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Abstract: Multidimensional nuclear magnetic resonance (NMR) spectroscopy is one of the most
crucial detection tools for molecular structure analysis and has been widely used in biomedicine and
chemistry. However, the development of NMR spectroscopy is hampered by long data collection
time. Non-uniform sampling empowers rapid signal acquisition by collecting a small subset of data.
Since the sampling rate is lower than that of the Nyquist sampling ratio, undersampling artifacts
arise in reconstructed spectra. To obtain a high-quality spectrum, it is necessary to apply reasonable
prior constraints in spectrum reconstruction models. The self-learning subspace method has been
shown to possess superior advantages than that of the state-of-the-art low-rank Hankel matrix
method when adopting high acceleration in data sampling. However, the self-learning subspace
method is time-consuming due to the singular value decomposition in iterations. In this paper,
we propose a fast self-learning subspace method to enable fast and high-quality reconstructions.
Aided by parallel computing, the experiment results show that the proposed method can reconstruct
high-fidelity spectra but spend less than 10% of the time required by the non-parallel self-learning
subspace method.

Keywords: nuclear magnetic resonance spectroscopy; non-uniform sampling; self-learning subspace;
matrix factorization; acceleration

1. Introduction

Multidimensional nuclear magnetic resonance (NMR) spectroscopy plays an important role in the
fields of biomedicine and chemistry [1–3]. However, long data acquisition time [4–6] has to be solved,
and one of the effective approaches to reduce the time is to acquire partial data with non-uniform
sampling (NUS) [7–12]. To obtain a full spectrum, reconstruction needs to incorporate priors, and
the most common ones are sparsity [13,14] and low rankness [15–17]. Sparsity [18–20] assumes the
spectrum has few non-zero values in the spectrum but will not be satisfied at low-intensity broad
peaks [21]. The low rank approach transforms the time-domain NMR signal (called free induction
decay (FID)) into a Hankel matrix, and explores the low rankness of this matrix. Therefore, it is also
called a low-rank Hankel matrix (LRHM) method. Since the peak width will not affect the rank,
LRHM offers better reconstructions for these challenging peaks, even though low-intensity peaks,
referring to small singular values in the matrix rank minimization, may be compromised or even lost
in LRHM reconstructions [22]. This problem also exists in general low-rank matrix reconstruction and
has been alleviated by introducing the truncated nuclear norm (TNN) to preserve the small singular
values in the reconstruction [23].
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Recently, we proposed a self-learning subspace (SLS) [24] method to mitigate the spectra
degradation of LRHM at high acceleration factors. Beyond the singular values, we found that
the subspace of the Hankel matrix corresponds to spectral peaks, and the TNN provides one approach
to incorporate the subspace information. With the help of TNN, we establish the concept of signal
subspace reconstruction in the low-rank Hankel matrix. The signal space is divided into two subspaces,
an obvious, easily-restored strong signal subspace and an unstable, hard-to-estimate weak signal
subspace [24]. This method includes two iterations loops: The outer loops update the signal subspace
with prior constraints, and the inner one performs updates of signal reconstruction under the given
subspace. Experimental results show that SLS achieves as high-quality reconstructions as does LRHM,
and notably, produces better reconstructions of low-intensity peaks [24].

The SLS approach, however, requires intensive computations of singular value decomposition
(SVD). In the iterative reconstruction, SVD will be called approximately 100 to 200 times, which is very
time-consuming. In addition, since the computational complexity of SVD is proportional to the three
power of the matrix size [25], the lengthy SVD computations may be impractical due to the data size
and dimensions rapidly increasing in high-dimensional NMR spectroscopy.

In this work, we propose an accelerated algorithm for the state-of-the-art self-learning subspace
method by introducing matrix factorization [26,27] to avoid SVD. Results on synthetic and realistic
NMR data show that compared with the SLS, the fast SLS approach saves considerable time without
sacrificing spectrum quality and enables faster reconstruction with parallel computing.

2. Related Work

Mathematically, a 1D FID can be modeled as the finite sum of damping exponential functions as
follows [28–31]:

xn =

J∑
j=1

(
A jeiφ j

)
e
−

n∆t
τ j ein∆tω j , (1)

where J is the number of spectral peaks, ∆t is the time interval, and A j,φ j, τ j,ω j are the amplitude,
phase, decay time, and frequency of the jth spectral peak, respectively. If there are N sampled data
points, the sampled signal can be represented as a vector x = [x1, x2, x3, · · · , xn, · · · , xN]

T, where ·T

represents vector transpose.
The reconstruction model of the LRHM method is [21]:

min
x
‖Rx‖∗ +

λ
2
‖y−Ux‖22 (2)

where R denotes an operator converting the undersampled FID x into a Hankel matrix Rx,U is an
undersampling operator, ‖·‖∗ represents the matrix nuclear norm as the sum of singular values, ‖·‖2
represents the l2 norm that measures data consistency, and λ is a regularization parameter that balances
the low rankness and the data consistency.

However, the LRHM model may sacrifice low-intensity peak recovery, which is related to small
singular values. As we know, the information of a spectral peak includes its intensity, central frequency,
and line shape. The nuclear norm only focuses on intensity. In order to utilize the extra information,
including central frequency and line shape, hidden in the Hankel matrix, the SLS method was
proposed [24]. The SLS method built a subspace framework to separate the original signal into a
relatively strong signal subspace and a weak one. Then, peaks that lie in the weak subspace are
particularly protected by enforcing them to have prior spectral peak shapes. The self-learning subspace
reconstruction model is expressed as [24]:

min
x

PΩ(x) +
λ
2
‖y−Ux‖22, (3)
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where:
PΩ(x) = ‖Rx‖∗ − Tr

(
AH

ΩRxBΩ

)
, (4)

where Ω represents strong signal space, Tr(·) is the trace function and defined as the sum of the main
diagonal elements, AΩ ∈ Cr×P and BΩ ∈ Cr×Q are two matrices formed by the first r columns of the
left and right unitary matrixes, satisfying SVD Rx = AΛBH. The function PΩ(x) sums up the least
r singular values. We can estimate AΩ and BΩ from the initial solution x0, and we can improve the
accuracy of the subspace as it iterates continuously. For example, the subspace AΩ,l, BΩ,l of the lth outer
iteration is more accurate than the initial estimate. Machine learning typically includes supervised
learning, semi-supervised learning, and unsupervised learning, which use all, partial, and non-labeled
samples, respectively. Transduction learning [32] is another type that predicts specific test samples by
learning specific training samples.

The proposed method belongs to unsupervised learning since no labeled samples or specific test
samples are used. The singular value decomposition is adopted to learn the subspace of the Hankel
matrix. The self-learning process means no prior or label information is provided in advance, and we
only learn the subspace space information from the initial time-domain signal that is filled with zeros,
and we update this information from the intermediate reconstruction. In practice, prior or label spectra
are not accessible in the biomedical magnetic resonance experiment. Thus, unsupervised self-learning
is a reasonable choice in this application.

Nevertheless, the application of SLS to higher dimensional NMR spectroscopy experiments is
impeded by the expensive computation of SVD demanded by computing the nuclear norm term.
Now, to reduce the computation time, we will introduce the matrix factorization and derive the
fast algorithm.

3. Methods

For a given matrix, which can be factorized into two matrices, P ∈ Cm×r and Q ∈ Cn×r (size r is
unlimited), its nuclear norm can be computed as the following [33,34]:

‖X‖∗ = min
P,Q

1
2

(
‖P‖2F + ‖Q‖

2
F

)
s.t.X = PQH, (5)

where ‖·‖F denotes the Frobenius norm of a matrix and ·H means conjugate transpose.
In this work, we propose a self-learning subspace matrix factorization (SLSMF) method to

accelerate the state-of-the-art SLS method:

min
x,P,Q

1
2

(
‖P‖2F + ‖Q‖

2
F

)
− Tr

(
AH

Ω,lRxBΩ,l
)
+
λ
2
‖y−Ux‖

2
Fs.t.Rx = PQH, (6)

It requires no SVD computations in the inner loop, which greatly speeds up the reconstruction.
Next, we will solve the optimization problem of Equation (6). The augmented Lagrange form of

Equation (6) is:
L(x, P, Q, D) = min

x,P,Q
max

D
1
2‖P‖

2
F +

1
2‖Q‖

2
F − Tr

(
AH

Ω,lRxBΩ,l
)
+

λ
2 ‖y−Ux‖

2
2 +

〈
D,Rx − PQH

〉
+

β
2‖Rx − PQH

‖
2
F,

(7)

where D is a dual variable used to improve the convergence speed of the algorithm, 〈·, ·〉 is the inner
product in the Hilbert space of matrices, and β > 0 is the regularization parameter.

The proposed algorithm consists of two main loops. The outer one iteratively updates the signal
subspace AΩ,l, BΩ,l to determine the best subspace under the prior information. Once the subspace is
obtained, in the inner one, in order to solve Equation (7), it is converted into four sub-problems by
adopting alternating direction methods of multipliers (ADMM) [35]:
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xk+1 = arg min
x

L(x, Pk, Qk, Dk)

Pk+1 = arg min
P

L(xk+1, P, Qk, Dk)

Qk+1 = arg min
Q

L(xk+1, Pk+1, Q, Dk)

Dk+1 = Dk +
(
Rxk+1 − Pk+1QH

k+1

) , (8)

(1) Fixing Pk, Qk, Dk, xk+1 is obtained by solving:

min
x

λ
2
‖y−Ux‖

2
2 − Tr

(
AH

r RxBr
)
+

〈
D,Rx − PQH

〉
+
β

2
‖Rx − PQH

‖
2
F. (9)

The solution is:

xk+1 =
(
λUH

U + βRH
R

)−1
λUHy + βRH

PkQH
k +

AH
Ω,lRxBΩ,l −Dk

β


. (10)

(2) Fixing xk+1, Qk, Dk, Pk+1 is obtained by solving:

min
P

1
2
‖P‖2F +

〈
D,Rx − PQH

〉
+
β

2
‖Rx − PQH

‖
2
F. (11)

The solution is:
Pk+1 =

(
βRxk+1 + Dk

)
Qk

(
βQH

k Qk + I
)−1

. (12)

(3) Fixing xk+1, Pk+1, Dk, Qk+1 is obtained by solving:

min
Q

1
2
‖Q‖2F +

〈
D,Rx − PQH

〉
+
β

2
‖Rx − PQH

‖
2
F. (13)

The solution is:
Qk+1 =

(
βRxk+1 + Dk

)H
Pk+1

(
βPH

k+1Pk+1 + I
)−1

. (14)

(4) Fixing xk+1, Pk+1, Qk+1, the solution of Dk+1 is:

Dk+1 = Dk +
(
Rxk+1 − Pk+1QH

k+1

)
. (15)

The alternating iterations in Equation (8) stop if the number of iterations k reaches the maximal
number K, or the normalized successive difference ηk+1 = ‖xk+1 − xk‖/‖xk‖ is smaller than that of a
given tolerance ηtol. The pseudocode of this reconstruction algorithm is shown in Table 1.

A 2D NMR spectrum contains two dimensions, one of which is the direct dimension t2, and the
other is the indirect dimension t1 on which almost all the experiment time is spent. In the case of the
2D NMR spectrum, reconstruction can be performed on the 1D reconstruction of each slice one by one.
Thus, it is possible to accelerate the computation by making use of the proposed parallel architecture.
In detail, the reconstruction tasks for different slices are assigned to multiple processing cores [36] and
can be computed simultaneously (Figure 1).



Appl. Sci. 2020, 10, 3939 5 of 14

Table 1. The reconstruction algorithm of self-learning subspace matrix factorization (SLSMF).

Initialization: Input y, R,U, set outer maximal iterations times L = 5, convergence condition ηtol = 10−6,
and maximal inner number of iterations K = 103. Initialize the solution x0 = UTy, the dual variable D0 = 1,
the number of iterations k = 0, and η0 = 1.
Main:
While (ηl ≥ ηtol) or (l < L), do:

(1) Estimate AΩ,l and BΩ,l from the first r columns of Al and Bl, such that Rxl = AlΛBH
l

(2) While (ηk ≥ ηtol ) or (k < K), do;

(a) Update xk+1 according to Equation (10);
(b) Update Pk+1 according to Equation (12);
(c) Update Qk+1 according to Equation (14);
(d) Update Dk+1 according to Equation (15);
(e) Compute ηk+1 = ‖xk+1 − xk‖/‖xk‖ and k← k + 1 ;

End while;

(3) Set k = 0 ,ηk = 1 and l← l + 1 ;
(4) Update xl+1 ← xk+1 , ηl+1 = ‖xl+1 − xl‖/‖xl‖;

End for;
Output: The reconstructed FID x̂← xl+1 .
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Figure 1. Schematic diagram of parallel computing of NMR spectroscopy reconstruction. Note: The
blue dot represents the sampled data point and the white one represents unsampled data point; “Core
j” represents the jth CPU (Central Processing Unit) core of a multi-core CPU for parallel computation.
The non-uniform sampling (NUS) is performed along the indirect dimension (t1), and each 1D vector
(in red rectangle) located at each data point in the direct dimension (t2) can be reconstructed separately.

4. Experiments and Results

We compare the proposed SLSMF method with the other three state-of-the-art NMR reconstruction
methods, including the LRHM, the LRHM with matrix factorization (LRHMF) [26], and the SLS. Spectra
reconstruction experiments were conducted on both synthetic 1D NMR spectra (Figure 2) and real
2D NMR spectra (Figures 3–5). All reconstruction algorithms were performed using MATLAB 2017b
(Mathworks Inc., Natick, MA, USA) on a computational server with two E5-2650v4 CPUs (12 core/CPU)
and 160 GB RAM.

The important spectra parameters, including two 2D spectra of small, large, and intrinsically
disordered proteins and one 2D spectrum of solid NMR, are listed in Table 2. More details can be
found in the experimental descriptions below.
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Figure 5. Reconstructed solid NMR spectra with 15% NUS data. (a) The fully sampled spectrum; (b–e)
reconstructed spectra using the LRHM, LRHMF, SLS, and SLSMF, respectively. Note: The contours of
spectra are at the same level.

Table 2. Important parameters of experimental 2D spectra.

Type Protein Molecular Weight Spectrometer Frequency Sampling Type Date Point
(t2×t1) References

HSQC GB1 ~8.0 kDa 600 MHz Full 1466× 170 Figure 3

TROSY Ubiquitin ~8.6 kDa 800 MHz Full 683× 128 Figure 4

Solid NMR ~68 Da 900 MHz Full 249× 150 Figure 5

Note: The NUS and reconstruction are performed on the indirect dimension, which is noted as t1.

The 2D 1H-15N HSQC spectrum of GB1 was prepared with following conditions: The GB1 object
sample is 2 mM U-15N, 20%-13C GB1 in 25 mM PO4, pH 7.0 with 150 mM NaCl, and 5% D2O. Data were
collected using a phase-cycle selected HSQC (hsqcfpf3gpphwg in Bruker library) at 298 K on a Bruker
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Avance 600 MHz spectrometer using a room temp HCN TXI probe, equipped with a z-axis gradient
system. The fully sampled spectrum consists of 1676 × 170 complex points; the direct dimension (1H)
has 1676 data points, while the indirect dimension (15N) has 170 data points.

The 2D 1H-15N best-TROSY spectrum of ubiquitin was acquired at 298.2 K temperature on an
800 MHz Bruker spectrometer and was described in a previous paper [37]. The fully sampled spectrum
consists of 683 × 128 complex points; the direct dimension (1H) has 683 data points, while the indirect
dimension (15N) has 128 data points.

The solid-state NMR spectrum was acquired from an imidazole sample at room temperature on a
21.1 T Bruker AVANCE-III spectrometer. The sample was spinning at 60 kHz inside a 1.3 mm probe.
The 2D 1H-1H double-quantum spectrum was recorded using a symmetry-based R1225 pulse sequence
with a recycle delay of 5 s. Data were recorded by co-adding 16 transients with 300 t1 increments.
The number of fully sampled data points in the indirect dimension is 150.

In addition, to quantify the reconstruction error, a relative l2-norm error (RLNE) defined as:

RLNE(x̂) =
‖x̂− x‖2
‖x‖2

(16)

where x̂ is the reconstructed signal and x is the fully sampled signal, is adopted.

4.1. Reconstruction of Synthetic 1D NMR Spectra

The synthetic 1D NMR spectrum is generated according to Equation (1), and its specific parameter
settings are shown in Table 3. The total number of data points is 512, and 31 complex data points are
acquired (means 6% NUS data). Then, simulated Gaussian noise with a mean of zero and a standard
deviation of 0.005 is added to the FID. Here, the maximum value of the noise is lower than that of the
lowest spectral peak.

Table 3. Parameter settings of the synthetic 1D NMR spectrum.

Parameters
Peaks ID

1 2 3 4 5

Amplitude (A j) 0.3 0.4 0.5 1 1

Damping factor (τ j) 0.01 0.02 0.03 0.04 0.08

The reconstruction results are shown in Figure 2. Under very limited sampled data, the first
and second reconstructed spectral peaks are severely damaged in LRHM low-fidelity reconstructions,
while the SLS and the proposed method reconstruct the spectral peaks with high fidelity (see the
supplementary materials Table S1 for the correlation of each peak in Figure 2). In Table 4, it is
clearly shown that the robustness of the proposed method is consistent with SLS, and the Pearson
correlation coefficient is much higher than LRHM at low intensity spectral peaks. The proposed
method can accelerate the reconstruction of the best method, SLS, without compromising the spectra
quality. Thus, it is correct and with the expectation that no significant difference between Figure 2f,
the reconstructed spectra using SLSMF, and Figure 2e, the reconstructed spectra using SLS. Accordingly,
LRHMF only accelerates the algorithm of LRHM, thus Figure 2c,d should be the same. In addition, in
the supplementary materials, we displayed more reconstruction results of traditional methods with
moderate-fidelity (Figure S2) and high-fidelity (Figure S3) from 100 simulation data trails and the
correlation of their corresponding spectral peaks. Since the 1D reconstruction is fast (several seconds)
for all compared methods, there is no need to compare the computation time.
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Table 4. Statistics of peaks correlations and standard deviations.

Method
Peak ID

1 2 3 4 5

LRHM 0.597 ± 0.384 0.859 ± 0.203 0.944 ± 0.090 0.991 ± 0.012 0.997 ± 0.004

LRHMF 0.600 ± 0.384 0.857 ± 0.203 0.943 ± 0.090 0.991 ± 0.012 0.997 ± 0.004

SLS 0.935 ± 0.183 0.974 ± 0.152 0.992 ± 0.039 0.999 ± 0.003 0.999 ± 0.001

SLSMF 0.936 ± 0.181 0.974 ± 0.152 0.993 ± 0.035 0.999 ± 0.002 0.999 ± 0.001

Note: Peak intensity correlations and error bars for the reconstructed spectra when 6% of data are acquired. The
error bars are the standard deviations of correlations over 100 sampling trials. The numerical form of the table is
C±D, where C is the mean of correlation, and D is the standard deviation.

4.2. Reconstruction of 2D NMR Spectra

Reconstruction experiments with realistic NMR are conducted on 15% NUS 2D 1H-15N HSQC
spectra of GB1, 20% NUS 2D 1H-15N best-TROSY spectra of ubiquitin, and 15% NUS 2D 1H-1H
solid-state spectra.

Figure 3a, Figure 4a, and Figure 5a are fully sampled 2D 1H-15N HSQC spectra of GB1, 2D 1H-15N
best-TROSY spectra of ubiquitin, and 2D 1H-1H solid-state spectrum, respectively. Results show that
all methods can reconstruct a majority of spectral peaks well. However, some peaks in best-TROSY
experiments shown by arrows in Figure 4b,c are lost in LRHM and LRHMF. LRHM and LRHMF
also produce some pseudo peaks in the reconstructed GB1 and solid spectra, as shown by arrows in
Figure 3b,c and Figure 5b,c. By contrast, SLS and SLSMF methods provide faithful reconstructions.

What is more, Figure 6 illustrates that the proposed method performs better in reconstructing
low-intensity peaks. For example, LRHM and LRHMF weaken the reconstructed spectral peak near
125 ppm (Figure 6b–1,c–1) ), while SLSMF obtains the spectrum with peak intensity and line shape
close to the fully sampled spectrum (Figure 6e–1).Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 
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and SLSMF, respectively. Note: (a-1)–(a-3) are fully sampled spectra of 1D traces, and their locations in
the corresponding fully sampled spectrum are marked with a dotted line in Figures 3–5.
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Regression analyses (Figures 7–9) also exhibit that the SLSMF outperforms LRHM and LRHMF.
It is shown that the SLSMF method gets a higher correlation than LRHM and LRHMF, especially in
low-intensity peaks (Figure 7e–h, Figure 8e–h, and Figure 9e–h). Besides, lower RLNEsby SLSMF
can be achieved than in LRHM and LRHMF, and RLNEs of SLSMF decrease much faster (Figure 10).
For instance, we can see that after the update of the subspace, the RLNEs of SLSMF drop almost
linearly, implying that the introduction of the signal subspace can help reconstruct high-fidelity spectra
more quickly and accurately with the same sampling rate. The above observations indicate that in
terms of reconstruction time and reconstruction quality, the proposed approach permits considerable
improvements from the SLS and low-rank Hankel matrix methods.
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Figure 8. Peak intensity correlation between fully sampled spectrum and reconstructed spectra on the
2D 1H-15N best-TROSY spectrum of ubiquitin. (a–d) are correlation plots of all peaks using LRHM,
LRHMF, SLS, and SLSMF, respectively. (e–h) are correlation plots of low-intensity peaks using LRHM,
SLS, and SLSMF, respectively.

From Figure 11, we can see that compared to the SLS approach, the proposed method significantly
speeds up the reconstruction time about 2–4 times (Figure 11a). If equipped with parallel computing
architecture, the acceleration in the reconstruction time of SLSMF would be striking. Take the GB1
experiment as an example: With the parallel computing SLSMF, the time spent on reconstructing
spectra only requires 4.6% of the computation of the SLS without parallelism. However, if the data
dimension is too small, parallel computing is not recommended because it must pay for a certain
time on switching the parallel pool, i.e., a mechanism used to control multiple processing cores in
software. For example, for the reconstruction of the solid-state spectra, using the LRHMF only takes
about 22 s, but it takes 26 s under parallel computing, whereas switching the parallel pool spends
about 24 s. We also ran methods on the personal computer and the computation time, as reported in
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Figure 12. The calculation time with the personal computer also confirms that the proposed method
can accelerate the reconstruction and can further reduce the time by parallel computing.
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Figure 12. The computation time of spectra reconstruction on a personal computer. (a,b) computation
time of spectra reconstruction without and with parallel computing, respectively. Note: All
reconstruction algorithms were performed using MATLAB 2017b (Mathworks Inc., Natick, MA,
USA) on a personal computer with 1.80 GHz 4 cores CPU and 8 GB RAM. The switching on and off

parallel pool takes an average of 24 s.

In the fast NUS NMR, high-fidelity reconstruction of the spectrum is most important, followed
by the rest of other performances, such as the computation time. Our work is to design a new
algorithm to reduce the computation time while achieving the best spectra. To emphasize our proposed
method’s advantages in both reconstruction quality and speed, in Table 5 we list the advantages and
disadvantages of the comparison method.

Table 5. Performance comparison of various methods.
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