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Abstract: Three-dimensional (3D) printing techniques have received considerable focus in the area of
bone engineering due to its precise control in the fabrication of complex structures with customizable
shapes, internal and external architectures, mechanical strength, and bioactivity. In this study, we
design a new composition biomaterial consisting of polylactic acid (PLA), and halloysite nanotubes
(HNTs) loaded with zinc nanoparticles (PLA+H+Zn). The hydrophobic surface of the 3D printed
scaffold was coated with two layers of fetal bovine serum (FBS) on the sides and one layer of NaOH
in the middle. Additionally, a layer of gentamicin was coated on the outermost layer against bacterial
infection. Scaffolds were cultured in standard cell culture medium without the addition of osteogenic
medium. This surface modification strategy improved material hydrophilicity and enhanced cell
adhesion. Pre-osteoblasts cultured on these scaffolds differentiated into osteoblasts and proceeded to
produce a type I collagen matrix and subsequent calcium deposition. The 3D printed scaffolds formed
from this composition possessed high mechanical strength and showed an osteoinductive potential.
Furthermore, the external coating of antibiotics not only preserved the previous osteogenic properties
of the 3D scaffold but also significantly reduced bacterial growth. Our surface modification model
enabled the fabrication of a material surface that was hydrophilic and antibacterial, simultaneously,
with an osteogenic property. The designed PLA+H+Zn may be a viable candidate for the fabrication
of customized bone implants.
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1. Introduction

According to the reports of the National Ambulatory Medical Care Survey and American
Academy of Orthopedic Surgeons, about 6.8 million patients ask for medical therapy due do orthopedic
problems every year, and more than two million bone grafting procedures are performed annually [1].
Autografts are considered the gold standard for bone repair because of their excellent properties in
osteoconduction, osteoinduction, and osteogenesis [2]; however, autografts have many limitations.
These include their limited availability, the requirement for a surgical incision to obtain the graft that
carries the extra risks of hematoma, infection, and additional pain [3]. Allografts are another source for
orthopedic implants, and nearly one-third of all bone grafts used in North America are allografts [4].
However, allografts are osteoconductive but with reduced osteoinductivity, which increases the risk of
nonunion in fracture repair, and there is a risk of infection [5,6]. In addition, the supply of allografts is
limited by the long pretreatment process. For the reasons outlined above, a new method for fabricating
a bioengineered bone graft with the proper mechanical properties, osteoconductivity, and osteogenic
abilities is highly desired.
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Bone implants can be produced through a variety of methods including salt leaching [7],
chemical/gas foaming [8], freeze-drying [9], and sintering [10]. However, pore size, pore distribution,
porosity, and pore interconnectivity cannot be precisely controlled with these approaches [11]. Bone is
a porous tissue with numerous interconnected pores that permit cell migration and proliferation, as
well as vascularization [12,13]. Therefore, an osteogenic scaffold should mimic bone morphology,
structure, and function in order to ensure its integration with the native tissue. Three-dimensional (3D)
printing technology has received considerable attention for tissue regeneration due to its superiority
in the fabrication of complicated structures with tailored shapes, internal and external architecture,
pre-designed microstructure, mechanical strength, and bioactivity, which can effectively mimic native
tissues. With the use of osteogenic biomaterials and computer-aided design, 3D printing technology
can generate a customized structure with desired features that can improve bone integration and the
restoration of tissue function [14].

Hybrid materials with tunable properties have been explored in 3D printing [14–16]. Polylactic acid
(PLA) is a popular material used for 3D printing medical devices. It is a thermoplastic polymer that is
derived from fermented corn starch, cassava starch, or sugarcane [17]. It is an eco-friendly bioplastic
as it is entirely biodegradable and consists of renewable raw materials. This material exhibits high
tensile strength, low elongation, and high modulus, which enables it to be a suitable candidate for
load-bearing applications, such as orthopedic fixation and sutures [17].

In this study, PLA was used to fabricate porous scaffolds through 3D printing. According to
previous reports, large pore size and high porosity are key factors in producing an osteogenic
response [12,13,18]. In addition, a recent study reported that titanium implants with an average pore
size of 600 µm exhibited an earlier and high fixation ability and rapid bone ingrowth comparing with
implants with average pore size of 300 and 900 µm [19]. Therefore, we designed the scaffold with
an average pore size of 600 µm and 60% porosity. PLA is a versatile, biodegradable, and Food and
Drug Administration (FDA) proved biomaterial [17], but its surface is hydrophobic and, therefore
significantly reduces cell adhesion. Accordingly, surface modification to enhance its cell supportive
material properties can be achieved through the addition of micro- and nanoparticles [14], fibers [16],
or fabrication of nanocomposites [15]. Halloysite is an aluminosilicate clay Al2O3·2SiO2·nH2O, with
a naturally aluminosilicate rolling numerous nanotubes formed. Those nanotubes have an average
length of 0.5–2 µm and diameter of 50–80 nm, in addition these nanotubes have hollow lumen with
an average diameter of 10–15 nm [20]. Halloysite nanotubes (HNTs) are cyto- and bio-compatible [21].
They have attracted increasing attention in biomedical research due to its physicochemical stability,
the potential for chemically modification, and ease of doping substances within its lumen, including
therapeutic agents [22–25], enzymes [26], nucleic acid [27], and metal nanoparticles [28]. In addition,
HNTs have been proven to enhance mechanical properties for numerous materials, such as alginate [26],
chitosan [29] epoxy [30], nylon [25], rubber [31], and calcium phosphate [32]. Furthermore, HNTs
have also been reported to chemotactically attract pre-osteoblasts [33] and enhance osteogenic
differentiation [32,34,35].

Here, we used halloysite due to its known ability to improve polymer material properties
and release bioactive agents in a sustained manner. HNTs were loaded with zinc nanoparticles.
Zinc is one of the essential minerals that play an essential role in bone health. It affects multiple
enzyme activities, collagen synthesis [36], and DNA synthesis [37], and it has been demonstrated to
stimulate bone metabolism [38]. Zinc oxide nanoparticles are also a known and potent agent, that
disintegrates bacterial cell membranes and accumulates in the cytoplasm leading to apoptotic cell
death [39,40]. Therefore, zinc was selected as a coating for HNTs and then mixed with PLA for 3D
printing. Fetal bovine serum (FBS) and NaOH were used to improve the surface hydrophilicity of a 3D
printed scaffold. Scaffold mechanical properties and cell-material interactions were studied. We also
coated the 3D printed scaffold with an antibiotic, gentamicin, to prevent contamination and assessed
the drug efficiency after three weeks. This study aims to generate a 3D printed scaffold to support
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bone regeneration and prevent bacterial contamination, which may be potentially used for bone defect
therapy in the clinic.

2. Materials and Methods

2.1. Zinc Loaded into HNTs

Zinc nanoparticles (NPs) were deposited on the HNT surface by thermal decomposition of the
metal acetate, as depicted in Figure 1. Zinc oxide (ZnO) reacted with acetic acid at 50 ◦C with continuous
stirring, then the mixture was heated to a boil, and the reaction continued for 12 h, with additional
acetic acid added during this time period. The resulting zinc acetate (Zn (OAc)2) was filtered using
Whatman #1 filter paper [40]. Then, 20 g of Zn (OAc)2 mixed with 10 g of HNTs in 50 mL DI water and
stirred for 12 h. After centrifugation, the pellet was collected and heated at 350 ◦C for 2 h, which led to
thermal decomposition of the metal acetate on HNTs surface (ZnO-HNTs) [41].
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Figure 1. Facile synthesis and characterization of zinc oxide (ZnO) nanoparticles grown on halloysite
nanotubes for enhanced photocatalytic properties.

2.2. Material Preparation

Four composition were tested in this study: PLA, PLA+HNTs, PLA+HNTs/Zn,
and PLA+HNTs/Zn+gentamicin. These groups were printed using an ENDER 3 printer with
similar setting; however, different filament compositions were used. Filaments were extruded
using a Noztek Pro Extruder (Nortek Holdings Inc, West Sussex, England, UK) with a uniform
diameter 1.75 ± 0.05 mm, but there was slightly different in filaments preparation for each group.
For the PLA group, PLA filaments were extruded at 175 ◦C. For the PLA+HNTs group, in order to
archive a uniform distribution of HNTs in PLA, 10 µL of silicon oil was added into 20 g PLA and
vortexed for 10 min, then 1.2 g of HNTs were added and continually vortexed for another 10 min.
Then mixture of PLA+HNTs were extruded at 170 ◦C. Filaments of PLA+HNTs/Zn prepared similarly
as PLA+HNTs; the only difference is HNTs were loaded with Zn (30% w/w) and extruded at 165 ◦C.
PLA+HNTs/Zn+gentamicin scaffolds were printed with PLA+HNTs/Zn filaments, and then they
dipped into a 100 mg/mL gentamicin solution for 24 h.

2.3. D Printing

All filaments types were 3D printed into a pre-designed structure (squares) using an ENDER 3
printer at 225 ◦C. The squares were designed to be 6 × 6 × 2 mm with a pore size of 0.6 mm (Figure 2).
The diameter of inside lattice supports was 0.6 mm.
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Figure 2. Computer aided design (CAD) drawing of the three dimensional (3D) printing square and
design specifications.

2.4. Porosity

The porosity of the 3D printed disks was calculated through liquid displacement. One 3D square
was immersed into 1.0 mL (V1) of DI water, then a series of vortexing and sonication was applied to
force the liquid into the pores. The total volume of square and DI water was measured (V2), after the
water was removed, the square and the remaining volume of DI water was measured (V3). The final
porosity of the square was calculated as below:

porosity =
V1−V3
V2−V3

2.5. Compression Testing

A Univert CellScale Testing device (Waterloo, Ontario, Canada) was used for compression test of
the printed squares. The 3D printed squares were compressed at a speed of 10 mm/min with a 200 N
load cell. The strain and stress profiles were recorded. A minimum of three tests were performed for
each composition.

2.6. Surface Treatment of 3D Printed Square

According to the pilot study (Supplementary information), a sandwich coating (Figure 3) on the
3D printed squares was shown to significantly improve the surface hydrophilicity and facilitate cell
adhesion. Therefore, we coated the 3D printed disk for three layers. Before coating, each disk was
sterilized by immerging in 75% isopropanol for 10 min and air dried in cell culture hood. For the first
layer, each square was immerged in fetal bovine serum (FBS) for 24 h; then each square was immerged
into 10 N NaOH for 30 min and washed three times with sterilized DI water; for the last layer, squares
were incubated in FBS again for 24 h. Squares with a three-layer sandwich-like coating were labeled as
FBS+NaOH+FBS.
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2.7. Morphology and Surface Characterization

The morphology of 3D printed disks was observed using a scanning electron microscope (SEM) and
laser confocal microscope. The distribution of HNTs and HNTs/Zn in the PLA filament was observed
by an energy dispersive spectrometer (EDS) using a PLA filament in cross-section. The presence and
nature of the surface coating was also determined by EDS.

2.8. Cell Metabolism

Surface modified squares were put into 48 wells plate, each well had one square and seeded
with pre-osteoblast (MC3T3-E1, ATCC, Manassas, VA, USA) at a cell density of 1 × 105/well.
Then, the cells were cultured in alpha modification of Eagle’s medium (α-MEM, Hyclone,
GE Life Sciences, Marlborough, MA, USA) with 10% fetal bovine serum (FBS) and 1% Pen/Strep
antibiotic (Life Technologies Corporation, Carlsbad, CA, USA) in a humidified incubator at 37 ◦C and
5% CO2. Cells cultured with 3D printed scaffolds for 7, 14, and 21 days. An MTS (BioVision, Milpitas,
CA, USA) was used to assess cell metabolism. A stock solution (40 µL) were added to each well
and incubated at 37 ◦C in darkness for 2 h. After then, 200 µL of supernatant was taken to measure
absorbance value at wavelength of 490 nm.

2.9. Mineralization-Alizarin Red Staining

Matrix mineralization was assessed through Alizarin Red S (ARS) staining. Cells cultured on the
3D printed squares for different time period (for 7, 14 and 21 days) were fixed with 4% paraformaldehyde
for 15 min at room temperature, then stained with 2% ARS for 30 min. Then, all squares were washed
by deionized water 4 times and observed under an Olympus BX41 light microscope. Cells cultured
in monolayer were used as control.

2.10. Picrosirius Red Staining

Picrosirius Red is a specific collagen fiber stain that is capable of detecting thin collagenous fibers.
The media was aspirated from the cell culture plates, and each culture well was washed with DPBS
before being fixed in 4% paraformaldehyde. Fixed cells were stained with Picrosirius Red to quantify
the amount of collagen secreted. Picrosirius stain was added to each well and removed after an
hour incubation at room temperature. The cells were rinsed with 0.5% acetic acid solution twice and
absolute alcohol twice. Digital images of stained squares were acquired using a brightfield microscope.
Cells cultured in monolayer were used as control.

2.11. Antibacterial Efficiency

The antibacterial ability of PLA+HNTs/Zn+gentamicin squares against Staphylococcus aureus
(S. aureus) was assessed. S. aureus was obtained as a gift from the laboratory of Dr. Rebecca Girono.
The 3D printed squares were placed in 24-well cell culture plate and each well was inoculated with
1 mL S. aureus (0.3 × 107 CFU/mL). The S. aureus was sub-cultured from a single colony and maintained
in Muller Hinton broth. The plate was incubated in horizontal orbital microplate shaker at 37 ◦C for
12 h. The absorbance of the incubation solution at 630 nm was measured. Muller Hinton broth without
PLA+HNTs/Zn+gentamicin squares and S.aureus set as negative and positive control, respectively.

2.12. Statistical Analysis

A one-way ANOVA or Student t-test was used for statistical analysis. Data were expressed as
mean ± standard deviation. A p-value less than 0.05 was considered statistically significant.
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3. Results

3.1. Distribution of HNTs and Zinc Nanoparticles in the PLA Filament

Filaments used to print PLA+HNTs, and PLA+HNTs/Zn squares were prepared by mixing PLA
with HNTs or zinc-coated HNTs (HNTs/Zn). In order to determine whether the HNTs or HNTs/Zn
were distributed throughout the PLA, filament cross-sections were analyzed with EDS. In Figure 4,
all pictures represent the same visual field but present different elements. The primary element of
PLA is carbon (C), which is exhibited all over the screen. Silicon (Si) and aluminum (Al) are the two
major elements of HNTs, according to the graph, they were well distributed in the PLA filament.
Zinc nanoparticles were coated into HNTs with 30% w/w, its distribution was detected by EDS as well.
According to the EDS analysis, HNTs and HNTs/Zn were well distributed throughout the PLA filament.
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each picture exhibits one element. Four elements were present. They are carbon (C), silicon (Si),
aluminum (Al), and zinc (Zn).

3.2. Morphology of 3D Printed Squares and Their Surface Characteristics

All filaments were printed into a pre-designed square with a pore size of 600 µm × 600 µm and
a layer height of 600 µm (Figure 2). Due to the limitations of the 3D printer used, the resolution
changed slightly during printing. The exact pore size was determined using a laser confocal microscope
(Figure 5). Based on the measurement of 60 pores from 20 different scaffolds, the average pore size of
printed scaffolds is 584.16 ± 95.28 µm × 620.39 ± 93.03 µm and with a porosity of 60.22 ± 9.5%.

3.3. Compressive Strength

In order to evaluate the contribution of HNTs towards the enhancement of PLA’s mechanical
properties in the printed squares, the compressive strength of 3D printed scaffolds was analyzed,
with and without HNTs addition. Scaffolds with HNTs (PLA+H and PLA+H+Zn) did have a higher
strain percentage and higher average compressive modulus as compared to the squares without
HNTs (PLA only), indicating that the addition of HNTs only contributed a slight but not significant
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enhancement to the elasticity and compressive strength of PLA (Figure 6). Due to the limitation of the
testing instrument, no scaffolds broke after the application of the maximum force (200 N). Therefore, we
can’t get the complete compression data. Based on the current data, there is a trendline in compression
property enhancement from PLA to PLA+H+Zn, but this enhancement is not significantly.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14 
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Figure 5. (A). Optical and laser combined picture of 3D printed square. (B). Laser confocal image of
3D printed square. (C). Horizontal section of selected pore, the horizontal distance was measured
(584.16 ± 95.28 µm, n = 60). (D). Vertical section of selected pore, the vertical distance was measured
(620.39 ± 93.03 µm, n = 60). (E). Vertical section of selected pore, the layer thickness was measured
(423.15 ± 82.7 µm, n = 60).
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Figure 6. (A) Stress vs. strain profile and the compressive modulus of PLA, PLA+H, and
PLA+H+Zn. (B) The compressive modulus: PLA = 0.24 ± 0.07 MPa, PLA+H = 0.25 ± 0.03 MPa,
PLA+H+Zn = 0.29 ± 0.03 MPa (error bar with standard deviation, n = 5).

3.4. Chemical Deposition

After processing the sandwich-like layered surface modification, the hydrophilicity of the
printed squares was significantly improved (Supplementary Figure S1). In our hypothesis, surface
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hydrophilicity would keep increasing with each layer modification. However, the hydrophilicity
decreased after the second layer modification was treated with NaOH, and then the hydrophilicity
significantly increased after the third layer was added (Supplementary data, Figure S1).
This phenomenon may have occurred because the NaOH eroded the chemicals that were deposited
in the first layer modified with FBS. However, simultaneously, this erosion produced more links for
chemical deposition, which lead to increased chemical deposition after the addition of the third layer
(supplementary Figures S2 and S3, and Figure 7).
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Figure 7. The EDS elemental analysis for PLA square with a naked surface (A) and a sandwich-like
coating (B).

3.5. Antibacterial Studies

FBS contains many substances which may lead to the growth of undesired microorganism;
therefore, we coated the PLA+H+Zn with gentamicin (PLA+H+Zn+G). Gentamicin is an efficient
antibiotic against gram-positive and negative bacteria [42]. Even though they were stored at 37 ◦C for
three weeks, they still efficiently inhibited bacterial growth (Figure 8). As expected, printed squares
without gentamicin showed no bacterial growth inhibition.
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Figure 8. Bacterial growth inhibition. Broth without any samples or bacterial were set as the negative
control (broth). S. aureus culture in broth was set as the positive control (S. aureus). The same amount
of S. aureus suspension was co-cultured with a scaffold composed by PLA, PLA added with HNTs
(PLA+H), PLA added with zinc-loaded HNTs (PLA+H+Zn), and PLA added with zinc-loaded HNTs
and coated with gentamicin (PLA+H+Zn+G), (error bar with standard deviation, n = 3, * p < 0.05).
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3.6. Response of Pre-Osteoblast to 3D Printed Squares

Many studies have shown that surface features, such as charge [43,44], roughness [45], adsorbed
proteins [46], and hydrophilicity/hydrophobicity [47], greatly influenced cell attachment and subsequent
cell behaviors. Our results consist with previous studies, cell adhesion was improved with hydrophilicity
and increased protein attachment (Supplementary Data, Figure S4). In addition, cells preferred to
proliferate on 3D squares as compared to the monolayer cultures (Figure 9).

The influence of gentamicin on cell metabolism was also assessed. Consistent with the study of
Philip et al. [48], the presence of gentamicin did induce a small but transient effect on cell metabolism
(Figure 9). However, the presence of gentamicin did not have a negative effect on mineralization
(Figure 10).
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Figure 9. Cell metabolism in 21 days incubation. Cell cultured in monolayer culturing set as control.
Then cells cultured with 3D squares consisted of 4 compositions: PLA, PLA added with HNTs (PLA+H),
PLA added with zinc-loaded HNTs (PLA+H+Zn), and PLA added with zinc-loaded HNTs and coated
with gentamicin (PLA+H+Zn+G). With one-way ANOVA analysis, there is a significant increase in cell
metabolism of each group in 21 days. Comparing the cell metabolism in monolayer surface and 3D
scaffold groups at day 21, cells cultured in PLA, PLA+H, and PLA+H+Zn had a significant higher cell
metabolism than cells cultured in control group (error bar with standard deviation, n = 5, * p < 0.05).

Bone consists of bone cells and a mineralized collagenous matrix [49,50]. The main constituents of
the bone matrix are hydroxyapatite (Ca10(PO4)6(OH)2) (50–70%) and an organic matrix (20–40%) [51].
Type I collagen is the major component of bone tissue extracellular matrix (ECM), which is mainly
synthesized by osteoblasts. The synthesis of type I collagen is one of the markers of osteogenic
differentiation [52]. Processed with Picrosirius Red staining, type III collagen stained red, and type I
collagen stained yellow. In the first seven days since incubation, collagen secretion by cells in monolayer
culture was negligible. In contrast, type III collagen synthesized by cells cultured on different 3D
square compositions was very apparent (Supplementary Information, Figure S5).

Furthermore, compared to the inner space, more type III collagen was synthesized on the bottom
surface of the square, and the transformation from type III collagen to type I collagen happened earlier on
the bottom surface of the well (Supplementary Data, Figure S5 vs. Figure S6). Osteoblast differentiation
in 3D scaffolds usually spreads from the scaffold periphery and gradually proceeds into the inner
scaffold space [50]. Similar to the results seen with collagen synthesis, after 21 days of incubation,
there was increased calcium deposition in the 3D scaffolds as compared to cells in monolayer culture
(Figure 10). Calcium deposition indicates mineralization of the bone matrix, which is another marker
for bone tissue formation. Alizarin Red S stained the calcium deposited in the collagenous matrix (red),
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which was rarely found in monolayer culture after seven days of incubation (Supplementary Data,
Figure S7).
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4. Discussion

PLA has been extensively studied as a candidate for drug delivery and tissue engineering due to
its biocompatibility, biodegradability and good mechanical properties; however, hydrophilicity
modification is necessary to decrease its hydrophobicity for in vitro and in vivo studies.
Sodium hydroxide (NaOH) is a common chemical used in every lab. Its hydroxyl (-OH) groups
can be introduced through hydrolysis, which cleaves the ester bonds. In addition, the introduced
-OH groups can be used to bind bioactive molecules such as collagen [53], fibronectin [54], and
arginine-glycine-aspartic acid (RGD) [55] to regulate cell adhesion.

In our early exploration of surface modification, we have tried other coating strategies, including
coating of pure NaOH (10 N) and collagen. However, may due to the thickness of the filament or the
high temperature processing, PLA has a certain degree of resistance to NaOH erosion, that results
in a poor cell adhesion. In contrast, cells were flourishing on fibers that formed by collagen crosslinking.
While collagen fibers forming networks in- and out-side of 3D scaffold, there is no optional way to
precisely control the distribution and direction of these networks, nor of their pore size. The affection
of collagen fibers on cell growth superseded the one brought by 3D scaffolds.

In this study, we used FBS as the ground and top layer and incorporated with NaOH to generate
a sandwich coating (FBS+NaOH+FBS) on the PLA surface. Fetal bovine serum is a widely used
serum supplement for in vitro cell culture. In the pilot study of FBS coating, cells successfully attached
on scaffold surface, which indicates an enhancement both in hydrophilicity and cell compatibility,
simultaneously, FBS did not introduce a morphology change. Following with a second layer treatment
of NaOH, there is an attenuation in element deposition as well as in hydrophilicity. This phenomenon
indicated a chemical erosion caused by NaOH, but chemical bond cleavage may also associate with
remained free chemical bonds that are available for further deposition. The increased FBS deposition
in third layer coating confirmed this hypothesis (Supplementary Information, Figures S2 and S3).
The increase of hydrophilicity and cell attachments are also indirectly supported an additional
deposition of chemicals on eroded chemical bonds (Supplementary Information, Figures S1 and S4).
Due to the prominent enhancement on hydrophilicity and bio-friendliness, we utilized the three-layer
coating strategy in this study. This deposition-erosion-deposition strategy may be also appropriate for
other biomaterials’ surface modification.

With the developing of 3D printing, there are several techniques used to fabricate 3D structure.
The one used in this study is fused-deposition modeling (FDM). This method of printing deposits
melted thermoplastic in thin layers and laydown at the designed location associated with CAD
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model. Therefore, FDM can be used to fabricate complicated 3D structure. However, due to the high
extruding temperature required by biomaterials, such as the extruding temperature for PLA is 225 ◦C,
no bio-factors nor cells can be printed with biomaterials. This is the biggest limitation of FDM during
tissue engineering.

5. Conclusions

In this study, we 3D printed squares composed of PLA and zinc doped HNTs for use as a potential
bone implant. The material’s porosity mimicked that of human bone tissue. When a unique sandwich
coating of FBS+NaOH+FBS was applied to the printed squares, hydrophilicity was enhanced that
facilitated cell adhesion and metabolism. Sandwich-coated PLA squares were also osteoinductive as
seeded pre-osteoblasts differentiated into osteoblasts without the addition of exogenous osteogenesis
agents. In addition, an external coating of gentamicin reduced the risk of infection without negatively
influencing osteogenesis. The newly designed hybrid material, PLA+H+Zn, also possessed good
mechanical strength and osteoinductivity and may serve as a candidate for 3D printing of bone
implants. Furthermore, the surface modification strategy used in this study may also be used for other
3D printing applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/11/3971/s1,
Figure S1: Contact angle at each layer modification; Figure S2: The SEM images and EDS element analysis for 3D
printed scaffold; Figure S3: Deposition of Na for each step modification.; Figure S4: Cell adhesion on surface that
with each layer modification; Figure S5: Picro-sirius Red Stain for type I (yellow) and type III (red) collagen that
are synthesized at bottom layer of 3D scaffolds with different time incubation. Arrows point to type I collagen;
Figure S6: Picro-sirius Red Stain for type I (yellow) and type III (red) collagen that are synthesized at inner space
of 3D scaffolds with different time incubation. Arrows point to type I collagen; Figure S7: ARS stain for calcium
deposition with cells cultured in regular 2D environment (control) and 3D scaffolds. The red color represents
calcium deposition.
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