen in Table 1, the cell parameter of the unit cells for all three structures decreases by
reducing the atomic radius of the central cation. This is in agreement with the other computational
studies [5–7,12,13], as listed in Table 1.

In the first step of obtaining the mechanical properties, the elastic constants of RFeO3 are calculated.
These constants are calculated by applying strain in the harmonic region. The relation between the
applied strain under three different deformation moods and the total energy changes is presented in
Figure 2. The other elastic properties such as bulk modulus, Young’s modulus, shear modulus, and
Poisson’s ratio are then identified from the elastic constants [13]. In the Voigt theory, the bulk modulus
(BV), and shear modulus (GV) can be written as [14]:

BV =
1
3
[C11 + 2C12] (3)

GV =
1
5
[C11 −C12 + 3C44] (4)

While, in Reuss theory, the bulk modulus (BR), and shear modulus (GR) are written as [15]:

1
BR

= (S11 + S22 + S33) + 2(S12 + S13 + S23)] (5)

15
GR

= 4[(S11 + S22 + S33) − 4(S12 + S13 + S23) + 3(S44 + S55 + S66)] (6)
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where Sij, which is entitled the elastic compliance coefficient, is the inverse of Cij. Furthermore, in Hill
theory, bulk modulus (BH), and shear modulus (GH) are described as follows [16]:

BH =
BV + BR

2
(7)

GH =
GV + GR

2
(8)

Finally, the Young’s modulus (E), and Poisson’s ratio (υ) are calculated using Equations (9) and
(10), respectively:

E =
9BG

3B + G
(9)

υ =
3B− 2G

[2(3B + G)]
(10)
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Figure 2. Total energy of LaFeO3, EuFeO3, and GdFeO3 structures as a function of strain under the
influence of three types of deformation tensor (E0 is total energy of equilibrium structure).

The calculated elastic constants of LaFeO3, EuFeO3, and GdFeO3 are reported in Table 2. To the
best of our knowledge, there are limited theoretical and experimental efforts on the prediction of the
elastic constants of LaFeO3, EuFeO3, and GdFeO3 with the cubic structure. Therefore, to validate our
obtained results, we compare the mechanical properties of rare earth Ferritic perovskites with other
oxide perovskites. This helps to achieve a better understanding of the mechanical properties of rare
earth Ferritic perovskites. Bannikov [17] calculated the elastic constants of C11, C12, and C44, as 286.71,
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116.46, and 125.61 for BaVO3, respectively; all of which are at the same order of the elastic constants
of RFeO3 (R = La, Eu, Gd). In addition, the mechanical properties of SrTiO3 and SrZrO3 have been
investigated by Shein et al. [18]. They reported the elastic constants C11 = 318.35, C12 = 100.04, and
C44 = 110.20 and C11 = 309.71, C12 = 71.96, and C44 = 73.78 for SrTiO3 and SrZrO3, respectively [18].
The difference in the results (the values of the elastic constants) can be caused due to the influence of
some structural factors in these materials such as structural and relative density, metal-oxygen bond
strength and interactions between central cation with the scaffold.

Table 2. Calculated mechanical properties of RFeO3 (R = La, Eu, Gd).

C11 (GP) C12 (GP) C44(GP)

LaFeO3 278.06 154.63 92.92
EuFeO3 242.64 148.81 45.34
GdFeO3 215.56 156.80 34.77

Born stability criteria [19] is a valid criterion to investigate mechanical stability of elastic stiffness
constants. For cubic structures these criteria are written as:

C11 > 0, C11 −C12 > 0, C11 + 2C12 > 0, C44 > 0 (11)

According to the Equation (11), all our obtained elastic constants of RFeO3, as reported in Table 2,
are satisfied by Born stability criterion.

Furthermore, the calculated bulk, Young’s, and shear modulus and Poisson’s ratio for all structures
using Equations (3)–(10) are listed in Table 3. As can be seen in Table 3, it is clear that with changing
the central cation from the left to the right in the periodic table, the bulk modulus decreases. In each
period of the periodic table from left to right, the effective nuclear charge on the outer electrons,
and accordingly, the nuclear attraction on the valence band electrons increase. Reducing the atomic
radius of the central cation increases the compressibility, which has an inverse relation with the bulk
modulus. In Table 4, shear velocity (Vt), compressional velocity (Vl), sound velocity (Vm), and the
Debye Temperature (θD). The average sound velocity (νm) is calculated using Equation (12):

νm =

1
3

 2
ν3

l

+
1
ν3

t

−
1
3

(12)

where νt and νl are the shear velocity, and compressional velocity, respectively, and are dependent on
bulk (B) and shear (G) modulus as follows:

νt =
√

G/ρ (13)

νl =

√(
B +

4
3

G
)
/ρ (14)

The Debye temperature is another physical quantity, which is related to elastic constants, specific
heat, and melting point. The relation between Debye temperature and the average sound velocity (νm)
is described in Equation (15):

θD =
h
k

[3n
4π

(NAρ

M

)] 1
3
νm (15)

where h, k, NA, n, M, and ρ represent the Planck’s constant, Boltzmann’s constant, Avogadro’s number,
atoms in the cation, molecular mass, and density, respectively. The Debye temperature of RFeO3

(R = La, Eu, Gd) ranged from 503.1 K for GdFeO3 to 792 K for LaFeO3, as can be seen in Table 4.
The anisotropy of the Young’s and shear modulus of LaFeO3, EuFeO3, and GdFeO3 is illustrated in the
form of 3D surface contours in Figure 3 using ELATE code [20]. For an isotropic crystal, one sees a
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spherical shape, while a deviation from a spherical shape can directly reflect the degree of the elastic
anisotropy in the crystal. It can be seen that the Young’s modulus of the LaFeO3 is strongly anisotropic
compared to that of two other structures.

Table 3. Calculated results for bulk, Young, and shear moduli and Poisson ratio of RFeO3 (R = La, Eu,
Gd) structures by Voigt, Reuss, and Hill approaches.

Averaging
Scheme

Bulk Modulus (B)
(GPa)

Young’s (E)
Modulus (GPa)

Shear Modulus
(G) (GPa)

Poisson’s Ratio
(υ)

LaFeO3

Voigt (V) 195.77 212.24 80.44 0.32
Reuss (R) 195.77 204.9 77.29 0.32
Hill (H) 195.77 208.58 78.86 0.32

Other Work 186.5 [5]

EuFeO3

Voigt (V) 180.09 127.1 45.97 0.38
Reuss (R) 180.09 127.06 45.957 0.38
Hill (H) 180.09 127.08 45.963 0.38

Other Work 201.2 [5]

GdFeO3

Voigt (V) 176.39 92.17 32.62 0.41
Reuss (R) 176.39 91.58 32.40 0.41
Hill (H) 176.39 91.88 32.51 0.41

Other Work 204.2 [5]

Table 4. Values of shear velocity (Vt), compressional velocity (Vl), sound velocity (Vm), and the Debye
Temperature (θD) of RFeO3 (R = La, Eu, Gd) compounds.

Sample Vt Vl Vm θD

LaFeO3 3333.8 6470.7 4435.9 792.0
EuFeO3 2384.1 5463.2 3266.7 594.8
GdFeO3 1983.0 5148.7 2758.7 503.1
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In this section, the topological analysis of electron density is performed by employing quantum
theory of atoms in molecules (QTAIM) to investigate the role of chemical bonds on the mechanical
properties of the studied materials [21–23]. A deep understanding between structure (chemical bonds)
and mechanical and electronic properties can help to design of low-cost, and scalable materials with
enhanced properties. To carry out QTAIM (Bader’s analysis), a single-point calculation of the optimized
RFeO3 structure is done to generate the full electron density (Table 5). The simulations are conducted by
CRITIC2 code which used the core and valence electron densities as input parameters [24,25]. Firstly, the
critical points (CPs) of the electron density are determined by QTAIM analysis. A critical point together
with all downward-gradient lines, all of which have their origins in the critical points, constitute an
atomic basin, and are the most important of the regions fulfilling the zero-flux condition [26].

Table 5. Properties of electron density critical points of RFeO3 (R = La, Eu, Gd).

Number and
Type of Cps

ρ(rc) ∇2ρ(rc) λ1 λ2 λ3

(e.A−3) (e.A−5) (e.A−5) (e.A−5) (e.A−5)

LaFeO3

Bond 6 0.66 13.33 −2.19 −2.19 17.73
Bond 12 0.22 2.59 −0.73 −0.68 4.01
Ring 24 0.12 1.71 −0.20 0.93 0.98
Cage 8 0.11 1.72 0.29 0.29 1.34
Cage 3 0.06 0.85 0.24 0.24 0.37

EuFeO3

Bond 6 0.73 13.34 −3.07 −3.07 19.49
Bond 12 0.21 2.75 −0.65 −0.61 4.02
Ring 24 0.12 1.77 −0.16 0.86 1.08
Cage 8 0.12 1.82 0.30 0.30 1.22
Cage 3 0.06 0.80 0.26 0.26 0.26

GdFeO3

Bond 6 0.74 13.57 −2.88 −2.88 18.46
Bond 12 0.2 2.56 −0.69 −0.63 4.02
Ring 24 0.12 1.75 −0.17 0.85 1.03
Cage 8 0.12 1.83 0.31 0.31 1.32
Cage 3 0.06 0.83 0.25 0.25 0.27

There are four types of non-degenerate critical points, which are defined by the number of
non-zero eigenvalues of the curvature (Hessian) matrix (λi) and the sum of the algebraic signs of λi.
These four critical points of electron density are: maxima (3, −3), minima (3, +3), and two types of
saddle points (3, +1) and (3, −1), which are corresponding to the nuclear positions, cages, rings, and
bonds, respectively [26,27]. In solids, atomic basins are equivalent to polyhedral with curved edges and
faces. The crystal partitioning can lead to predict the mechanical properties of RFeO3 on a local scale
interdependent with the atoms in the crystal. The analysis is based on variation of hydrostatic pressure
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(P) compared to the changes in partition of basin volumes (VΩ). To calculate the bulk modulus B and
its derivative with respect to pressure B′0 = ∂B0

∂P , the third-order Birch–Murnaphan (BM) equations of
state as [28,29]:

P =
3
2

B0

(
η−

7
3 − η−

5
3

)[
1 +

3
4

(
B′0 − 4

)(
η−

2
3 − 1

)]
(16)

here η = V/V0 is the ratio of volume V at pressure P to equilibrium V0 at zero pressure, and B0 is
bulk modulus and B′0 = ∂B0

∂P . The analysis is based on the partition of the cell volume (V) into basin
volumes (VΩ), which compress differently upon the application of hydrostatic pressure (P). The local
bulk modulus BΩ and the bulk modulus (B) of the bulk crystal are defined as:

BΩ = −VΩ

(
∂P
∂VΩ

)
(17)

B =
∑

Ω

f(Ω)BΩ (18)

where f(Ω) is the ratio of total volume (V) to basin volume (VΩ).
As shown in Table 6, the local bulk modulus is specified for each basin, which is calculated using

Equation (17). The incremental amount of the local bulk modulus is maintained by reducing the atomic
radius, which is in agreement with our previous results presented in Table 3. The local bulk modulus
of Fe and O in changes from one structure to the other one due to the fact that the atomic environment
is not the same in the LaFeO3, EuFeO3, and GdFeO3 structures. Using Equation (18), the bulk modulus
of RFeO3 (R = La, Eu, Gd) structures are obtained by averaging the local bulk modulus (see Total row
of B column), which confirms our previous results in Table 3.

Table 6. The topological charges (Q), volume of each basin, and C index of RFeO3 (R = La, Eu, Gd).

V f (Ω) B(Ω) Q(Ω) OS(Ω)

LaFeO3

La 17.18 0.308 268.83 2.071 +3
Fe 7.16 0.128 221.59 +1.475 +3
O 10.45 × 3 0.188 × 3 176.37 −1.182 × 3 −2 × 3

Total 55.70 1.00 210.66 0 0

EuFeO3

Eu 15.08 0.287 256.59 +1.896 +3
Fe 6.83 0.130 191.23 +1.527 +3
O 10.19 × 3 0.194 × 3 169.23 −1.141 × 3 −2 × 3

Total 52.54 1.00 196.99 0 0

GdFeO3

Gd 14.80 0.283 249.64 +1.882 +3
Fe 6.78 0.130 185.91 +1.537 +3
O 10.23 × 3 0.196 × 3 167.25 −1.139 × 3 −2 × 3

Total 52.29 1.00 193.04 0 0

In addition, as can be seen in Table 6, Q is topological charges of atoms in the crystal, which
are calculated using from the integration of each basin corresponding to each atom using Yu and
Trinkle method [30]. Obtained charges for each basin help to specify an important parameter that
characterizing the whole charge transfer by averaging the ratios between topological charges Q (Ω)
and nominal oxidation states OS (Ω):

C =
1
N

∑
Ω

Q(Ω)

OS(Ω)
(19)

where Ω denotes each basin and N is the total number of basins. In this equation C = 1 means the
total iconicity, while C = 0 shows total covalency. Table 6 shows the topological volumes, topological
charges, and the C indexes are calculated for LaFeO3, EuFeO3, and GdFeO3. The C index is an
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important indicator for measure the degree of ionicity of the crystal, where 1−C shows the degree of
covalency. The ratio between Q (Ω) and OS (Ω) provides a measurement of the deviation from the
ideal ionic model for a given basin Ω. The topological charges (Q) are not close to nominal charges
(R(+3)Fe(+3)O(−2×3)

3 ) due to the existence of different topological charges for the same atoms in different
atomic environments. The calculated C index is 0.59, 0.55, and 0.57 for LaFeO3, EuFeO3, and GdFeO3

compounds, respectively. Another important mechanical property, which is of great importance in
the materials design category, is the elastic limit. The elastic limit is the maximum stress that can be
applied on the solid material before the permanent or plastic deformation starts. Prior to the elastic
limit, by unloading, the material returns to its original undeformed shape. Passing this limit reduces
the material’s stiffness and leads to deflections and buckling. This is very important, particularly in
thin film applications, where there is a substrate, which strains the film due to the lattice mismatch
between the substrate and the thin film. The change of the second Piola–Kirchhoff (PK2) stress with
Lagrangian strain is represented in Figure 4 for all LaFeO3, EuFeO3, and GdFeO3 structures. To obtain
the Piola–Kirchhoff (PK2) stress, we applied the cubic deformation tensor on the structures. The PK2 is
related to the Cauchy (true) stress (σ), and can be obtained from Equation (20) [31]:

Σ = jF−1σ
(
F−1

)T
(20)

where J is the determinant of the deformation gradient tensor F. The Cauchy stresses are identified
based on DFT calculations in the framework of the PBEsol approximation. The maximum stress in
this curve is called the ultimate stress and the corresponding strain at this point is called the ultimate
strain. The strain range prior to this ultimate strain point is the uniform elastic region of the material.
It should be emphasized that the ultimate stress and strain obtained by this method is under the ideal
condition, where there is no crystal defect or thermal effects, which are usually present in the real
conditions and lower the strength of the material. The ultimate stress and strain values obtained from
the PK2 stress curve are given in Table 7. From the PK2 stress, it can be seen that both materials behave
in a symmetric manner, which is due to the cubic crystal lattice. In addition, from the steep slope in the
compression region, it can be concluded that the structures possess higher resistance in compression
compared to tension.

Table 7. Ultimate stresses and ultimate strain of RFeO3 (R = La, Eu, Gd) in a, b, and c directions under
cubic deformation.

Σu (eV/Å). LaFeO3 EuFeO3 GdFeO3

Σu
a 0.126 0.115 0.111

ηu
a 8.5% 8.5% 8.5%

Σu
b 0.126 0.115 0.111

ηu
b 8.5% 8.5% 8.5%

Σu
c 0.126 0.115 0.111

ηu
c 8.5% 8.5% 8.5%
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Figure 4. Stress–strain responses of LaFeO3, EuFeO3, and GdFeO3 under cubic deformation.

4. Conclusions

The cubic phase synthesis of the RFeO3 (R = La, Eu, Gd) structures is very challenging. Recently,
some successful methods have been developed to synthesize these materials with cubic structures [6,7].
Therefore, due to the lack of information on the properties of the cubic structures of these materials,
theoretical and computational studying of the cubic phases of these materials, and predicting their
properties is crucial. In the current study, the mechanical properties of the cubic phase of the RFeO3

(R = La, Eu, Gd) structures are first investigated using the continuum mechanics approach and density
functional theory (DFT). The results of the current research reveal that by increasing the radius of the
lanthanide atom in RFeO3 perovskites, elastic constants increase, and accordingly, the mechanical
properties are improved. Then, the quantum theory of atoms in molecules (QTAIM) is utilized to
understand the role of chemical bonds on the mechanical properties of RFeO3 compounds. The QTAIM
(Bader’s analysis) confirms the DFT results and show when the lanthanide atomic radius increases, the
local bulk modulus in the lanthanide basin is enhanced. Moreover, the QTAIM results depict that the
EuFeO3 possesses the highest mechanical isotropy; while LaFeO3 has the lowest mechanical isotropy.
The stress–strain curves of all RFeO3 (R = La, Eu, Gd) structures show that all these three compounds
are deformable up to 8.5% strain, which makes them suitable candidates for flexible electronic and
optoelectronic applications.
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