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Abstract: This paper presents two amplitude comparison monopulse algorithms and their covariance
prediction equation. The proposed algorithms are based on the iterated least-squares estimation
method and include the conventional monopulse algorithm as a special case. The proposed
covariance equation is simple but predicts RMS errors very accurately. This equation quantitatively
states estimation accuracy in terms of major parameters of amplitude comparison monopulse radar,
and is also applicable to the conventional monopulse algorithm. The proposed algorithms and
covariance prediction equations are validated by the numerical simulations with 100,000 Monte
Carlo runs.

Keywords: monopulse radar; amplitude comparison; covariance prediction; least-squares estimation;
performance analysis

1. Introduction

Monopulse radar operates by comparing signal returns of four squinted beams steered around the
expected target direction [1]. It is classified as amplitude comparison monopulse and phase comparison
monopulse, and amplitude comparison monopulse is the most commonly used method, which detects
azimuth and elevation deviation errors from the center of the track axis by comparing the amplitudes
of the signal returns.

Many methods have been proposed to improve the performance of monopulse algorithms in
the literature [2–9]. Hofstetter and DeLong [2] dealt with the problem of detecting and estimating
the unknown angular position of the target observed simultaneously by controlling the number
of antennas in the amplitude comparison monopulse radar, where the method is derived using a
generalized likelihood ratio test. Sim et al. [3] carried out a performance analysis according to antenna
spacing using the phase comparison monopulse algorithm and proposed an efficient nonlinear antenna
array based on the analysis results. Han et al. [4] showed the effect of the functional variables of
the monopulse radar on angular tracking performance. An and Lee [5] showed the performance of
amplitude comparison monopulse through simulation-based MSE (mean-square error) comparison
with analytic MSE obtained by linearly approximating the nonlinear estimation equations. Jacovitti [6]
carried out a performance analysis on the monopulse receivers in the secondary surveillance radar
where the internal sources of error are considered. This paper discussed the general performance of
the receiver of the monopulse radar where Gaussian noise is applied in the environment. Chen and
Sheng [7] analyzed the performance of an angle measurement of the monopulse radar with reception
non-consistency. This paper showed that the performance of the angle measurement depends not only
on the algorithm but also on the reception consistency. Mosca [8] discussed the estimation problem of
the angle of arrival in thermal noise-applied amplitude comparison monopulse radar in terms of the
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coherency of pulse returns. In [9], a novel methodology that overcomes the limitation of difference
beam aided detection was proposed.

While many monopulse algorithms are proposed so far to improve the estimation performance,
most of them do not have clear relationships with the conventional algorithm, and only few conduct
the performance analysis under the presence of measurement noise. Therefore, it is difficult to
evaluate their performance improvement over the conventional algorithm under the measurement
noise presence. Although some papers deal with formal noise analysis on the conventional algorithm,
it is extremely complex, and no useful information comes from it.

Motivated by these observations, this paper presents least-squares-based monopulse algorithms
and a novel covariance prediction equation. The proposed algorithms have an iterative process
that incrementally improves the accuracy of the conventional algorithm. It is shown that the
conventional monopulse algorithm is a special case of the proposed algorithms with the first iterative
step. The proposed covariance equation is simple but predicts very accurately the covariance of the
estimated target location under the presence of measurement noise. This equation is independent of
the measurement signal, and thus can be used to predict the performance of the monopulse algorithms
before the algorithms are actually performed. This equation is also applicable to conventional
monopulse algorithms, and quantitatively states estimation accuracy in terms of the major parameters
of amplitude comparison monopulse radar.

It is also important in in electronic warfare systems to predict the performance of amplitude
comparison monopulse in terms of major parameters since intercepted signals from different types of
radars are very often noisy and change depending on the mission being carried out and the task being
performed [10,11].

This paper is organized as follows. In Section 2, the conventional amplitude comparison
monopulse algorithm is explained. In Section 3, two least-squares-based monopulse algorithms are
proposed. Section 4 discusses the relationships between the proposed and the conventional algorithms.
In Section 5, a novel covariance equation is proposed as a performance prediction measure. In Section 6,
numerical simulations are performed to evaluate the proposed algorithm and covariance equation.
Conclusions are given in Section 6.

2. Conventional Amplitude Comparison Monopulse Algorithm

Measurement of the target direction angle or target location is required for target tracking.
Amplitude comparison monopulse radar operates by comparing the amplitude of signal returns of
four squinted sub-beams steered symmetrically around the expected target direction as shown in
Figure 1 [1]. The sum, horizontal difference, and vertical difference channels of the incoming signal are
used to estimate target location, which is represented by the azimuth and elevation angle deviations in
the track axis.
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Each antenna pattern can be modeled near the center of the track axis as a squinted Gaussian
beam. Each one-way voltage gain function is given by

g(θ) = g0 exp

−2
(
θ
θ3dB

)2

log 2

 (1)

where θ is the total angle from the target location to the beam peak, θ3dB is the beam width, and g0 is
the gain at the beam peak [12].

The total angle, θ, can be computed from the target location defined in Figure 2, which presents
the field of view as seen from the monopulse radar.
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Figure 2. Target location in the track axis.

For a beam with its maximum in quadrant 1, the target location from the beam peak can be written
in terms of azimuth and elevation angle deviations (θaz, θel) as

θ2 =

(
θs
√

2
− θaz

)2

+

(
θs
√

2
− θel

)2

(2)

and the quadrant 1 voltage gain is then

g1(θ) = g1(θaz,θel) = g0 exp

−2


(
θs√

2
− θaz

)2
+

(
θs√

2
− θel

)2

θ2
3dB

 log 2

 (3)

where θs is the squint angle of the antenna. Using the above gain functions and a received signal
voltage of amplitude A, the so-called pseudorange equations are given as follows:

s1

s2

s3

s4

 = A


g1(θaz,θel)

g2(θaz,θel)

g3(θaz,θel)

g4(θaz,θel)

+


n1

n2

n3

n4

 (4)

where si is the measurement signal of i-th quadrant, which is contaminated by the measurement noise
ni. Here, si can be considered as pseudorange since it is a function of geometrical distance weighted by
the antenna gain.

The conventional amplitude comparison monopulse algorithm for estimating azimuth and
elevation angle deviations is briefly explained in the next few paragraphs [4,5,12].
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Assuming that θ2
az + θ2

el ≈ 0, the quadrant 1 voltage gain is simplified as follows:

g1(θ) = g1(θaz,θel) ≈ g(θs) exp
[
2
√

2
(
θs

θ3dB

) (
θaz + θel
θ3dB

)
log 2

]
(5)

If a monopulse error slope coefficient is defined as

km = 2
√

2
(
θs

θ3dB

)
log 2 (6)

then, voltage gain for the beam in quadrant 1 should be

g1(θaz,θel) = g(θs) exp
[
km

(
θaz + θel
θ3dB

)]
≈ g0

[
1 +

km

θ3dB
(θaz + θel)

]
(7)

assuming km
(
θaz+θel
θ3dB

)
� 1.

Under the assumption that all patterns are in phase, the gain functions of the antenna patterns
directed into the other quadrants are approximately computed as

g1(θaz,θel) ≈ g0

[
1 +

km

θ3dB
(θaz + θel)

]
(8)

g2(θaz,θel) ≈ g0

[
1 +

km

θ3dB
(−θaz + θel)

]
(9)

g3(θaz,θel) ≈ g0

[
1−

km

θ3dB
(θaz + θel)

]
(10)

g4(θaz,θel) ≈ g0

[
1 +

km

θ3dB
(θaz − θel)

]
(11)

Then, the sum (Σ), horizontal difference (∆az), and vertical difference (∆el) voltages are calculated by

Σ = A[g1 + g2 + g3 + g4] = 4Ag0 (12)

∆az = A[g1 + g4 − (g2 + g3)] = 4Ag0
km

θ3dB
θaz (13)

∆el = A[g1 + g2 − (g3 + g4)] = 4Ag0
km

θ3dB
θel (14)

Therefore, the azimuth and elevation angle deviations can be estimated as

θ̂c
az =

∆az

Σ
θ3dB
km

(15)

θ̂c
el =

∆el
Σ

θ3dB
km

(16)

where θ̂c
az and θ̂c

el are the estimates of azimuth and elevation angle deviations, respectively,
which represent the unknown target location estimate.

3. Least-Squares-Based Amplitude Comparison Monopulse Algorithm

3.1. Full Measurement-Based Algorithm

We can solve the estimation problems of azimuth and elevation angle deviations by first linearizing
the pseudorange Equation (4), then using the familiar least-squares method.
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Let the vector of measured signals be S = [s1 s2 s3 s4 ]
T; then, Equation (4) can be written in matrix

form compactly as follows:
S = Ah f ull(θaz,θel) + n (17)

where h f ull = [g1 g2 g3 g4 ]
T, and n = [n1 n2 n3 n4 ]

T.
If we expand the pseudorange Equation (17) in Taylor series about some nominal values (θaz0,θel0),

and ignore the second and higher order terms, then this equation becomes

S ≈ Ah f ull(θaz0,θel0) + A
∂h f ull

∂θaz
(θaz − θaz0) + A

∂h f ull

∂θel
(θel − θel0) + n (18)

Note that the partial derivatives in the above expression are computed using nominal values
(θaz0,θel0). The residual signal δS is defined as the difference between the actual signal and the signal
computed using nominal values:

δS = S−Ah f ull(θaz0,θel0)≈ A
∂h f ull

∂θaz
δθaz + A

∂h f ull

∂θel
δθel + n (19)

where δθaz = θaz − θaz0 and δθel = θel − θel0.
This equation can be written in four scalar equations in matrix form:


δs1

δs2

δs3

δs4

 ≈
4 log 2

θ2
3dB

A



(
θs√

2
− θaz

)
g1

(
θs√

2
− θel

)
g1

−

(
θs√

2
+ θaz

)
g2

(
θs√

2
− θel

)
g2

−

(
θs√

2
+ θaz

)
g3(

θs√
2
− θaz

)
g4

−

(
θs√

2
+ θel

)
g3

−

(
θs√

2
+ θel

)
g4


[
δθaz

δθel

]
+


n1

n2

n3

n4

 (20)

which can be written in symbolic form as

δS ≈ H f ull δθ+ n (21)

This equation expresses a linear relationship between the residual signals δS and the unknown
correction to angle deviations δθ. Note that each row of H f ull is shown to be purely a gain-weighted
direction vector to each of the beam peaks, as observed from the unknown target location in Figure 3.
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Let us consider a solution for the linearized pseudorange equation, denoted as δθ̂ f ull. The estimated
residual e is defined as the difference between the measured signal and its estimate. Using the linearized
form of the pseudorange equations and ignoring measurement noise, the estimated residual is

e = δS−H f ullδθ̂
f ull (22)
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The least-squares solution can be found by minimizing the following functional:

J
(
δθ̂ f ull

)
=

1
2

eTe (23)

Then, the solution is

δθ̂ f ull =
(
HT

f ullH f ull

)−1
HT

f ullδS (24)

This equation assumes that the inverse to HT
f ullH f ull exists, which is always true unless voltage

gains are zero because of the beam peak and unknown target location geometries.
Iterated least-squares estimation starts with setting the initial gradient of Equation (24) with

respect to θaz0 = 0 and θel0 = 0 and repeatedly performs the following update until convergence or up
to a certain number of iterations:

θ̂ f ull = θ0 + δθ̂ f ull

θ0 ← θ̂ f ull (25)

3.2. Sum-Difference Measurement-Based Algorithm

We can solve the estimation problem of azimuth and elevation angle deviations using the sum
(Σ), horizontal difference (∆az), and vertical difference (∆el) signals, which are used in the conventional
monopulse algorithm. Utilizing these signals is more useful because the same circuitry as the
conventional one can be used.

The measurement equations can be constructed as follows:

Σ = A[g1 + g2 + g3 + g4] + n1 + n2 + n3 + n4

∆az = A[g1 + g4 − (g2 + g3)] + n1 + n4 − n2 − n3

∆el = A[g1 + g2 − (g3 + g4)] + n1 + n2 − n3 − n4

(26)

Let the vector of the measured signals be Z =
[

Σ ∆az ∆el
]T

; then, Equation (26) can be
written in matrix form compactly as follows:

Z = Ahsd(θaz,θel) + Bn (27)

where

hsd =


g1 + g2 + g3 + g4

g1 + g4 − (g2 + g3)

g1 + g2 − (g3 + g4)

, B =


1 1 1 1
1 −1 −1 1
1 1 −1 −1

 (28)

Similar to Section 3.1, by Taylor series expansion about some nominal values (θaz0,θel0),
the linearized measurement equation becomes


δΣ

δ∆az

δ∆el

 ≈ B


n1

n2

n3

n4


+

4 log 2
θ2

3dB
A



(
θs√

2
− θaz

)
(g1 + g4) −

(
θs√

2
+ θaz

)
(g2 + g3)

(
θs√

2
− θel

)
(g1 + g2) −

(
θs√

2
+ θel

)
(g3 + g4)(

θs√
2
− θaz

)
(g1 + g4) +

(
θs√

2
+ θaz

)
(g2 + g3)

(
θs√

2
− θel

)
(g1 − g2) +

(
θs√

2
+ θel

)
(g3 − g4)(

θs√
2
− θaz

)
(g1 − g4) −

(
θs√

2
+ θaz

)
(g2 − g3)

(
θs√

2
− θel

)
(g1 + g2) +

(
θs√

2
+ θel

)
(g3 + g4)


 δθaz

δθel


(29)

which can be written in symbolic form as

δZ ≈ Hsdδθ+ Bn (30)



Appl. Sci. 2020, 10, 3966 7 of 13

The least-squares solution can be found by minimizing the following functional:

J
(
δθ̂sd

)
=

1
2

(
δZ−Hsd δθ̂

sd
)T(
δZ−Hsd δθ̂

sd
)

(31)

The solution is
δθ̂sd =

(
HT

sdHsd
)−1

HT
sdδZ (32)

Similar to the previous method, iteration can be used to estimate the unknown target location.

4. Relationships with the Conventional Monopulse Algorithm

If we assume that the unknown target location is near the center of track axis, i.e., θ2
az + θ2

el ≈ 0,

then matrix
(
HT

f ullH f ull

)−1
of Equation (24) is approximately computed by

(
HT

f ullH f ull

)−1
≈

θ4
3dB

32(log 2)2 θ2
s (g(θs))

2A2
I2 (33)

where I2 is a 2× 2 identity matrix. Therefore, with the nominal values of θaz0 = 0 and θel0 = 0, the full
measurement-based algorithm given by Equation (24) becomes approximately

δθ̂ f ull
≈

θ2
3dB

8
√

2 log 2 θs g(θs)A

[
1 −1 −1 1
1 1 −1 −1

]
δS (34)

which means that the first iterative step in least-squares estimation gives the following target
location estimate:  θ̂ f ull

az

θ̂
f ull
el

 ≈ θ2
3dB

8
√

2 log 2 θs g(θs)A

[
∆az

∆el

]
(35)

For the case of the sum-difference measurement-based algorithm, a similar analysis is possible.

With the assumption of θ2
az + θ2

el ≈ 0, the matrix
(
HT

sdHsd
)−1

of Equation (32) is approximately
computed by (

HT
sdHsd

)−1
≈

θ4
3dB

128 (log 2)2 θ2
s (g(θs))

2A2
I2 (36)

With the nominal values of θaz0 = 0 and θel0 = 0, the sum-difference measurement-based
algorithm given by Equation (32) becomes approximately

δθ̂sd
≈

θ2
3dB

8
√

2 log 2 θs g(θs)A

[
0 1 0
0 0 1

]
δZ (37)

which means that the first iterative step in least-squares estimation gives the following target
location estimate: [

θ̂sd
az
θ̂sd

el

]
≈

θ2
3dB

8
√

2 log 2 θs g(θs)A

[
∆az

∆el

]
(38)

Note that this equation is the same as Equation (35) of full measurement-based algorithm.
To compare the least-squares-based estimate algorithm with the conventional one, Equations (6)

and (12) are applied to Equations (15) and (16), and, then,

θ̂c
az =

θ2
3dB

8
√

2 log 2θs g0 A
∆az

θ̂c
el =

θ2
3dB

8
√

2 log 2θs g0 A
∆el

(39)
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Equation (39) is also the same as Equations (35) and (38), since g(θs) ≈ g0 is already assumed
in Equation (7), which means that the conventional monopulse algorithm provides the same target
location estimate as the least-squares-based algorithms with the first iterative step. Eventually, it turns
out that the three monopulse algorithms are nominally the same.

We can expect that performing multistep iterations with least-squares-based algorithm can provide
better target location estimation than the conventional one, since the accuracy of the first-order Taylor
expansion is improved.

5. Performance Analysis

Any noise n, including in the measurement signal, results in estimation error, and this error takes
exactly the same linear form as Equation (24) in the case of the full measurement-based algorithm:

δθ̂
f ull
error =

(
HT

f ullH f ull

)−1
HT

f ulln (40)

If the measurement errors are uncorrelated, with zero mean, and have approximately equal
variance, σ2, then

E[n] = 0, Cn = E
[
nnT

]
= σ2I4 (41)

where I4 is a 4× 4 identity matrix. Note that there are no assumptions about the measurement noise in
Equation (40), except that it is uncorrelated and identically distributed.

The expected covariance of the estimates for the least-squares solution takes on a simple form:

C f ull
θ

= E
[
δθ̂

f ull
error

(
δθ̂

f ull
error

)T]
= E

[(
HT

f ullH f ull

)−1
HT

f ullnnTH f ull

(
HT

f ullH f ull

)−1
]

= σ2
(
HT

f ullH f ull

)−1

(42)

This equation explains that the covariance of estimate error is scaled by
(
HT

f ullH f ull

)−1
to the

covariance of measurement noise, and matrix
(
HT

f ullH f ull

)−1
can therefore be used to quantify how the

level of measurement noise can be related to the expected level of errors in the target location estimate.
The covariance of the estimated target location can be written in terms of its components:

C f ull
θ

= σ2
(
HT

f ullH f ull

)−1
= σ2

[
σ2

11 σ2
12

σ2
12 σ2

2

]
(43)

If the measurement noise is at the level σ, the error in azimuth angle estimate would be at the
level of σ σ11. The off-diagonal elements indicate the degree of correlation between estimates.

Note that H f ull depends only on the relative weighted geometry of the beam peak and the
unknown target location. Therefore, the covariance of the estimated target location depends on the
unknown target location itself. If we assume that the unknown target location is near the center of the

track axis, i.e., θ2
az + θ2

el ≈ 0, then matrix
(
HT

f ullH f ull

)−1
is approximately computed by Equation (33).

Therefore, the covariance of the estimated target location is approximately given by

C f ull
θ
≈

θ4
3dB

32(log 2)2 θ2
s (g(θs))

2A2
σ2I2 (44)

This covariance equation explains that better accuracy estimates are found where θs is larger,
the gain at the track axis is larger, and the beam width is smaller in the presence of the measurement noise.
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For the case of sum-difference measurement-based algorithms, similar analysis is possible to
predict its performance. With the same assumption for the measurement noise, the expected covariance
of the estimates for the least-square solution takes on a simple form:

Csd
θ

= E
[
δθ̂sd

error

(
δθ̂sd

error

)T
]

= E
[(

HT
sdHsd

)−1
HT

sdBnnTBTHsd
(
HT

sdHsd
)−1

]
= 4σ2

(
HT

sdHsd
)−1

(45)

In this case, matrix
(
HT

sdHsd
)−1

is used to quantify how the level of measurement noise can be
related to the expected level of errors in the target location estimate.

If we assume θ2
az + θ2

el ≈ 0, then covariance Csd
θ

is approximately computed by

Csd
θ ≈

θ4
3dB

32 (log 2)2 θ2
s (g(θs))

2A2
σ2 I2 (46)

This is the same covariance equation to that of the full measurement-based algorithm, which means
that the sum-difference measurement-based algorithm has the same nominal performance as the full
measurement-based algorithm.

Formal noise analysis on the conventional algorithm of Equations (15) and (16) is extremely
complex, and no useful information comes from it. Instead, Equation (44) or (46) can be utilized to
quantify the level of estimation error, even for the conventional algorithm, because the conventional
algorithm is a special case of the proposed iterated least-squares-based algorithm with the first
iterative step.

It is worth noting that the covariance prediction Equations (44) and (46) do not depend on the
measurement itself. Thus, if monopulse radar parameters are known beforehand, these equations can
be used to predict the performance of the monopulse algorithms off-line before the algorithms are
actually performed. The covariance prediction equation quantitatively states estimation accuracy in
terms of major parameters of amplitude comparison monopulse radar.

The estimates from the monopulse algorithm, together with covariance predictions, can be passed
as measurements to a nonlinear filter such as an extended Kalman filter, which processes them further
to provide filtered estimates of the direction angle and angular rate of the unknown target.

6. Simulations

Simulations were performed to evaluate the proposed least-squares-based monopulse algorithms
and their performance prediction with various combinations of measurement noise level, beam width,
squint angle, and target direction angles. In the simulations, a track axis gain of g0 = 1 and a received
signal gain of A = 1 V were used. The estimates of the proposed least-squares-based algorithms are
given after four iterations.

Figures 4 and 5 and Tables 1–3 show the simulation results for the conventional and the proposed
methods. They show RMS (root-mean-square) errors of the target location estimate in terms of azimuth
and elevation angle deviations from the center of track axis. The simulation results are all based on
N = 100, 000 Monte Carlo runs. The experimental RMS error in the azimuth estimate is defined as

σaz =

√√√
1
N

N∑
i=1

(
θaz − θ̂

(i)
az

)2
(47)

where superscript (i) denotes the results from run i. A similar expression yields the RMS error in the
elevation estimate.
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Figures 4 and 5 show RMS errors with respect to the various standard deviations (σ) of measurement
noise in the case of θ3dB = 3◦, θs = 1◦, θaz = 0◦, θel = 0◦. RMS errors increase linearly with the
increase in measurement noise until σ ≈ 0.3◦ is reached, which corresponds approximately to an SNR
(signal-to-noise ratio) of 5.13 dB. However, for larger noise levels than σ ≈ 0.3◦, the performances of all
three algorithms become severely worse, although the proposed least-squares-based algorithms are
better than the conventional one.

Note that all three algorithms provide almost the same estimate accuracy, and the proposed
covariance prediction Equations (44) and (46) determine very accurate RMS errors with low noise levels.
Therefore, the covariance prediction equation can be used to analytically calculate the RMS errors even



Appl. Sci. 2020, 10, 3966 11 of 13

for the conventional monopulse algorithm, and this equation could be considered a measure for the
performance analysis of amplitude comparison monopulse radar algorithms.

Table 1. RMS errors for noise levels: θ3dB = 3◦, θs = 1◦, θaz = 0◦, θel = 0◦.

σ Target Position Conventional Full (Analysis) Sum-Difference (Analysis) Prediction

0.01
Azimuth 0.0269 0.0269 (0.0268) 0.0260 (0.0268) 0.0268
Elevation 0.0268 0.0268 (0.0268) 0.0268 (0.0268) 0.0268

0.05
Azimuth 0.1338 0.1331 (0.1335) 0.1330 (0.1336) 0.1339
Elevation 0.1346 0.1339 (0.1335) 0.1339 (0.1336) 0.1339

0.1
Azimuth 0.2699 0.2595 (0.2656) 0.2592 (0.2660) 0.2678
Elevation 0.2689 0.2593 (0.2656) 0.2591 (0.2660) 0.2678

0.3
Azimuth 0.8450 0.7235 (0.8581) 0.6066 (0.8471) 0.8033
Elevation 0.8468 0.6959 (0.8528) 0.6066 (0.8447) 0.8033

0.5
Azimuth 6.2642 3.4008 (2.8086) 2.7784 (2.9192) 1.3388
Elevation 7.1466 3.4119 (2.8092) 2.7817 (2.9239) 1.3388

1
Azimuth 610.3174 8.3577 (11.4122) 8.8205 (21.0155) 2.6776
Elevation 251.8055 8.3743 (11.4167) 8.9047 (20.9119) 2.6776

Table 2. RMS errors for target locations: θ3dB = 3◦, θs = 1◦,σ = 0.1◦.

Deviations Conventional Full (Analysis) Sum-Difference (Analysis) Prediction

θaz = 0◦,
θel = 0◦

Azimuth 0.2699 0.2595 (0.2656) 0.2592 (0.2660) 0.2678
Elevation 0.2689 0.2593 (0.2656) 0.2591 (0.2660) 0.2678

θaz = 1◦,
θel = −1◦

Azimuth 0.3579 0.2914 (0.2920) 0.2932 (0.2943) 0.2678
Elevation 0.3601 0.2926 (0.2923) 0.2945 (0.2947) 0.2678

Table 3. RMS errors for beam width and squint angle: θaz = 0◦, θel = 0◦, σ = 0.1◦.

Deviations Conventional Full (Analysis) Sum-Difference (Analysis) Prediction

θ3dB = 3◦,
θs = 1◦

Azimuth 0.2699 0.2595 (0.2656) 0.2592 (0.2660) 0.2678
Elevation 0.2689 0.2593 (0.2656) 0.2591 (0.2660) 0.2678

θ3dB =
6◦,

θs = 1◦

Azimuth 0.9596 0.6343 (0.8404) 0.6270 (0.8412) 0.9542
Elevation 0.9599 0.6350 (0.8403) 0.6275 (0.8412) 0.9542

θ3dB = 6◦,
θs = 2◦

Azimuth 0.5363 0. 5160 (0.5312) 0.5156 (0.5320) 0.5355
Elevation 0.5390 0. 5185 (0.5311) 0.5181 (0.5319) 0.5355

Table 1 shows the RMS errors in Figures 4 and 5 in tabular form. In Table 1, the values in
parenthesis in the ‘Full’ and ‘Sum-Difference’ columns are analytically computed RMS errors with
Equations (43) and (45) respectively, and the values in the ‘Prediction’ column are standard deviations
computed with Equation (44).

Table 2 shows RMS errors of target location estimates with respect to unknown target locations
(θaz, θel) in the case of θ3dB = 3◦, θs = 1◦,σ = 0.05. It is shown that the target location itself affects the
accuracy of the target location estimate, and that the proposed least-squares-based algorithms provide
better estimates than the conventional one for the situation where the unknown target location is far
from the center of the track axis.

Table 3 shows RMS errors with respect to beam width and squint angle (θ3dB, θs) in the case
of θaz = 0◦, θel = 0◦, σ = 0.1. As expected from Equation (44), it is clear that the accuracy of the
estimates gets better where θs is larger and beam width is smaller.



Appl. Sci. 2020, 10, 3966 12 of 13

7. Conclusions

In this paper, two least-squares-based algorithms and their covariance prediction equations have
been presented for amplitude comparison monopulse radar. The conventional monopulse problem is
reinterpreted as a target location estimation problem in the track axis with four pseudorange equations
in which geometrical distance is weighted by the antenna gain.

The full measurement-based and sum-difference measurement-based algorithms are proposed
to estimate the target location based on the iterated least-squares estimation method. While the
full measurement-based algorithm utilizes all four receiving signals from the four antennas,
the sum-difference measurement-based algorithm uses the same sum and difference signals as
the conventional algorithm.

By theoretical analysis with the same assumptions used in the conventional monopulse algorithm,
it has been shown that the full measurement-based and sum-difference measurement-based algorithms
are nominally the same, and the conventional monopulse algorithm is a special case of the proposed
least-squares-based algorithms with the first iterative step. Furthermore, it turns out that the covariance
prediction equation for the proposed least-squares-based algorithms can be utilized to determine the
level of estimation errors even for the conventional algorithm.

According to numerical simulation results with 100,000 Monte Carlo runs, the proposed
least-squares-based algorithms show similar estimation performance as the conventional ones in low
levels of noise, and better performance with high levels of noise and large deviation of an unknown
target from the center of the track axis. The proposed covariance prediction equation provides
very accurate RMS errors for both the conventional and least-squares-based algorithms, and thus
it can be used to predict the performance of the monopulse algorithms before the algorithms are
actually performed.
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