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Abstract: Recently, security incidents such as sensitive data leakage and video/audio hardware control
caused by Android malware have raised severe security issues that threaten Android users, so thus
behavior analysis and detection research researches of malicious Android applications have become
a hot topic. However, the behavioral portrait of Android malware that can depict the behavior of
Android malware is not approached in previous literature. To fill this gap, we propose DroidPortrait,
an Android malware multi-dimensional behavioral portrait construction approach. We take the
behavior of Android malware as an entry point and extract an informative behavior dataset that
includes static and dynamic behavior from Android malware. Next, aiming at Android malware
that contains different kinds of behaviors, a behavioral tag is defined then combined with a machine
learning (ML) algorithm to implement the correlation of these behavioral tags. Android malware
behavioral portrait architecture based on behavior analysis and its design is investigated, as also an
optimized random forest algorithm is conceived then combined with Android malware behavioral
portrait to detect Android malware. The evaluation findings indicate the DroidPortrait can depict
behavioral characteristics of Android malware comprehensive and detect them with high performance.

Keywords: Android malware; behavioral portrait; behavioral tag; machine learning

1. Introduction

According to the statistical report released by IDC, the Android platform’s market share first
breaks through 80% in the smartphone market in Q3/20191. There are almost three million applications
(or apps) that can be downloaded from the official Android market, Google Play and more than 84 billion
downloads to date2. The popularity of Android platform attracts many cyber-criminals to attack this
platform by designing various Android malware that could launch several types of malicious activities,
such as stealing sensitive information, controlling audio hardware to record user’s conversation
with others, obtaining the real-time geolocation of user and sharing it with others and others.
These malicious behaviors impose threats to the platform as well as user privacy, permitting malicious
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Android applications to launch various types of cyberattacks. Moreover, certain malware even has a
large number of variants, which makes it very hard to detect all of them.

In order to cope with the increasing security concerns caused by Android malware, there have
been many research efforts to develop Android malware analysis and detection approaches [1–11].
For example, in recent research works such as SIGPID [1], DroidAPIMiner [2], APK Auditor [3],
Drebin [4], the researchers first extract static features from Android applications, including permissions,
API calls and others, so then apply them to various machine learning algorithms as feature vectors to
identify Android malware. However, these static-based solutions cannot identify malware with code
obfuscation. In addition, they generally assume that some behaviors occur more frequently than they
would be in practice, which generally causes a considerable number of false positives.

To address these limitations, some researchers propose to rely on dynamic app characteristics to
capture run-time execution context and apply them to classification algorithms for Android malware
detection [12–14]. For example, TaintDroid [12] identifies some privacy information sources by
conducting a dynamic tainting analysis. In [13], the authors propose to capture HTTP traffic during
an Android app’s execution to detect Android malware. The main issues with these dynamic-based
approaches are in the following two aspects: (1) they have to modify Android apps when they
get updated [14] and (2) They require sufficient input suites to sufficiently exercise execution paths.
In summary, both static and dynamic-based approaches only focus on one aspect of Android malware
behaviors that cannot depict Android malware behaviors in a comprehensive and precise manner.

In this study, we propose a new malware detection approach for Android system named
DroidPortrait, which first extracts both static and dynamic behaviors from Android applications
(or apps), then utilizes data portrait techniques to build multi-dimensional behavioral portrait for
Android malware and finally uses the behavioral portrait to identify malware. The DroidPortrait
primarily aims at accurately depicting behaviors of Android malware, and then detecting them
efficiently and precisely. As the first step, both static and dynamic behavioral features are extracted from
numerous Android apps. Several dimensions of features are then defined to depict Android malware.
Second, we define a behavioral tag which generalizes meta-data of the behavioral characteristic of
Android malware and design a behavioral tag for Android malware based on the tag extraction,
definition and identification. Third, we analyze the correlation among these behavioral tags to build a
behavioral portrait of Android malware. Last, we design a random forest-based algorithm, which uses
a behavioral portrait for Android malware detection. The results of extensive experimentation
performed to show that the proposed approach depicts Android malware behavior comprehensively
and accurately—and can achieve 0.971 in terms of detection accuracy, 0.986 for precision, 0.97 for recall
and 0.973 in terms of F1-measure.

The main technical contributions of this study are summarized as follows:

— To introduce a behavioral portrait technique to depict Android malware behavior for
detection purposes. This approach relies on characteristic extraction, selection, behavioral tag
construction and it builds a behavioral portrait that could consider both static and dynamic
behavioral characteristic;

— To propose a random forest-based malware detection algorithm, which can dynamically select
decision trees with higher classification performance. This algorithm overall improves decision
tree fusion effectiveness and ensures the generality of the algorithm;

— To evaluate the efficiency and effectiveness of the proposed approach by using three real-world
Android app datasets. Based on the experimental results, we find that the DroidPortrait approach
can achieve 99% accuracy for making a comprehensive portrait for an Android app and it can
achieve more than 97% accuracy for the detection of malware;

The remaining of this study is organized as follows. Section 2 introduces related works
and compares them with the proposed approach, Section 3 illustrates the detailed design of
DroidPortrait, Section 4 explains the optimized random forest algorithm for Android malware
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detection, the discussions of results and experimentations in Section 5 and finally, concluding remarks
and future directions in Section 6.

2. Related Work

In recent years, many research efforts were made focusing on Android malware detection and
behavioral characteristics analysis. We summarize these research efforts in two types, namely static
analysis and dynamic analysis-based approaches.

2.1. Static Analysis Based Malware Detection Approaches

The first type of approach for detecting Android malware stemmed from the traditional static
program analysis. Static analysis is a common approach to detect malware in personal computers,
servers, Android platform. For instance, Nath et al. propose a static analysis approach to detect
malware that can launch the advanced persistent threat [15]. Meanwhile, there have been various
approaches in this direction that could statically inspect Android apps by disassembling the mobile apps.
For example, some researchers analyzed permission requests for app installation [16], while others
proposed a signature-based detection approach [17].

The primary basis of this type of approach is to extract static behavioral characteristics by
disassembling the application installation file (.apk file) into smaller pieces, including Configuration
files and source Codes and building different types of detection models step. As shown in DroidDet [18],
the rotational forest algorithm can effectively detect Android malware using static features such as
permission, sensitive API. In [19], a malware detection approach was studied based on Bagging-SVM
and it mainly relies on static features extracted from AndroidManifest.xml. Park et al. first divide
mobile applications into three categories according to their APIs and permissions and then construct a
classification system based on the YARA Rule [20]. This system could make the users aware of security
risks by providing them insights on the mobile application behaviors, which allows the users to make
an informed decision on whether to install the application on their devices or not. Dexteroid [21]
is a framework of static analysis that employs a reverse-engineered life cycle model to capture
Android component behavior, as this approach import event sequence and use them to detect attacks
launched by specific sequence. DroidMat [22] extracts permission, Intent, API, employ clustering
algorithm to cluster these kinds of static behavior characteristics, and detect Android malware by
classification algorithms.

2.2. Dynamic Analysis-Based Malware Detection

Unlike static analysis-based approaches, dynamic analysis-based approaches aim at capturing
run-time behaviors from Android apps during the execution process of the apps on Android emulator
or real devices. The examples in this category include taint analysis based approaches [12,23] and
behavior-based detection strategies [24,25].

Yin et al. proposed a malware detection solution named DroidScope, where both the operating
system level and programming language level semantics were rebuilt and allowed the instrumentation
of the Dalvik and native instructions [20]. Saracino et al. proposed a host-based malware detection
system that analyzed Android app features at the levels of the kernel, application, user and
package [25]. In [26], a framework named AdDroid was studied to analyze malicious behaviors
in Android applications based on different combinations of mobile app behaviors such as network
access information, file uploading to a server or package installation on the device, among others.
Hou et al. proposed a malware detection approach named component traversal that automatically
executes the code routine of the individual application effectively [27]. Ali et al. applied fuzzy C-means
clustering to the generated network traffic for Android malware detection [28], and lastly, DL-Droid is
a deep learning system to detect malicious Android applications through dynamic analysis using
stateful input generation [29].
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The proposed approach has the following significant innovations when compared to the existing
static and dynamic analysis-based approaches, and they are twofold. The former is, we extract far
more behavioral characteristics, which include both static and dynamic behaviors, while as the latter,
we build a multidimensional behavioral portrait for Android malware to depict them accurately
and systematically.

3. The Overall, Design of DroidPortrait

The main goals of DroidPortrait are twofold. The former is to depict and analyze the behavior
of Android malware comprehensive, while the latter is to achieve high Android malware detection
accuracy. For such, the proposed approach first extracts static and dynamic behavioral characteristics
from Android apps and their corresponding running time and then divides them into six dimensions
to build a behavioral model. Next, we extract behavioral characteristics, define a behavioral tag to
depict Android malware, and employ data portrait technology to build a multidimensional behavioral
portrait for Android malware. The complete approach architecture of DroidPortrait is shown in
Figure 1. The critical components are described in the remainder of this section.
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3.1. Behavioral Model Construction

The behavioral characteristics of the Android app are discussed in two categories, namely static
features and dynamic features and we extract several different kinds from each of them. As the next
step, we use a uniform data standard to represent these kinds of static characteristics due to their
dispersion and a characteristic selection algorithm to reduce the common characteristic used by the
benign app is designed.

3.1.1. Behavioral Characteristic Extraction

The main target for static feature extraction is the AndroidManifest.xml and class.dex files, and we
profile the Android apps in six types of features: requested permission, used permission, sensitive API
call, action, app component and intent, and extract corresponding features from the Android apps,
all of which could serve as a comprehensive indicator for malicious activities. The detailed extraction
process is illustrated in Figure 2.
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Figure 2. Static behavioral characteristic extraction.

An essential step in obtaining AndroidManifest.xml, class.dex and Certification file is to decompress
the .apk files by using a tool named apktool to dissect Android apk files. After the decompression,
the static behavioral features are extracted from these three types of files. The AndroidManifest.xml
file contains some important information regarding the Android app, including permission and app
component and we define features extracted from this file as Configuration dimension. We will then
parse the manifest file by utilizing tools named XMLPrinter2 and TinyXml, and extract behavioral
features of permission, intent and app component. The class.dex file is used to store Dalvik byte code
that can be converted to smali code for better behavioral feature extraction and we define this kind of
characteristic as code dimension. Used permission, sensitive API call can be extracted from smali code.
We define several customized extraction rules in xml files. The certification file contains certification
and payload information and we define this kind of characteristic as a certification dimension. The app
developers typically use their secret keys to sign the apk files when they are released. The certificate
information contains several essential developer information such as country, email, organization,
which can be used to distinguish among different developers. Listing 1 gives an example of extracting
static behavioral characteristic discussed below.

Listing 1: An example of extracting API

<rule>

<id>5</id>

<category>FrameworkAPI</category>

<description>Extract APIs of Framework</description>

<regex>Landroid(/\w+)+;->\w+|Landroid(/\w+)+\$\w+</regex>

<targetfile>smali</targetfile>

<multiMatch>true</multiMatch>

</rule>

Unlike static behavioral features, dynamic behavioral features are considered to depict the dynamic
behaviors of Android apps. To extracting the dynamic features, we first install Android apps and
execute them on a real phone or emulator. Notably, we design an automatic approach to first install
and execute the Android apps, and then extract corresponding dynamic features. Figure 3 shows the
process of characteristic extraction.
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Figure 3. Dynamic behavioral characteristic extraction.

In Figure 3, we can see that the proposed approach is composed of three modules. The first
module is app execution that executes Android apps on either Android phones or emulators in an
automated fashion, and then outputs the captured dynamic behavioral features, such as network
traffic, system call. This module could also be tuned by applying different conditions, including the
composition of Android apps, execution duration or execution behavior. The second module collects
dynamic behavioral features and then extracts network packets, flow and system calls. Last, the third
module generates behavioral features read from a configurable file and generates dynamic behavioral
features, which will be used in malware detection later. Moreover, we use tcpdump to capture network
flows generated by the Android app running and use strace to collect system calls. The details about
extracting dynamic behavioral features are discussed in [13,30].

In a nutshell, Table 1 shows the details of extracted behavioral characteristics from Android apps.

Table 1. Detail information of the extracted behavioral characteristic.

Dimension Category Behavioral Characteristic Instances

Configuration dimension

Requested permission ACCESS_GPS, WAKE_LOCK
App component com.google.ssearch, com.eguan.state, com.google.update

Intent PHONE_STATE, MAIN, SIG_STR
Hardware CAMERA, NPC, AUDIO

code dimension

API call util.log.w, Dialog.show, Uri.prase
Protected API getDeviceId, sendSMS, getWififiState

Used permission INTERNET, SEND_SMS, READ_CONTACT
code pattern MessageDigest, loadLibrary, pathClassLoader

String map.google.com, www.umeng.com, media. admob.com

certification dimension
certification information 2b7172a335 b66873dc793af3fe5c3fc6d8 . . . .

5fb16d12bc8a36b9071907bc6e042840c2 . . .
Payload information .MF,.RSA,.jpg

Network dimension
Quantitative Number of bytes, number of packets

Time Flow duration
Semantic Length of URI, length of the page

System call dimension System call Chmod, fork, kill

3.1.2. Behavioral Characteristic Transformation

Malicious activity can be depicted by specific modes and incorporations of the static behavioral
characteristics (the value of the dynamic behavioral characteristic is numeric). However, it is not
easy to transform real-world data to Boolean expressions. To solve this problem, we plan to obtain a
dependency relationship of static behavioral characteristics by employing a machine learning (ML)
model. Due to most such type of model executes on numerical vectors; we need to build a mapping
relationship between obtained behavioral characteristic sets and vector. For such, we employ a

www.umeng.com
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joint set FS consisting of all strings in the extracted static behavioral characteristics and calculated
by Equation (1).

FS := {FS1 ∪ FS2 ∪ . . .∪ FSn} ∈ FSi (1)

The set FS contains more than 50,000 different behavioral characteristics. Using FS, we define an
|FS|-dimensional vector space, where each dimension is a binary value. An Android app A is mapped
to this space by constructing a vector Vector.

Vector = {ve1, ve2, . . . , ven}, vem =

{
1 i f f sin ∈ FSA
0 i f f sin < FSA

(2)

Based on Equation (2), a characteristic behavioral vector can be translated into
Vector = {1, 1, 0, . . . , 1}, the value of one represents that the behavioral characteristic contained by
this Android app. The value of zero represents that this Android app does not contain behavioral
characteristic. Based on such observation, we observed that the Vector is sparse, many elements are
not meaningful for later analysis, so it may increase storage overhead. Therefore, we compress Vector,
translated it into Vector∗ and show as presented in Equation (3):

Vector∗ = {1, 3, 6, . . .} (3)

The positions of non-zero elements in Vector are stored in Vector∗, which saves a considerable
amount of memory space.

3.1.3. Behavioral Characteristic Selection

After behavioral characteristic extraction and transformation, we retrieve more than
50,000 characteristics from an Android app. Such a large number of characteristics include many
common characteristics used in both Android benign apps and malware, which cannot depict Android
malware uniquely. Moreover, redundant and irrelevant behavioral characteristic would cause extensive
computation resources during model construction and make detection accuracy decline. To address
these problems, we plan to select intrinsic behavioral characteristics from the extracted characteristics.
Because of these behavioral characteristics that consist of static and dynamic characteristic, their value
types are different. Therefore, we propose two kinds of characteristic selection approaches for each
kind of characteristic.

Static characteristic selection. Given that the value of the static behavioral characteristic is
discrete, not every app contain all of the behavioral characteristic. From previous works, there are
several well-known feature selection approaches have been proposed, such as chi-squared [31] and
information gain [32]. However, Zhao et al. [33] illustrated that both selection approaches have
distribution bias and long-tail effect limitations. To address these limitations, we use the feature
selection approach, as illustrated in [33].

The characteristic selection approach assumes that Tm and Tb are the number of malware m and
benign apps b, and then we examine two conditions:

Cond.1 : rc ≥ αc?rc =
Nc

(Nm+Nb)
, c ∈ {m, b}

Cond.2 : Nc
Tc
≥ βc?

where Nm is the number of malware that contains a specific feature, Nb is the number of benign apps
that contain particular features, rc means the ratio of a specific feature contains by benign app or
malware. Nc means a certain feature contains in benign app and malware, α and β are threshold,
0.5 ≤ α ≤ 1 and 0 ≤ β ≤ 1, respectively. Thus, Cond. 1 implies that a feature is used more frequently in
malware than benign apps, while Cond. 2 means that the occurrence times of a feature in all malware
exceeds the threshold βm. A feature should be selected as a typical feature once it satisfies the two
conditions. In this way, the typical features we collect are not only frequently used by malware, but also



Appl. Sci. 2020, 10, 3978 8 of 20

have a particular coverage in the feature dataset, Distribution Bias and Long Tail Effect are well solved.
Since the detailed algorithm is discussed in [33], we do not go further with details.

Dynamic characteristic selection. Dynamic characteristic includes network and system call
behavioral characteristic. The value of both kinds of characteristics is of numeric type, and each app
contains all behavioral characteristics on them. Therefore, we use a behavioral comparison approach to
observe the difference between the Android benign app and malware. In previous research works [13],
we extracted network traffic and system call behavioral characteristics and then compared the difference
between the Android benign apps and malware. After behavioral characteristics comparison, we select
11 types of behavioral characteristics from network traffic and 15 types of behavioral characteristics
from the system call, as shown in Table 2 the detailed information.

Table 2. Detail information about selected dynamic behavioral characteristics.

Behavioral Characteristic Category Characteristic Name Characteristic Description

Network traffic

Number of packets Number of packets transmitted between
app and server

Number of bytes Number of bytes transmitted between app
and server

Number of received packets Number of packets received by the app

Average bytes of received packets Average bytes of packets received
by the app

Average size of packets Average size of packets transmitted
between app and server

In/out ratio Ration of traffic size between sent and
received of app

Flow duration TCP session length

Number of bytes per second Number of bytes transmitted between app
and server per second

Length of URI per GET/POST request The number of resources requested by app

Length of page per GET/POST request The length of paths visited by the app to
obtain the resources

Length of parameter per GET/POST request The length of parameter contained in
each request

System call

sys_chmod, sys_chown, sys_mount,
sys_access, sys_open, sys_clone,

sys_getpriority, sys_mmap, sys_read,
sys_exit, sys_kill, sys_brk, sys_execve,

sys_kill, sys_times and sys_nice

Number of functions listed in left row was
called by app during running time

3.2. Behavioral Tag

We already extracted several types of behavioral characteristics from five dimensions that are
described in Section 3.1.1. In this subsection, behavioral tags are defined. Given that Android
malware contains various types of behavior for better analysis, and detect Android malware,
describe multidimensional behavioral characteristics for Android malware correlation analysis ability.
Figure 4 shows an example tag of Android malware behavior.

From Figure 4, we list several behavioral tags of Android malware that can describe Android
malware’s behavior in five dimensions. However, Android malware may contain many behaviors
corresponding to different tags. We define them by three different manners, namely behavioral tag
based on meta-data, behavioral tag based on a statistical, behavioral tag based on correlation analysis.
The behavioral tag based on meta-data are easy to define and obtain by comparing with meta-data,
such as IP address or domain name of accessing the unknown server, permission requested by Android
malware. However, this kind of tag is too frequent that is not intrinsic to distinguish Android benign
app and malware. The second behavioral tag is based on statistical data, which describes Android
malware dynamic behavior in a specific time, such as the number of bytes transition between app and
server. The third behavioral tag is based on correlation analysis, which can describe the correlation
among these kinds of behavioral tags. For example, most Android apps would use the permission to
access the Internet, read device data simultaneously. Some of them send device data to well-known
servers for app usage statistics; some of them send these data to unknown servers for malicious goals.
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Using a single of these behavioral tags cannot distinguish the Android benign apps and malware,
use their correlation can find a difference between them.
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3.3. Behavioral Portrait

We divided behavioral characteristics into five dimensions and defined behavioral tags for each
dimension. In these dimensions of behavioral characteristics, configuration, code and certification
dimension can be obtained by corresponding behavioral tags. network and system call dimensions
should use machine learning algorithms to learn the difference between Android benign and
malware to build a behavioral portrait. Figure 5 shows the process of Android malware behavioral
portrait construction.

In Figure 5, we first establish the relationship between behavioral tag and dimension based on
an unsupervised learning algorithm. Next, we use a supervised learning algorithm to train labeled
Android malware behavior and results of the portrait and obtain a parameter set of Android malware
behavioral portrait, so finally, we adjust the machine learning (ML) model based on the behavioral
portrait’s error value to improve the behavioral portrait’s performance.
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The unsupervised learning module is responsible for correlation analysis. Since Android malware
contains various behaviors, there are correlations between behaviors. Therefore, find such kind of
correlation would be helpful for Android malware behavioral portrait construction. In this study,
we employ the Apriori algorithm [34] to find a correlation between each tag. This algorithm use Support,
Confidence, Lift as metrics to judge frequent itemset. The three metrics can be calculated as follows:

Support(X− > Y) =
P(X, Y)

P(I)
=

Count(X ∪Y)
|I|

(4)

Con f idence(X− > Y) =
P(X, Y)

P(X)
=

Support(X ∪Y)
Support(Y)

(5)

Li f t(X− > Y) =
P(Y

∣∣∣X)

P(Y)
(6)

In Equations (4)–(6), I is an itemset that contains several behavioral tags. X, Y represent
antecedent and consequent of the correlation rule. Support represents the probability of occurrence of
X, Y in I, Confidence represents the possibility of behavior Y occurrences when behavior X occurrences,
Lift represents the correlation of behaviors of X, Y.

The core concept of the Apriori algorithm is that find K frequent itemsets. This algorithm first
searches candidate 1-itemset and corresponding Support value, prunes 1-itemset with a value of less
than Support value, obtain 1-frequent itemset. Then, we join the rest of 1 frequent itemset and obtain
candidate 2-frequent itemset. We filter out the 2-frequent itemset which value is less than Support value
and obtain real 2-frequent itemset. This algorithm would iterate as the previous steps until obtaining
K-frequent itemset.

The supervised learning module is responsible for training Android malware behavioral portraits
with behavioral tags. Based on different value types of five characteristic behavioral dimensions,
we use different machine learning algorithms. For example, in the dimension of network and system
call, the measurement of their characteristic behavioral value may reflect disparity. Therefore, we need
to normalize these values, use unified standards to measure these kinds of behavioral characteristics.
To achieve this, we employ the Back Propagation Neural Network algorithm (BBNP) [35] that is
discussed in Section 4.1 in detail. Regarding the dimension of configuration, code and certification,
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the measurement of their behavioral characteristic is transformed into a binary value, so thus, we use a
binary classification algorithm to train them, which will discuss in Section 4.2.

4. Android Malware Behavioral Portrait Training

We employ two types of machine learning algorithms to train the Android malware behavioral
portrait based on the different measurement standards of behavioral characteristics.

4.1. Back Propagation Neural Network

The Back Propagation Neural Network algorithm is a standard method for training a neural
network. In this section, we use this algorithm to measure behavioral characteristics from the dimension
of network and system call. We first normalize all of the behavioral characteristics values and map
the normalization value into the range of (0,1) to build a mapping relation between behavioral tags
and characteristics. In this section, we use Min−Max Normalization to achieve this transformation,
as shown in Equation (7).

x∗ =
x−min

max−min
(7)

where x represents the value of system call and network traffic features, min represents the minimum
value and max represents the maximum value.

Then, we use the BPPN algorithm to train weight and bias of hidden node and mapping the
training results into a range of (0,1) to measure a behavioral characteristic of network and system call.
The algorithm is shown in Algorithm 1.

Algorithm 1 Algorithm of BPPN
Input: training dataset D =

{
(xk, yk)

}m
k=1, learning rate η

Output: BPPN model with established weight and corresponding bias

1 Random initialized weight and bias of BPPN in range of (0,1)
2 for all (xk, yk) ∈ D do

3
_
y

k
j = f (β j − θ j); // Output results of BPPN

4 g j =
_
y

k
j (1−

_
y

k
j )(yk

j −
_
y

k
j ); // Neuronal gradient of the output layer

5 eh = bh(1− bh)
l∑

j=1
whjg j; // Neuronal gradient of hidden layer

6 whj = ηg jbh; // Weight update
7 θ j = −ηg j; // Bias update
8 vih = ηehxi;// Input layer update
9 γh = −ηeh; // Error rate update
10 end for
11 Repeat the above steps, until γ is less than the threshold;

4.2. Optimized Random Forest

In Section 3.1.2, we already transformed behavioral characteristics from the configuration, code and
certification dimension into a binary value. Therefore, we select the classification algorithm to train the
three kinds of behavioral characteristics. Based on our previous works [34], we found that compare
with these well-known classification algorithms and the random forest algorithm can achieve better
performance. However, due to the complexity of the behavioral characteristic dataset, which may
contain redundancy to disturb the process of training and reduce the accuracy of classification.

To address these limitations, we propose an optimized random forest algorithm. This algorithm
adds guidance fusion technique during the process of decision tree fusion, which could improve the
probability of keep decision trees with excellent classification performance and reduce effects of fusion
caused by decision trees with bad classification performance, and ensure the training model contains
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good generalization ability. The architecture of this algorithm is shown in Figure 6, which consists of
two parts, the first part is decision tree construction, and the second part is decision tree selection and
ensemble. We will discuss these parts in the following section.
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4.2.1. Decision Tree Construction

To build a decision tree in random forest, we first use K-fold cross-validation to split the behavioral
characteristic dataset D into K portions. This kind of dataset comes from behavioral characteristic model
construction (describe in Section 3.1), which includes 3986 Android benign apps and 3986 malicious
apps (the details describe in Section 5.1). The process of splitting is shown in Figure 7.
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From Figure 7, we divide the dataset D into K groups in randomly and evenly way and we select
K-1 portions at random as the training set Dtr and 1 portion as the testing set Dte. Then, we follow the
decision tree construction way of traditional random forest to sampling and build n decision trees.
Third, we use the rest of the data as a testing dataset Dte for evaluation and obtain precision Pt of n
decision trees in the testing dataset, Pt which can be represented as Pt =

{
p1, p2, . . . , pk

}
. Repeat the

above steps for K times until each portion in the dataset D is used as a testing set for one time.

4.2.2. Decision Tree Selection and Ensemble

After all of the decision trees construction, we start to select and an ensemble of the decision
tree. Traditional random forest algorithm ensemble all decision trees directly without considering
the performance of their integrated decision tree, which may affect ensemble model performance
because of the dataset contains redundancy behavioral characteristic or noise data. To improve the
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classification performance of random forest and ensure satisfactory generalization ability, we combine
the dropout technique [36,37] with the roulette wheel selection approach [38,39] to increase the
probability of decision tree with excellent performance could be selected in each iteration of random
forest construction.

Dropout is a technique used in deep learning, which aims to prevent over-fit during classification
model construction [40]. Therefore, we reference this technique to select a decision tree with a certain
precision Pd to ensure a classification model with satisfactory generalization ability. During each
iteration, we first calculate the weight Wi(i = 1, 2, . . . , n) of every decision tree by Equation (8) as
showing below:

Wi = pi −min(Pt) (8)

We then calculate the cumulative weight qi =
i∑

j=1
Wi of each decision tree for selection purposes

by referencing the roulette wheel selection approach. The main idea of this selection approach is that
the probability of a decision tree could be selected proportional to its weight. After obtaining the
cumulative weight of each decision tree, this approach generates an equally distributed pseudo-random
number r in the range of [0,

∑n
i=1 Wi]. If r < q1, we select the 1st decision tree, otherwise, we select ith

decision tree which satisfies qi−1 < r < qi. Following previous steps, we select n× Pd decision trees and
abandon rest decision trees and finish one iteration.

Finally, we ensemble decision trees obtain by K iterations by a voting approach based on
Equation (9) and build an optimized random forest model.

H(x) = c
argmax

∑
j

h j
i (x)

(9)

where H(x) represents the output model after ensemble, c = {c1, c2, . . . , cM} represents the classification
category set, h j

i represents the output of decision tree hi on category c j. The voting approach predicts
classification results based on which category obtains the most votes.

5. Evaluation

In this section, we evaluate the effectiveness, detection performance of DroidPortrait. We first
describe the dataset used in this evaluation. Second, we evaluate the efficiency of the behavioral
characteristic selection, as discussed in Section 3.1.3. Third, we evaluate the behavioral portrait model
build by selected behavioral characteristics. Finally, we use the DroidPortrait to detect Android
malware from an unknown Android app and compare it with other well-known Android malware
detection approaches.

5.1. Dataset

The dataset used to evaluate our approach consists of three parts: the first part is composed of
Android apps downloaded from the official Google Play market, which contains popular Android
apps from each category. This part of the dataset is considered as benign apps because of the strict
audit mechanism of the Google Play market, and we randomly choose 3986 apps from 90,000 of them.
The second part of the dataset is composed of several well-known malware datasets, such as Drebin [7],
Android Malware Genome Project and the Contagio Community. We collected 3986 Android malwares
from these kinds of datasets in total. The third part of the dataset consists of Android apps downloaded
from several unofficial markets, and we consider them an unknown type of Android app. We collect
about 40,000 apps and randomly select 1515 among them.
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5.2. Evaluating Behavioral Characteristic Selection Approach

5.2.1. Static Behavioral Characteristic Selection

To evaluate the performance of the behavioral characteristic selection approach, we first set the
parameter α value as 0.5, 0.6, 0.7, 0.8 to select static behavioral characteristics from the extracted
ones, and obtain four subsets of behavioral characteristics contain 241, 262, 309 and 398, respectively.
Then, we also use two well-known feature selection approaches (Chi-Squared, Information Gain)
to select four subsets with the same number of behavioral characteristics from the same extracted
behavioral characteristics. Finally, we fed these selected behavioral characteristics into the optimized
random forest algorithm to train the classification model to evaluate the performance of the proposed
selection approach based on 10-fold cross-validation. The detailed results are shown in Figure 8.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 21 
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Figure 8 shows that it significantly outperforms the other algorithms in terms of accuracy and
recall. Because our approach selects behavioral characteristics based on their occurrence frequency,
which can reflect intrinsic behavioral contain by Android malware. The other two selection algorithms
select characteristics based on statistical results, which may select more common characteristics and
cause lower accuracy and recall during model training. Moreover, with the number of selected
characteristics increase, accuracy and recall of our approach keep increase. Because the selected
characteristics could depict Android malware intrinsically and this kind result also reflects Android
malware contain many different behaviors.

5.2.2. Dynamic Behavioral Characteristic Selection

In Section 3.1.3, we already discussed behavioral characteristics from the network and system call
dimension selection approach. We fed these selected characteristics into the optimized random forest
algorithm to evaluate the quality based on 10-fold cross-validation. Table 3 shows detailed results.

Table 3. Results of the selected dynamic behavioral characteristic evaluation.

Behavioral Characteristics Accuracy Precision Recall F-Measure

Network 0.929 0.929 0.929 0.929
System call 0.907 0.907 0.907 0.907

In Table 3, we select four metrics to evaluate the quality of model training based on the
selected dynamic behavioral characteristics. Results show that each metric can achieve more
than 90%, which means the selected dynamic behavioral characteristics are suited for building
a classification model to depict Android malware dynamic behavior, as these selected dynamic
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behavioral characteristics can distinguish between Android benign apps and malware. For example,
the number of bytes represents the number of bytes transmitted between app and server. Benign apps
generally have a wide variety of functions, so their network activities are very diverse, which may
include text messaging, web browsing, image viewing and others. Therefore, these network activities
typically vary remarkably in terms of the number of packets. On the other hand, malware usually
focuses on sending out private data, usually of standard size, regardless of smartphone use. As a result,
we would assume that the number of packets per flow is consistent among different malicious apps.

5.3. Evaluation of Behavioral Portrait

5.3.1. Behavioral Portrait Visualization

In this evaluation, we visualize the behavioral portrait of the Android benign app and malware
based on the selected behavioral characteristics and conduct a visual comparison between two kinds
of app. The detailed comparison results are shown in Figure 9.
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(a) Behavioral portrait of Android malware; (b) behavioral portrait of Android benign app.

From Figure 9, each kind of portrait contains several behavioral characteristics. First, we can
see that majority of Android benign apps contain behavioral characteristics for app development,
implement the functionality. However, most Android malware includes behavioral characteristics for
accessing sensitive information and executing a command, load library and others. Second, we can
nitidly understand specific functions provided by the Android benign app and malware. These findings
could help Android security researchers to analyze Android malware behavior based on these functions.

5.3.2. Performance of Characteristic Behavioral Dimension

Next, we plan to evaluate the performance of behavioral characteristics from each dimension
during ORF classification model training. The results are shown in Figure 10.



Appl. Sci. 2020, 10, 3978 16 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 21 

 

Figure 10. Performance of each dimension and dimension combination. 

As shown in Figure 10, we evaluate the performance of five behavioral characteristic dimensions 

and two kinds of behavioral characteristic combinations. First, we found that each single static 

behavioral characteristic dimension (code, configuration, certification) cannot achieve a satisfying 

result, four metrics only achieve 0.8 in average about code and Configuration dimension, certification 

dimension only achieves 0.75 in four metrics. Because these behavioral characteristics only reflect a 

part of Android malware behavior. Second, the dimension of Network and System Call are two main 

dynamic behavioral characteristics which can reflect network and local behaviors of Android 

malware, so each of them can achieve a better result, four metrics can achieve 0.9 in average. Third, 

we combined two static behavioral characteristic dimensions and found that model training results 

are better than a single situation and close to using dynamic behavioral characteristics. Because static 

behavioral characteristic combination almost covers the static behavior of Android malware, which 

can depict Android malware more accurately. 

5.3.3. Performance of Behavioral Portrait 

Next, we plan to evaluate the performance of the proposed behavioral portrait. To achieve this, 

we fed the portrait into several classification algorithms to train the classification model, such as 

optimized random forest (ORF), SVM, random forest (RF), C4.5. We also compare the results of these 

models and detailed results are shown in Figure 11. 

 

Figure 10. Performance of each dimension and dimension combination.

As shown in Figure 10, we evaluate the performance of five behavioral characteristic dimensions
and two kinds of behavioral characteristic combinations. First, we found that each single static
behavioral characteristic dimension (code, configuration, certification) cannot achieve a satisfying
result, four metrics only achieve 0.8 in average about code and Configuration dimension, certification
dimension only achieves 0.75 in four metrics. Because these behavioral characteristics only reflect a
part of Android malware behavior. Second, the dimension of Network and System Call are two main
dynamic behavioral characteristics which can reflect network and local behaviors of Android malware,
so each of them can achieve a better result, four metrics can achieve 0.9 in average. Third, we combined
two static behavioral characteristic dimensions and found that model training results are better than
a single situation and close to using dynamic behavioral characteristics. Because static behavioral
characteristic combination almost covers the static behavior of Android malware, which can depict
Android malware more accurately.

5.3.3. Performance of Behavioral Portrait

Next, we plan to evaluate the performance of the proposed behavioral portrait. To achieve this,
we fed the portrait into several classification algorithms to train the classification model, such as
optimized random forest (ORF), SVM, random forest (RF), C4.5. We also compare the results of these
models and detailed results are shown in Figure 11.
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From Figure 11, we compare ORF algorithm with three other well-known classification algorithms
by four metrics (accuracy, precision, recall and F1-measure). The results show that using the proposed
behavioral portrait and classification algorithm to build a classification model could achieve satisfying
performance. We also found that ORF algorithm can achieve better performance than the other three
algorithms during model building. Compare to RF algorithm, and the ORF algorithm has a more
significant probability of selecting better performance decision trees than traditional RF algorithm
during the iteration process, which would lead to higher performance. Compare to C4.5 algorithm,
ORF algorithm consists of several decision trees, each decision tree equals C4.5 algorithm. Therefore,
ORF can achieve better performance than C4.5. Compare to the SVM algorithm, ORF algorithm focuses
on the importance of behavioral characteristics during model training, SVM training model based on
statistical theory. Therefore, ORF can achieve better performance than SVM.

5.4. Evaluating the Performance of Unknown Android App Detection

In this section, we evaluate the performance of DroidPortrait when detecting Android malware
from an unknown Android app dataset and compare it with three previous research works,
namely FEST [33], Drebin [7] and DroidAPIMiner [5]. To conduct this experiment, we utilize
the unknown type of Android apps downloaded from well-known unofficial markets that contain 1515
Android apps. Figure 12 shows the detection results of our approach and the comparison approaches.
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From Figure 12, we found that our approach can achieve the best performance among the four
approaches. For example, our approach achieves 0.971 in overall accuracy, and the other three works
achieve 0.929, 0.934 and 0.897, respectively. DroidPortrait can achieve better precision, recall and
f-measure score than FEST, Drebin and DroidAPIMiner, which are 0.986, 0.97 and 0.973, respectively.
The reason contains three parts: first, these approaches extract a part of behaviors from Android
malware, Drebin focuses on static behavior, and DroidAPIMiner focuses on API behavior. Our approach
extracts more comprehensive behaviors than three of them to build an accurate, informative behavioral
portrait of Android malware. Second, we employ a feature selection approach after feature extraction
and select more intrinsic behavioral characteristics. Third, we optimize the random forest algorithm to
build a classification model with better generalization ability.

6. Conclusions

In this study, we design and develop an Android malware behavioral portrait construction
approach that can depict Android malware behaviors accurately and comprehensively and then
detect them with excellent performance. To achieve this goal, this study mainly finishes these works
as followings:
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1. We extract two categories of behavioral characteristics from the Android app,
namely, static behavioral characteristics and dynamic behavioral characteristics. These kinds of
characteristic can cover Android malware behavior as much as possible. Meanwhile, we proposed
two kinds of characteristic selection approaches for both kinds of behavioral characteristics to
find intrinsic behavioral characteristics for Android malware detection;

2. We divide these behavioral characteristics into five dimensions to build a behavioral tag.
Then, we employ these behavioral tags are utilized to build a portrait of Android malware.
After portrait construction, we employ two kinds of machine learning algorithms to train the
Android malware behavioral portrait;

3. We conduct three kinds of experiments to evaluate the proposed approach. First, we evaluate static
and dynamic behavioral characteristic selection and using the selected behavioral characteristics
to train classification models can achieve more than 90% accuracy and recall. Second, we evaluate
the portrait of Android malware, which includes portrait visualize, the performance of behavioral
dimension and portrait. We also compare with three well-known classification algorithms.
Third, we evaluate the performance of our approach in detecting unknown Android malware
and compare it with three well-known detection approaches.
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