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Abstract: This study presents surface roughness modeling for machined parts based on cutting 

parameters (spindle speed, cutting depth, and feed rate) and machining vibration in the end 

milling process. Prediction models were developed using multiple regression analysis and an 

artificial neural network (ANN) modeling approach. To reduce the effect of chatter, machining 

tests were conducted under varying cutting parameters as defined in the stable regions of the 

milling tool. The surface roughness and machining vibration level are modeled with nonlinear 

quadratic forms based on the cutting parameters and their interactions through multiple 

regression analysis methods, respectively. Analysis of variance was employed to determine the 

significance of cutting parameters on surface roughness. The results show that the combined 

effects of spindle speed and cutting depth significantly influence surface roughness. The 

comparison between the prediction performance of the multiple regression and neural 

network-based models reveal that the ANN models achieve higher prediction accuracy for all 

training data with R = 0.96 and root mean square error (RMSE) = 3.0% compared with regression 

models with R = 0.82 and RMSE = 7.57%. Independent machining tests were conducted to validate 

the predictive models; the results conclude that the ANN model based on cutting parameters with 

machining vibration has a higher average prediction accuracy (93.14%) than those of models with 

three cutting parameters. Finally, the feasibility of the predictive model as the base to develop an 

online surface roughness recognition system has been successfully demonstrated based on contour 

surface milling test. This study reveals that the predictive models derived on the cutting 

conditions with consideration of machining stability can ensure the prediction accuracy for 

application in milling process. 

Keywords: artificial neural network; cutting parameters; machining vibration; regression analysis; 

surface roughness 

 

1. Introduction 

High-speed, high-precision machining with a high material removal rate has been an 

important goal in the manufacturing industry because of the high-efficiency and high-quality 

requirements. Further, machined parts with a high surface finish are in high demand under 

considerations of assemblage precision, fatigue strength, and tribological properties of the 
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mechanical product. To achieve high productivity and high precision, machining is implemented 

with a higher level of cutting parameters. However, surface quality and dimensional accuracy are 

affected by several factors such as machining conditions, tool geometry and vibrations, cutting 

parameters, and machining dynamics [1]. In particular, surface finish deteriorates because of the 

machining vibration caused by inappropriate machining conditions and process parameters [2–7]. 

Bhogal et al. [2] suggested that cutting speed is a major factor affecting tool vibration, which thereby 

affects surface finish. Amin et al. [3] showed the effect of chatter amplitude on surface roughness 

under various cutting conditions with different tool holders via machining experiments. Arizmendi 

et al. [5] demonstrated that the surface topography of the machined part is influenced by cutting 

tool vibrations. Further, David et al. [6] demonstrated that workpiece topomorphy is affected by the 

vibration caused by a poor runout of the cutter. They found that an increased cutting force with an 

increasing cutting depth and feed rate leads to higher vibration, and it accordingly increases surface 

roughness. Zahoor [7] reported that surface roughness was affected by the vibration amplitude of 

the machine tool and the axial cutting depth. The vibration levels are closely related to the cutting 

parameters and they increase with an increase in the cutting speed and feed rate [8–10]. 

To ensure machining performance with better surface quality, the selection of optimum process 

parameters is crucial in metal machining. To achieve this goal, a majority of studies has employed 

experimental and modeling approaches to determine strategies to obtain the best final surface 

quality and dimensional accuracy [11–15]. The effect of cutting parameters on surface roughness can 

be effectively examined via the statistical data analysis of data collected from machining 

experiments under specifically designed process parameters. Subsequently, the optimization of the 

machining process with a better surface quality and less vibration can be obtained based on 

prediction models established by various approaches such as analytical modeling, statistical 

regression based on response surface methodology, and artificial intelligence-based models [16]. 

Response surface methodology is a statistical technique used to establish relationships between 

continuous dependent variables with independent variables in terms of mathematical models using 

multiple regression analysis. Prediction models derived from experimental data can help clarify the 

influences and contributions of cutting parameters on surface roughness or tool vibration; these 

models can further be applied to optimize cutting parameters [2,4,14,17–21]. Routara et al. [17] 

identified that all three cutting parameters (spindle speed, cutting depth, and feed rate) and their 

interactions have significant effects on surface roughness. Further, the surface response model 

shows significant dependence on the combination of the tool and workpiece material. Yang et al. 

[14] proposed an optimization process for machining conditions to ensure a desirable surface 

roughness based on surface response methodology. With an optimized solution, the material 

removal rate can be improved significantly without sacrificing surface roughness. Hayajneh et al. 

[22] and Joshua et al. [18], respectively, reported that feed rate has a significant effect on the surface 

roughness of machined alumina material compared with spindle speed and cutting depth. 

However, the effect of the interaction between cutting parameters has no definite tendency based on 

the machining conditions used in the tests. Hessainia et al. [23] conducted an investigation on the 

interactive effects of cutting parameters and tool vibration on surface roughness. Their results 

indicated that feed rate was the dominant factor affecting surface roughness, and vibrations in the 

radial and main cutting force directions had a low effect on surface roughness. Further, to obtain a 

desirable surface finish, optimum cutting parameters with less machining vibration were obtained 

using a predictive regression model. Ramesh et al. [24] and Premnath et al. [25] showed that the 

interaction of cutting speed and feed rate had a greater influence on surface roughness compared to 

other interactions. 

As mentioned previously, tool vibration and chatter affect the surface quality of the machined 

product and the machining performance directly. Therefore, monitoring and controlling machining 

vibration has been considered an effective approach to enhance the surface precision and dimension 

accuracy of a machined product [26–28]. Bhogal et al. [2] employed mathematical models to predict 

the surface finish, tool vibration, and tool wear with different combinations of cutting parameters. 

With these models, the optimum feed rate, cutting depth, and cutting speed were obtained to reduce 
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tool vibrations and enhance surface finish. Shelar and Shaikh [20] proposed a multiobjective 

optimization algorithm to minimize vibration amplitude and surface roughness. The objective 

functions and the second-order response surface models for surface roughness and vibration 

amplitude were created by performing regression analysis on experimentally collected data. 

Surface roughness modeling has been comprehensively investigated using artificial neural 

network (ANN) analysis incorporated with optimization algorithms [11,25–27,29,30]. For example, 

Asilturk et al. [11] employed artificial neural networks and multiple regression approaches to model 

the surface roughness of AISI 1040 steel in turning. Three training algorithms—back-propagation 

training, scaled conjugate gradient (SCG), and Levenberg–Marquardt (LM)—were used in ANN 

modeling; the SCG algorithm was proven to achieve the best prediction accuracy. Tsai et al. [29] 

proposed statistical regression and ANN models to predict the surface roughness on aluminum 6061 

after end milling based on three cutting parameters (spindle speed, feed rate, and cutting depth) and 

machining vibration. The experimental results show that the ANN surface recognition model has a 

higher accuracy rate compared with the regression model. In addition, a two hidden-layer ANN 

model shows a slightly higher accuracy (99.27%) than that of the one hidden-layer model (95.87%); 

however, it has low efficiency in the training model. A similar study was reported by Oktem [31], 

who developed a feedforward neural network integrated with a genetic algorithm to optimize 

machining conditions for obtaining the best surface finish of a plastic injection mold. The model 

was finally validated with prediction errors of 5.34% in comparison with the measurement of the 

machined surface roughness. Nalbant et al. [32] explored the influence of the cutting parameters 

and interactions between them on surface roughness; further, they established a surface roughness 

model based on ANN analysis, in which the SCG training algorithm with nine neurons 

demonstrates the best fitness and prediction accuracy in ANN modeling. Zain et al. [33] presented 

an ANN model to predict surface roughness in end milling. In ANN modeling, the number of 

layers and neurons in the hidden layers are factors that determine the prediction accuracy. Based on 

the prediction model, the best combination of cutting conditions for achieving the best surface 

roughness value can be obtained at a high speed with a low feed rate and radial rake angle. 

The vibration induced in a machining process can be modeled as a function of cutting 

parameters via ANN analysis. As presented in the study by Zagórski et al. [34], individual vibration 

components (ax, ay, and az) were well predicted based on the ANN model for a specified cutting 

depth, feed rate, and cutting speed in the milling process for the AZ91D alloy. Further, the 

prediction accuracy based on a multilayered perception model was better than that of the radial 

basis function. The accurate modeling of vibration components allows optimizing the cutting 

conditions to enhance machining stability. Abouelatta et al. [35] considered the influence of 

machining vibration on surface quality when establishing the surface prediction model, wherein the 

input variables include cutting parameters, tooling condition, and tool vibration were assessed in 

the turning process. Such models have higher prediction accuracies compared to those of models 

determined by only cutting parameters. To include the effects of cutting forces and tool vibrations 

in a surface roughness prediction model, Chen et al. [36] proposed a nested ANN composed of two 

networks: An enclosed network that uses the cutting parameters to predict the cutting force and 

tool vibration, and an output network that takes all outputs of the first network and the cutting 

parameters as inputs to predict surface roughness. According to the analysis results, the 

nested-ANN model using three cutting parameters as inputs shows superior prediction accuracy 

than any other regression and ANN models that use the cutting parameter and tool vibration as 

inputs. These investigations clearly illustrate the significant influences of the machining state such 

as the cutting forces and tool vibrations on the machined surface roughness; these effects can be 

adequately introduced in the roughness prediction models by acquiring sensory data from 

machining or through an estimation algorithm with cutting parameters as inputs. 

From previous studies, it is clear that factors affecting machined surface quality are 

multifaceted, including cutting parameters, tooling conditions, workpiece material, and machining 

state. The effect of each factor and the interactions between them on surface quality and machining 

vibration are found to be inconsistent because of the scope of machining conditions defined in 
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different researches [20–23]. Further, various factors used as input variables in the modeling of 

surface roughness enable the model demonstrating different prediction accuracies; this limits the 

application in practical machining. The results obtained may work well in the design space of 

experiments; however, there are constraints in the ranges of the cutting parameters, which limit the 

application of the specific models in the machining process with different cutting conditions for the 

desired precision or productivity [37]. 

This study was aimed to model the surface roughness of the machined part based on cutting 

parameters with the effect of machining vibration. As the occurrence of chatter is a common factor 

affecting productivity and surface quality, selecting an optimum chatter-free cutting parameter is 

prerequisite to ensure machining performance [38]. Considering the effect of chatter on the 

machining process, the cutting parameters from rough to finish machining were selected within the 

stable regions defined by the machining stability lobes of the milling tool. Then, machining vibration 

and surface roughness of the machined parts were collected from milling experiments conducted on 

the aluminum alloy under various cutting conditions. Multivariable linear regression analysis was 

employed to establish the mathematical models for predicting the surface roughness and machining 

vibration. In addition, the surface roughness was modeled as a function of cutting parameters and 

machining vibration using a multilayer perception neural network with a back-propagation 

algorithm. The prediction capabilities of the models derived from different approaches were 

compared based on the measurements and predictions in the training data group and the validation 

of physical milling machining. 

2. Experiment Approaches 

In this study, the mathematical model for predicting the surface roughness of a milled 

workpiece was established based on an experimentally data driven approach that employs 

regression analysis and an ANN model. The training data required for prediction models were 

collected from machining tests. To conduct a comprehensive study, the cutting parameters, cutting 

depth, and spindle speed were selected within the range of spindle speed and cutting depth 

between low speed, rough machining to high speed, and finish machining. In particular, to ensure 

machining in a stable state with a higher removal rate, the cutting depth and spindle speed within 

the stable region were selected based on the machining stability of the cutter [38]. The stability lobes 

were calculated based on the frequency response function assessed from the impact test. 

2.1. Assessment of Machining Stability of Milling Cutter 

2.1.1. Impact Vibration Test of Cutter 

Figure 1 shows the experimental configuration for assessing the frequency response function 

of the milling cutter, in which a 10 mm 4-tooth carbide cutter with a BT tool holder was installed in 

the spindle. In the test, the spindle head was located at an appropriate height from the working 

table. An accelerometer was mounted on the tool end to assess the vibration response excited by an 

impact hammer hit on the opposite side of the cutter, as shown in Figure 1. 
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(a) (b) 

Figure 1. Experimental configurations of vibration test of milling spindle with and without tool 

holder/cutter. (a) Measurement at tool tip. (b) Measurement at spindle nose. 

2.1.2. Frequency Response Function and Machining Stability 

Figure 2 shows the frequency response functions of the tool end measured in the x direction. 

The milling cutter shows the maximum compliance of 1.82 μm/N at a frequency of 5332 Hz. Based 

on this dominant mode, machining stability lobes were calculated according to the analytical 

approach proposed by Altintas [39]. To calculate machining stability, the cutting resistance 

coefficients for the milling material Al6061 with a carbide cutter were identified as Kt = 796 N/mm2 

and Kr = 0.21 [39]. Figure 3 illustrates the stability lobes diagram of the cutter, which suggests the 

machining conditions with or without chatter in terms of the axial cutting depth as a function of 

spindle speed. As shown in the lobes diagram, the limited cutting depth is ~2.0 mm, which 

indicates that stable machining without chatter can be obtained when the cutting depth below the 

critical value is adopted. 

  

(a) FRF—Dynamic compliance (b) FRF—Real part 

Figure 2. Frequency response function (FRF) of the milling cutter. (a) FRF—Dynamic compliance. (b) 

FRF—Real part. 

 

Figure 3. Stability lobes diagram in the X direction. 
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2.2. Machining Tests 

Experiments were conducted on the Feeler U600 (Fair Friend Ent. Co., Ltd, Taipei City, Taiwan) 

milling machine with a 4-tooth tungsten carbide end mill cutter. The workpiece material is an 

aluminum alloy (Al6061) with a size of 150 mm × 150 mm  80 mm. Machining operations were 

performed by full immersion of slot milling, as shown in Figure 4. Each slot was milled in the 

X-direction under specific cutting parameters at different levels. Considering the effect of chatter on 

the machining process, the cutting parameters from rough to finish machining were selected within 

the stable regions that were defined by the machining stability lobes of the milling tool. The axial 

cutting depth (ap) was defined in the range of 0.1 and 2.0 mm with an increment of 0.1 mm. The 

spindle speed (n) was set to 3000–8000 rpm, increased in increments of 1000 rpm, respectively. The 

linear feed rate (f) was set at 600 to 2400 mm/min with increments of 100, which was determined by 

spindle speed (n) and feed per tooth of the cutter based on the formula: f (mm/min) = n (rpm) × fz 

(mm/tooth) × z (number of tooth). Herein, feed per tooth of the cutter was specified at two levels, 

0.05 and 0.075 mm/tooth, respectively. For a given spindle speed, the linear feed rate in machining 

was set at lower and higher rate, respectively. During milling operations, a triaxial vibration sensor 

was mounted on the spindle housing to measure the acceleration signals of the vibration in the 

orthogonal directions (X, Y, and Z) simultaneously. For each slot machining, the average value 

taken from the time domain root mean square (RMS) values of the accelerations were calculated 

and used to compare the vibration extent of milling under different cutting parameters. After 

machining tests, the surface roughness (Ra) was measured using white light interferometer (Optical 

Surface Profiler, Zygo, NewView™ 8000 Series (Zyzo Corporation, Middlefield, CT USA). For each 

machined slot, roughness values were measured at five equally spaced points along the feeding 

direction, and then, the average of these values was recorded for subsequent analysis. There are a 

total of 240 machining conditions defined by the different levels of cutting parameters, including 6 

spindle speeds, 2 feed rates, and 20 cutting depths. 

 

Figure 4. Machining test and workpiece. 

2.3. Machined Surface Morphology and Vibration Spectrum 

Figure 5 shows the morphologies of machined surfaces and the vibration spectrum of the 

milling spindle under specific machining conditions, which indicates that the cutting depth with a 

greater vibration level has a rougher surface. For example, for a cutting depth of 0.7 mm at a speed of 

3000 rpm, Ra was measured as 0.494 μm, while it caused a vibration level of 0.035 (g). When the 

cutting depth was set at 0.6 mm, Ra = 0.580 μm was generated under a spindle speed of 6000 rpm 

with a vibration level of 0.05 (g). When the cutting depth was set at 1.3 mm, Ra = 0.704 μm was 

generated with the higher level of vibration of 0.83 (g). 
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Figure 5. Morphologies of the machined surfaces under different cutting parameters. 

3. Data Analysis Approach 

In machining practice, surface roughness and tool vibration are desired objects to be monitored 

in the machining operation, whereas the cutting parameters are independent variables that have 

been verified to show different influences on the monitoring target. Therefore, the establishment of 

the prediction models of surface roughness or tool vibration can help optimize the cutting 

parameters to achieve a desired surface quality with low tool vibration. 

3.1. Multivariable Regression Analysis 

Multiple regression analysis is used to determine the dependency of surface roughness on 

selected machining parameters and vibrations in the machining. Besides the main influences of 

these variables, the effects of their interactions were included in the analysis. 

In the response surface methodology, all independent variables are correlated to the response as 

  ),......,( n21 xxxy  (1) 

where y is the desired model of surface roughness, ϕ is the response surface function to be 

determined by the independent variables xi, and ε is the statistical error of the measurements. The 

response surface function can also be defined as a linear combination of several independent 

variables with their interactions and one dependent variable. An explicit mathematical quadratic 

form is given by 

i

N

1i i j
jiji

2
iii

N

1i
ii0 εxxbbxbxbby  



  (2) 

where bi, bii, and bij, are coefficients of the linear, quadratic, and interaction terms, respectively; xi 

and xj are input variables; and N is the number of the independent variables. 

In this study, the relationship between Ra is correlated to the cutting parameters such as cutting 

depth (ap), spindle speed (n), and feed rate (f) using a nonlinear quadratic model and power law 

model, respectively. 

nfafannafna R 76543a  ppp2p10 f   (3) 

3 21
p0a f n  a   R    (4) 

In the above equation, the influences of individual parameters and the interactions between 

them on the surface quality are considered. The multiple linear regression analysis is performed to 

determine the values of the coefficients with the least squares method. 

  



Appl. Sci. 2020, 10, 3941 8 of 22 

3.2. Artificial Neural Network Model 

The artificial neural network (ANN) approach has the capability to learn from an experimental 

dataset to establish a high nonlinear correlation between surface roughness and input parameters 

[33]. Because a wide range of cutting parameters were adopted in machining tests, the response 

surface plot of the roughness against the cutting parameters are expected to show highly nonlinear 

characteristics. This study, therefore, employed an ANN technique to model and predict the 

roughness of the machined surface based on cutting parameters. A simple multilayered architecture 

of a typical ANN is shown in Figure 6. 

 

Figure 6. Multilayered architecture of a typical artificial neural network. 

The network has three layers, namely, input, hidden, and output. The input and output layers 

are defined as nodes or neurons, and the hidden layer provides the relationship between the input 

and output layers using different numbers of neurons. The processing neurons in the hidden layer 

deliver the processed data from the neurons in the input layers to neurons in the output layer. For 

example, the input data to the neurons in the hidden layer can be characterized by the general form: 

jiij θuWx 


n

1i
j,hidden

 (5) 

where Wij is the weight coefficient between the input neurons and hidden neurons, ui is the value of 

the input, and θj denotes the biases of the hidden neurons. The effectiveness of neural networks 

models is dependent on various characteristics such as network architecture, activation functions, 

and training algorithms. In this study, the MLP network was trained with the application of the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, conjugate gradient, and the steepest descent 

training algorithm. To realize the best network, the activation functions—linear, exponential, 

hyperbolic, logistic, and sin—were changed in the hidden and output layers, wherein the 

hyperbolic function is given by 

1e

1e
f(x)

2x

2x




  (6) 

In addition, the linear function was used as the output layer activation function. In ANN 

modeling analysis, the input neurons are the cutting depth, spindle speed, feed rate, and vibration 

level; the output is the surface roughness. A trial-and-error scheme has been used to determine the 

appropriate number of hidden neurons. Further, the error function was used to determine errors 

between actual values and calculated values during learning, testing, and validation, which is 

defined as 
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2
i

N

1i

i )t(y 


Errors , (7) 

where N is the number of dataset in ANN modeling. 

3.3. Determination of the Effectiveness of Prediction Models 

The effectiveness of the regression models and selected neural networks were evaluated based 

on root mean square error (RMSE), determination coefficient (R), and mean absolute percentage 

error (MAPE). These values are determined by 
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where t is the target value, y is the predicted value, and N is the number of samples in analysis. 

4. Results and Discussions 

4.1. Surface Roughness under Different Cutting Parameters 

Figure 7 illustrates surface roughness with varying spindle speeds and cutting depths under 

specific feed of 0.05 and 0.075 mm/tooth, respectively, in which the spindle speed ranges from 3000 

to 8000 rpm and cutting depth ranges from 0.1 to 2.0 mm. The response surface graphs indicate that 

surface roughness is affected to different extents by the combined effect of spindle speed and 

cutting depth, and by changing the feed rate. Overall, the roughness scatters from 0.5 μm under a 

lower cutting depth and spindle speed to a higher value of 0.9 μm under a high spindle speed and 

larger cutting depth. Further, it is noted that cutting depth has an apparent positive influence on 

surface roughness: increasing the cutting depth increases the roughness of the machined surface. 

The influence trend is more significant with a correlation coefficient (r ≅ 0.8–0.9) at feed of 0.075 

mm/tooth as compared with feed of 0.05 mm/tooth (r ≅ 0.5–0.8). There is no significant relationship 

between the surface roughness and spindle speed defined in the range from 3000 to 8000 rpm for 

machining under lower feed per tooth. However, at a higher feed per tooth, the roughness increases 

with an increase in spindle speed when the cutting depth is greater than 1.0 mm, and the roughness 

decreases with an increase in spindle speed when machined with a lower depth (< 1.0 mm). At a 

lower feed rate, the roughness increases at a spindle speed from 4000 to 7000 rpm, and then, the 

roughness decreases at speeds below 4000 rpm or those higher than 8000 rpm. 
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Figure 7. Variation of surface roughness with varying spindle speed and cutting depth at lower and 

higher feed rate, respectively. 

Figure 8 illustrates the variation of surface roughness under different feed rates and cutting 

depths. The linear feed rate is expressed in units of mm/min and ranges from 600 to 2400 mm/min, 

which corresponds to a corresponding spindle speed from 3000 to 8000 rpm and feed of 0.05 and 

0.075 mm/tooth. As shown in Figure 8, the surface roughness generated in machining is affected by 

a change in the combination of the feed rate and cutting depth. Within the entire range of testing 

data, there is no significant correlation between the surface roughness and the feed rate. However, 

when machining conditions are confined within the testing conditions (Z > 1.0 mm, F = 1800–2000 

mm/min, and S = 6000–8000 rpm), machining vibration apparently increases with an increase in the 

feed rate, spindle speed, and cutting depth, which shows a significant negative influence on surface 

equality with a correlation coefficient (r > 0.8). In particular, it is observed that surface roughness 

scatters in lower ranges when machining is performed using various cutting depths at some critical 

feed rates such as 900, 1200, and 1500 mm/min, corresponding to spindle speeds of 3000, 4000, and 

5000 rpm and the feed of 0.075 mm/tooth. 

  

  

Figure 8. Variation of surface roughness under different feed rates and specific cutting depths. 

4.2. Spindle Vibration under Different Cutting Parameters 

Figure 9 illustrates the variation of machining vibration with varying cutting parameters under 

constant feed of 0.05 and 0.075 mm/tooth. The response surface graphs clearly indicate that the 

vibration level induced in machining is clearly affected by the combined effect spindle speed and 

cutting depth. Roughly speaking, vibration amplitude increases with an increase in the spindle 

speed and cutting depth, as found in Figure 9. It is noted that machining with different cutting 

depths and at a constant feed 0.075 mm/tooth, vibration apparently increases with an increase in the 

spindle speed from 3000 to 8000 rpm, with a correlation coefficient (r = 0.92–0.96). For machining at 

a constant feed 0.05 mm/tooth, the correlation between roughness and spindle speed is not 

significant (r = 0.3–0.66) depending on the cutting depth. In particular, when the cutting depth is 

greater than 1.6 mm, the vibration level increases with an increasing speed and reaches the 

maximum value at a spindle speed of 6000 rpm; it then decreases with an increasing speed. 
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Figure 9. Variation of vibration levels with varying spindle speed and cutting depth at lower and 

higher feed rate, respectively. 

Figure 10 illustrates the variation of the vibration level generated under different feed rates 

and cutting depths, in which the feed rates range from 600 to 2400 mm/min, corresponding to the 

spindle speed from 3000 to 8000 rpm and feed of 0.05 and 0.075 mm/tooth. The extent of the effect 

of feed rate on the vibration varies with a cutting depth in machining. Within the entire testing data, 

there is no significant correlation between the vibration level and the feed rate. However, as 

observed in Figure 10, at a lower cutting depth (Z < 0.8 mm), machining vibration is slightly 

increases with increasing the feed rate, with a correlation coefficient (r = 0.6–0.7). In addition, within 

the testing conditions (Z > 1.0 mm, F = 1800–2000 mm/min, and S = 6000–8000 rpm), the machining 

vibration apparently increases with an increase in the feed rate, spindle speed, and cutting depth, 

which shows a significant influence on vibration (r > 0.8), and therefore a negative influence on the 

surface equality, as shown in Figure 10. 

 

Figure 10. Variation of vibration level under different feed rates and specific cutting depths. 

The effect of machining vibration on surface roughness can be observed from Figure 11, which 

shows that they are moderately correlated: r = 0.58 and 0.71 for feed of 0.05 and 0.075 mm/tooth, 

respectively. Evidently, the vibration level induced in machining affects the roughness of the 

machined surface to a different extent, which depends on the interactive effects of cutting 

parameters. As illustrated in Figure 9, machining vibrations are relatively lower (< 0.02 g) under a 

specific combination of feed rate and spindle speed, such as 1200 mm/min and 4000 rpm and 1500 

mm/min and 5000 rpm, respectively. Consequently, finer surfaces with less roughness are obtained. 

However, if the feed rate and spindle speed are 1000 mm/min and 5000 rpm or 1600 mm/min and 

8000 rpm, higher level vibrations are generated (>0.03 g) to deteriorate surface precision with high 
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roughness. Therefore, the appropriate selection of the cutting parameters can lessen the vibration in 

the machining operation to obtain better surface quality. 

 

Figure 11. Correlation between surface roughness and machining vibration level. 

4.3. Regression Models 

4.3.1. Surface Roughness Model Based on Cutting Parameters 

The surface roughness (Ra) was determined by the individual cutting parameter, depth of 

cutting (ap, mm), feed rate (f, mm/min), and spindle speed (n, rpm) in addition to interactive 

parameters, such as cutting depth and spindle speed. Based on the regression coefficients listed in 

Table 1, the mathematical model is given by 

 f× n × a × 104.74 + f × n × 103.48-     

 f× a ×10 2.6- a ×n ×103.6  a ×  n × 109.33 0.2235 R

p
8-8-

p
-4

p
-5

p
-5

a



 －2963.0
 (11) 

 

Table 1. Regression parameters for surface roughness prediction model. 

Parameters Coefficients 
Standard 

Deviations 
p-Value 

Intercept 2.23510-1 4.93510-2 9.45910-6 

Spindle speed (n) 9.33010-5 1.53010-5 4.75410-9 

Cutting depth (ap) 2.96410-1 5.39110-2 1.01010-7 

Depth  speed (apn) −3.60010-5 1.35010- 7.99110-3 

Depth  feed (apf) −2.60010-4 3.83010-5 8.07810-11 

Feed  speed (fn) −3.40010-8 5.13010-9 3.95610-10 

Depth  speed  feed (ap n f) 4.74010-8 6.65010-9 1.31210-11 

In Table 2, the R-square and adjusted R-square are around 0.67, implying that the predicted 

values are close to the measurements, as shown in Figure 12. Further, the p-value of each input 

variable and their interactions against surface roughness are far less than 0.05, indicating all 

machining parameters have apparent influences on the roughness of the machined surface. The 

average percentage of prediction accuracy for all testing data is ~90.3% with an RMSE of 7.57%, 

indicating that the roughness prediction model is well fitted with the cutting parameters defined in 

wide ranges. 
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Table 2. Comparisons of statistical parameters of prediction models. 

Prediction Model R R Square Adjusted R Square RMSE MAPE 

(a) Polynomial roughness model (Ra) 0.82665 0.68336 0.67521 7.57% 9.97% 

(a) Power-law roughness model (Ra) 0.747994 0.559496 0.55389 8.75% 11.8% 

(a) Polynomial Machining vibration(Vb) 0.89478 0.80063 0.79549 0.47% 13.9% 

(b) Polynomial roughness model (Ra) 0.82676 0.68353 0.67398 7.57% 9.95% 

(b) Power-law roughness model (Ra) 0.749639 0.56204 0.554858 8.76% 11.8% 

(a)Based on cutting parameters (spindle speed, cutting depth, and feed rate). 

(b) Based on cutting parameters and machining vibration. 

RMSE: Root mean square error; MAPE: Mean absolute percentage error. 

 

(a) (b) 

Figure 12. Comparisons of the predicted and measured values: (a) surface roughness and (b) 

machining vibration. 

4.3.2. Vibration Model Based on Cutting Parameters 

Using the regression coefficients in Table 3, the vibration level induced in the machining can be 

related to the cutting parameters in terms of the following form. 

 f× n × a × 102.6- f × n × 104.2- f×a ×10 6.3- 

n ×a ×103.21a ×10  n × 104.29 105.18- V

p
10-10-

p
6-

p
-6

p
-3-6-3



 60.2b
 (12) 

 

Table 3. Regression parameters of the vibration prediction model. 

Parameters Coefficients 
Standard 

Deviations 
p-Value 

Intercept −5.18010-3 3.10510-3 9.65510-2 

Spindle speed (n) 4.29010-6 9.65010-7 1.35010-5 

Cutting depth (ap) 2.60310-3 3.39210-3 4.43510-1 

Depth  speed (apn) 3.21010-6 8.52010-7 2.14010-4 

Depth  feed (apf) −6.30010-6 2.41010-6 9.13310-3 

Feed  speed (fn) −4.20010-10 3.23010-10 1.93110-1 

Depth  speed  feed (ap n f) −2.60010-10 4.18010-10 5.37110-1 

As listed in Table 3, the p-value of spindle speed and its interaction with cutting depth are far 

less than 0.05, which demonstrates the significant influences on the vibration level of the machining 

system in the modeling of machining vibration. Figure 8 shows that the predicted values are in 

good agreement with the measured values. According to Table 2, there is a significant correlation 

between the predicted and measured values, with R-square and adjusted R-square of ~0.80. The 

average percentage of prediction accuracy for all testing data is about 86.1% with an RMSE of 4.7%. 
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This indicates that machining vibration can be appropriately estimated from the cutting parameters 

by using this model. 

4.3.3. Surface Roughness Model Based on Cutting Parameters with Machining Vibration 

In this case, the machining vibration was incorporated with cutting parameters in regression 

analysis to derive the mathematical model for estimating surface roughness. Based on the 

regression coefficients in Table 4, Ra is expressed as 

b
8-8-

-4-5-5
a

V ×0.372f× n × a × 104.75+ f × n × 103.3-

 f× a ×10 2.6-n ×a×3.710 - a n × 109..17 0.225 R





p

ppp295.0
 (13) 

Table 4. Regression parameters of the nonlinear polynomial model. 

Parameters Coefficients Standard Deviations p-Value 

Intercept 2.25410-1 4.97410-2 9.33010-6 

Spindle speed (n) 9.17010-5 1.60010-5 3.08010-8 

Cutting depth (ap) 2.95410-1 5.40810-2 1.21010-7 

Depth  speed (apn) −3.70010-5 1.40010-5 7.92910-3 

Depth  feed (apf) −2.60010-4 3.89010-5 2.19010-10 

Feed  speed (fn) −3.30010-8 5.16010-9 5.79010-10 

Depth  speed  feed (ap n f) 4.75010-8 6.67010-9 1.36010-11 

Vibration (Vb) 3.72110-1 1.043 7.21710-1 

In this case, the determination coefficients (i.e., R-square and adjusted R-square) between the 

predicted values and measured values are around 0.67. It is found that the input variables 

associated with the cutting parameters have significant influence on surface roughness, with a small 

p-value < 0.05; however, the effect of machining vibration is insignificant. The average percentage of 

prediction accuracy for all testing data is ~90.05% with an RMSE of 7.57%, and this shows that the 

surface roughness can also be predicted with good accuracy based on the cutting parameters and 

the measured vibration level in machining. 

In addition, the surface roughness was also modeled by power law model, as follows. 

(1) Surface roughness model based on cutting parameters 

) f  × n  × 0.04552(a   R -0.401320..6363620..152955
pa  (14) 

(2) Surface roughness model based on cutting parameters with machining vibration 

) V  × f  × n  × 0.09804(a   R 0.0606
B

-0.365990..5436850..136115
pa  (15) 

In Table 2, the R-square and adjusted R-square for the two power law models are ~0.55 and the 

average percentage of prediction accuracy is ~88% with an RMSE of 8.87%. Comparisons of the 

statistical parameters clearly indicate that polynomial models show better prediction performance 

in modeling the surface roughness than power law models. 

4.4. Neural Network Analysis 

In the neural network analysis, data collected from machining tests were divided into three 

groups, in which 70% of datasets are randomly selected for neural network training, 15% for testing, 

and the remaining 15% for validation. The architecture of the network includes one input layer, one 

hidden layer, and one output layer. The ANN modeling was conducted using multi-layered 

perception (MLP) by Statistica Neural Networks software [40]. The prediction models of surface 

roughness were first created based on the cutting parameters that include spindle speed, feed rate, 

and axial depth of cutting as neurons in input layers. Then, the vibration level of machining was 

included in the input layer to show the effect of spindle vibration on the machined quality. The 

surface roughness and vibration amplitude can be the output neuron to be determined in the output 
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layer. Other network parameters, such as learning rate, number of neurons in the hidden layer, 

iteration times, and error function, are obtained by trial and error. 

After many attempts, different ANN models are selected for comparison by observing the best 

ANN performance and the correlation coefficient. In this case, four models with better performance 

were selected, as listed in Table 5. The ANN models are labeled with the number of neurons in each 

layer, and the number of neurons in the hidden layer is optimized. For example, model MLP 3-12-1 

has 1, 3, and 12 and neurons in the output, input, and hidden layers, respectively. The models with 

four input neurons—MLP 4-15-1 and MLP 4-22-1—were optimized with 15 and 22 neurons in the 

hidden layer, respectively. Further, Table 5 shows the sensitivity level of constructed ANN input 

parameters. The larger the value, the less influence this parameter has on the output parameter; 

conversely, the smaller the value, the greater is the influence. It is found that in models MLP4-15-1 

and MLP 4-22-1 with four input variables (three cutting parameters and machining vibration), the 

spindle speed has the largest sensitivity values among the parameters. 

Table 5. Sensitivity level of the input variables of the selected neural network models. 

ANN Model 
Sensitivity Levels 

Spindle Speed Feed Rate Cutting Depth Vibration Level 

MLP 3-12-1 29.22 12.73 12.13 - 

MLP 3-13-1 28.02 24.40 11.97 - 

MLP 4-15-1 71.22 16.71 12.58 31.16 

MLP 4-22-1 61.68 27.94 15.20 8.67 

The statistical values for the ANN model, correlation coefficient (R), RMSE, and MAPE are used 

as the basis for determining the performance of the neural network, as summarized in Table 6. The 

value of R represents the agreement extent between the predicted values and measured values. The 

values of R for the models MLP 3-12-1 and MLP 3-13-1 within the training, validation, and testing 

data are in the range 0.9285–0.9693. For neural models with an additional variable (machining 

vibration), higher values of R are found in the range of 0.9611 to 0.9785. Figure 13 shows the 

comparison of measured and predicted data of the surface roughness for all data, which indicate 

that high agreements of the prediction results with a correlation coefficient are achieved by neural 

network models. 

Table 6. Statistical values of neural network models. 

Dataset 
Training Dataset Validation Dataset  Testing Dataset 

R RMSE MAPE R RMSE MAPE R RMSE MAPE 

ANN Model ANN models based on cutting parameters (three input variables) 

MLP 3-12-1 0.968 3.31% 4.25% 0.929 5.82% 7.90% 0.932 4.77% 6.86% 

MLP 3-13-1 0.969 3.24% 4.21% 0.958 4.31% 5.93% 0.947 4.14% 5.91% 

ANN models based on cutting parameters and vibration level (four input variables) 

MLP 4-15-1 0.978 2.72% 3.53% 0.973 4.02% 4.92% 0.976 2.87% 3.96% 

MLP 4-22-1 0.975 2.70% 3.56% 0.961 4.13% 5.06% 0.976 3.02% 4.35% 

R: Correlation coefficients; RMSE: Root mean square error; MAPE: Mean absolute percentage error. 
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Figure 13. Comparison of the target and output values of the surface roughness for all data. 

For the ANN models MLP 3-12-1 and MLP 3-13-1, which were derived from cutting parameters 

only, the average percentage prediction accuracy of all datasets is approximately 94.9% and 95.4%, 

respectively. Both models have RMSE values of 4.0%. Although for models MLP 4-15-1 and MLP 

4-22-1—which were modeled considering the effect of machining vibration—the average percentage 

prediction accuracy of all datasets is approximately 96.2% and 96.1%, respectively, and the RMSE 

values is ~3.0%. The comparison of the performance of four models indicates that surface roughness 

can be well predicted based on the proposed ANN models. Further comparisons of the RMSE and 

MAPE values listed in Table 6 indicate that the prediction accuracy can be increased if the spindle 

vibration in machining was also fed in the prediction models (MLP 4-15-1 and MLP 4-22-1), which 

have less RMSE values compared with the models based on only the three cutting parameters. It is 

observed that among the presented neural network models, the model (MLP 4-15-1) with four 

variables in the input layer and 15 neurons in the hidden layer shows better performance in the 

predictions of the surface roughness for all testing data as compared with other models. 

Further, in comparison with the regression models, the neural network modeling based on 

cutting parameters with machining vibration shows better accuracy in predicting machined surface 

quality. 

4.5. Validation of the Models 

Previous models with better performances were selected for further validation with 

comparisons of the measurements and prediction of the surface roughness through independent 

machining tests. The machining tests were conducted with the same tooling conditions on the 

milling machine used in the previous tests. The details of the cutting parameters, measured surface 

roughness, and the predicted values are listed in Table 7. The vibration levels assessed in the 

machining and the surface morphologies of the workpieces are illustrated in Figure 14. 
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Table 7. Details of the cutting parameters, measured surface roughness, and predicted values for model validation. 

Input Variables 

Measured Roughness 

(µm) 

Predictions of Surface Roughness 

Spindle Speed 

(rpm) 

Cutting Depth 

(mm) 

Feed Rate 

(mm/min) 

Vibration 

Levels 

Multiple Regression Model Artificial Neural Network Model 

Model #1 Model #3 MLP 3-13-1 MLP 4-15-1 

Predicted 

Value (µm) 
Error (%) 

Predicted Value 

(µm) 
Error (%) 

Predicted Value 

(µm) 
Error (%) 

Predicted 

Value (µm) 
Error (%) 

3000 0.70 900 0.013 0.529 0.469 11.26 0.470 11.09 0.483 8.78 0.488 7.80 

3000 0.80 900 0.014 0.526 0.478 9.22 0.479 9.02 0.488 7.24 0.490 6.83 

4000 1.00 1200 0.017 0.513 0.502 2.24 0.502 2.21 0.493 3.86 0.489 4.69 

4000 1.30 1200 0.019 0.565 0.521 7.76 0.521 7.73 0.527 6.66 0.496 12.25 

6000 0.60 1800 0.024 0.58 0.494 14.84 0.495 14.62 0.539 7.05 0.603 3.89 

6000 1.30 1200 0.038 0.704 0.681 3.27% 0.683 3.04 0.762 8.20 0.749 6.38 

8000 0.90 1600 0.033 0.67 0.717 6.98 0.715 6.75 0.717 6.99 0.740 10.50 

8000 1.30 1600 0.039 0.689 0.795 15.35 0.793 15.14 0.822 19.29 0.762 10.53 

6500 1.00 1300 0.035 0.581 0.669 15.09 0.670 15.27 0.606 4.32 0.587 1.03 

7500 1.35 2250 0.030 0.781 0.677 13.28 0.677 13.31 0.710 9.11 0.712 8.87 

7500 1.45 2250 0.032 0.775 0.701 9.56 0.701 9.53 0.731 5.66 0.739 4.63 

7500 1.55 2250 0.033 0.787 0.725 7.93 0.725 7.90 0.740 6.01 0.748 4.99 

 Average 9.73 Average 9.63 Average 7.78 Average 6.86 
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Figure 14. Morphologies of the machined surfaces under various cutting parameters. 

The statistical values of multiple regression models (#1 and #3) and the ANN models (MLP 3-13-1 and 

MLP 4-15-1) are presented in Table 8 for performance comparison; they are evaluated based on correlation 

coefficients, RMSE, and MAPE between the measured and predicted roughness values. As listed in Table 

8, the ANN models show better prediction ability and accuracy than the regression models. In particular, 

the ANN model MLP 4-15-1 predicts the surface roughness with more than 93% accuracy and the least 

values of RMSE (4.89%) and MAPE (6.86%). This validation clearly indicates that the machining vibration 

plays a crucial role in affecting the surface quality of the workpiece in the milling operation. The inclusion 

of the machining vibration as the input variable in the modeling of the surface roughness indeed enhances 

the prediction performance. As a whole, the ANN model demonstrates superior performance in the 

prediction of the surface roughness of machined parts when compared with conventional models. 

Table 8. Comparisons of the statistical values of the prediction models. 

Model Type  R RMSE MAPE 

(a) Regression model #1 0.8157 6.91% 9.73% 

(b) Regression model #3 0.8172 6.85% 9.63% 

(a) ANN MLP 3-13-1 0.8766 5.78% 7.77% 

(b) ANN MLP 4-15-1 0.9065 4.89% 6.86% 

(a) Based on cutting parameters (spindle speed, cutting depth and feed rate). (b) Based on cutting 

parameters and machining vibration 

4.6. Contour Surface Milling Test 

To illustrate the effectiveness of the presented model in predicting surface roughness in machining 

process, another milling test was conducted for part contour surface, as shown in Figure 15. The 

machining the part contour was carried out using 4-tooth end mill with diameter of 10 mm under the 

following cutting parameters; cutting depth 1.0 mm, spindle speed 6000 rpm, and feed rate 1800 mm/min. 

The vibrations of spindle tool along the milling path were assessed using the accelerometer mounted on 

the spindle housing. Surface roughness at specific points was measured, respectively, as listed in Table 9. 

It is found that the surface roughness at different point scatters from 0.526 to 0.584 m, with mean value 

and deviation (0.5528 ± 0.0249), and the vibration level induced in machining also changes with the 

feeding of cutter with mean value and deviation (0.024467 ± 0.002817). Experimental results indicate that 

vibration of spindle tool is one of the factors contributing the variation of the surface roughness at 

different points although machined under the same cutting conditions. The surface roughness at the 

selected points can also be predicted by ANN model, in which the vibration level along with cutting 

parameters are fed in prediction model. The average prediction accuracy of the surface roughness by 

ANN model MLP 4-15-1 is ~96% compared with the measured values. The validation tests clearly verify 

the superior performance of the ANN models in predicting the surface roughness in end milling 



Appl. Sci. 2020, 10, 3941 20 of 22 

operation. This can further be used as the prototype to develop on-line surface roughness recognition 

system in future work, as shown in Figure 16. Machining vibration assessed from accelerometer can be 

displayed in different ways such as the time domain with vibration level in RMS or frequency domain 

with vibration level as function of frequency. Besides, mathematical models derived from regression 

analysis or ANN model can be implemented in system for predicting the surface roughness in process. 

 

 
  

Figure 15. Contour surface milling sample for verification of predictive model. 

Table 9. Predictions of surface roughness in end milling process by ANN. 

Points 

Spindle 

Speed 

(rpm) 

Cutting 

Depth 

(mm) 

Feed Rate 

(mm/min) 

Machining 

Vibration (g) 

Measured 

Roughness 

(m) 

Predicted 

Value (m) 
Error 

1 6000 1.0 1800 0.0239 0.524 0.540 3.00% 

2 6000 1.0 1800 0.0256 0.563 0.550 2.25% 

3 6000 1.0 1800 0.0234 0.547 0.535 2.27% 

4 6000 1.0 1800 0.0280 0.586 0.545 7.02% 

5 6000 1.0 1800 0.0261 0.571 0.551 3.47% 

6 6000 1.0 1800 0.0198 0.526 0.485 7.88% 

Average 0.02446 0.553 0.534 4.31% 

 

Figure 16. Monitoring system for machining vibration and prediction of surface roughness. 

5. Conclusions 

This study presents the prediction models for estimating the surface roughness of machined parts 

under various cutting conditions from low-speed to high-speed stable machining. The prediction modes 

were developed using multiple regression analysis and an ANN modeling approach. According to the 

analyzed results, the following conclusions were drawn. 
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1. The response surface graphs indicate that the surface roughness and machining vibration level are 

affected to different extents by the combined effect of the spindle speed and cutting depth. Overall, 

roughness scatters at lower values under a lower cutting depth and spindle speed. Further, vibration 

amplitude increases with an increase in spindle speed and cutting depth; in particular, vibration 

apparently increases with an increase in the spindle speed from 3000 to 8000 rpm, with a correlation 

coefficient (R = 0.92–0.96). Overall within the whole testing conditions, the influence of feed rate on 

machining vibration and roughness cannot be clearly demonstrated. However, current results reveal 

that for machining with given cutting depth, the lower level of cutting speed and lower feed rate 

generated lower roughness than the higher speed and fast feed rate. Such interaction effect of spindle 

speed and feed rate on machining vibration is more significant than on surface roughness. 

2. Both the surface roughness and machining vibration can be modeled with nonlinear quadratic forms 

based on cutting parameters and their interactions via multiple regression analysis. 

3. In the ANN modeling of surface roughness, predictive models (MLP 3-12-1 and MLP 3-13-1) based 

on three cutting parameters—spindle speed, cutting depth, and feed rate—have high correlation 

coefficients (R ≅ 0.9285 to 0.9693) between the predicted and measured values within training, 

validation, and testing data. The average percentage prediction accuracy of all datasets is about 

94.5%. For neural models (MLP 4-15-1 and MLP 4-22-1) with additional variables (machining 

vibration), a higher correlation coefficient (R) is found in the range of 0.9611 to 0.9785. The average 

percentage prediction accuracy of all datasets is about 96.2%. 

4. In the final validation of the predictive models through another machining test, the ANN models 

were found to demonstrate more accurate predictions of surface roughness. Based on the RMSE and 

MAPE values, the neural model MLP 4-15-1 with four input variables (three cutting parameters and 

machining vibration) shows a higher average prediction accuracy of 93.14% than that of the model 

MLP 3-13-1 with three cutting parameters. This result clearly verifies that the prediction accuracy can 

be increased if the spindle vibration in machining was also fed in the prediction algorithm. 

The predictive model can be the base to develop an on-line surface roughness recognition system, in 

which cutting parameters and spindle tool vibration assessed in machining can be fed into system to 

estimate the surface roughness in process. Besides, these models can be effectively used to optimize the 

cutting conditions for rough or finish machining with better surface quality and low machining vibration. 
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