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Abstract: One of the most delicate stages of an evolutionary algorithm is the evaluation of the
goodness of the solutions by some procedure providing a fitness value. However, although there are
general rules, it is not always easy to find an appropriate evaluation function for a given problem.
In the biological realm, today, there is a variety of experimental methods under the name of microbial
screening to identify and select bacteria from their traits, as well as to obtain their fitness. In this paper,
we show how given an optimization problem, a colony of synthetic bacteria or bacterial agents is
able to evaluate the fitness of candidate solutions by building an evaluation function. The evaluation
function is obtained simulating, in silico, a bacterial colony conducting the laboratory methods
used in microbiology, biotechnology and synthetic biology to measure microbial fitness. Once the
evaluation function is built, it is included in the code of the genetic algorithm as part of the fitness
routine. The practical use of this approach is illustrated in two classic optimization problems. In silico
routines have been programmed in Gro, a cell programming language oriented to synthetic biology,
and can easily be customized to many other optimization problems.

Keywords: evolutionary computing; fitness function evaluation; bioinspired algorithms; synthetic
biology

1. Introduction

Genetic algorithms (GAs) were introduced by Holland [1] and popularized by Goldberg [2],
representing at present one of the most popular optimization techniques in the field of Artificial
Intelligence (AI). A GA is a stochastic optimization method inspired by the principles of natural
selection [3] stated by Darwin’s evolutionary theory in 1859. The search for the optimum is carried out
through the simulation of the survival of the most valid solutions or “individuals” in an environment
or "problem space". For three decades now, GAs have been used in optimization and search problems,
with many applications in engineering, market research, operations development, biology, sociology,
game theory, computer science, etc. [4].

A GA comprises the following steps [5]. (a) The algorithm begins (t = 0) randomly generating a set
of solutions (individuals). (b) Afterwards, these solutions are evaluated, and are scored according to
the goodness of the solutions (environmental adaptation), obtaining a fitness value. (c) Next, selection
is conducted, i.e., those solutions with the highest fitness value will have the highest probability of
surviving, and therefore of reproducing by passing one or more copies to the next generation (gene
propagation). (d) Subsequently, the solutions passing to the next generation (t + 1) are modified
through genetic mechanisms. The solutions are encoded in strings or vectors mimicking chromosomes,
and sub-strings representing the genes for which the sequence is changed. These variations are
the result of mutations and/or genetic crossover, mechanisms that are present in the organisms and
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simulated in the GAs via genetic operators. (e) Finally, and with the new population of solutions,
steps (b)–(d) are repeated, over and over again, until an optimal solution is found.

However, GA’s ability to successfully solve an optimization problem depends largely on a
problem-specific procedure to obtain a fitness value of the solutions. In accordance with Reference [6],
we have to distinguish when a GA is used in an artificial life model or is applied in order to solve
a practical problem, e.g., in engineering. In the first case, the fitness of an agent, e.g., a virtual ant,
digital organism, robot, etc., is given by its execution and interaction with the environment; whereas,
in the second situation, a fitness function, i.e., an objective or evaluation function, is required to get
the individual fitness. In the latter case, the evaluation function will use the values coded in the
chromosome as a function argument. Usually, each optimization problem has its own fitness function,
although there are some general rules. There are classic optimization problems, such as MAXONE,
knapsack problem, scheduling, etc., where the fitness function is known. In other problems, for instance
in classification problems, the fitness function can be obtained from error measurements. Likewise,
in problems where we have information about the evolutionary surface, and therefore constraints,
the fitness is calculated with the inverse of the sum of the variables. Similarly, in design problems
and in multiobjective problems, the fitness is provided by cost and Pareto functions respectively,
etc. Nevertheless, despite these general rules, finding a good procedure for calculating the fitness
constitutes part of the state-of-the-art in the designing process of a GA.

At present, evolutionary experiments with microorganisms, and in particular with bacteria, are a
common practice in microbiology, biotechnology and synthetic biology. In these experiments with
bacteria, one of the decisive stages is the evaluation of fitness [7]. However, the most common methods
of measuring bacterial fitness in the laboratory involve the same kind of bacterial features that are
used for their screening, i.e., its identification and isolation. Usually, the classical screening methods
are based on some physiological traits of bacteria. Bacterial screening is based on both static features,
e.g., shape, Gram-staining, and dynamic traits, e.g., motility, antibiotic resistance, enzyme expression,
growth rate, etc. Based on some of these traits, microbial fitness is evaluated by applying different
experimental strategies. For example, fitness measures can be obtained from the Malthusian growth
rate estimated from the bacterium growth curve [8], or from the cost to bacteria of being resistant
to antibiotics [9]. Nevertheless, there are more elaborated methods for calculating bacterial fitness.
For example, the authors of Reference [10] calculate fitness from the difference between the cost and
benefit resulting from the level of expression of a protein in the Lac operon.

Over the last few decades, synthetic biology [11,12] has made it possible to design microorganisms
that behave like a computer. In this paper, we show how synthetic biology could be a source of
inspiration for the design of some steps in evolutionary algorithms. Nowadays, advances in synthetic
biology have allowed the programming of bacteria in order for these organisms to carry out specific
tasks. It is assumed that bacteria are agents [13], which, once programmed, receive a physical or
chemical input, process it at a biochemical level under genetic control, and provide an output.

In evolutionary computing, there are evolutionary algorithms in which a human individual carries
out the evaluation and selection of individuals, i.e., solutions. These kinds of algorithms are referred to
as interactive evolutionary or aesthetic selection algorithms. In this paper, we introduce a different
approach. We show how a colony of synthetic bacteria or bacterial agents is able to indirectly evaluate
the fitness of solutions in a genetic algorithm by building an evaluation function. The evaluation
function is obtained by simulating a bacterial colony in silico, emulating the laboratory methods used
in microbiology, biotechnology and synthetic biology to measure microbial fitness. Once the evaluation
function is found, it is included in the code of the genetic algorithm as part of the fitness routine.
In silico routines have been implemented in Gro, a cell programming language [14–16] oriented to
simulation experiments in synthetic biology. The usefulness of the procedure is illustrated in two
classic optimization problems. The scripts of the designed routines are available (Supplementary
Material) [17] and can be easily customized to many other optimization problems.
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Microbial screening are laboratory methods for the detection of specific features in microorganisms,
for example, bacteria. In summary, we design in silico routines simulating colonies of synthetic bacteria.
Based on bacterial colonies, we emulate their homologues in vivo, conducting those experimental
laboratory protocols developed to measure microbial fitness in silico. Using such procedures, which are
referred to in the laboratory as screening methods, it is possible to obtain an evaluation function and
then evaluate the candidate solutions in a genetic algorithm.

2. Materials and Methods

In the present work, we solved two optimization problems with evolutionary algorithms, with the
novelty that the evaluation functions were designed by colonies of synthetic bacteria. In order to study
their reliability in the evaluation fitness step, the evaluation functions were included in the code of
two evolutionary algorithms: a Simple Genetic Algorithm (SGA) [18] and a Simple Microbial-Genetic
Algorithm (SMGA). The latter algorithm [19] includes a microbial tournament operator (Figure 1).
It is a special type of crossover in which the individuals are selected in pairs, their fitness values are
compared and the highest fitness individual passes a copy of a randomly selected segment to the worst
evaluated individual. In this paper, we found it of interest to perform experiments with the SMGA
algorithm, since recombination is somewhat more similar to the mechanism of bacterial conjugation
than single-point recombination of the SGA.
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Figure 1. Crossover operator in Simple Genetic Algorithm (SGA) (left) and Simple Microbial-Genetic
Algorithm (SMGA) (right) evolutionary algorithms. In both algorithms i, j are the parental chromosomes.
In SGA i*, j* are the recombinant chromosomes replacing the parental ones. In SMGA, j* is the
recombinant chromosome.

As mentioned above, the main contribution of this work was that in both evolutionary algorithms
(Figure 2), the fitness function was obtained externally by a colony of synthetic bacteria. Bacteria are
agents that were programmed in a cellular programming language, in particular, Gro 4.0 [14],
incorporating the resulting fitness functions into the code of the evolutionary algorithms.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 22 

 

Figure 2. SGA (left) and SMGA (right) evolutionary algorithms. 

2.1. Microbial Screening Methods in Silico: Procedures and Implementation 

Microbial screening procedures in silico are algorithms simulating biological mechanisms and 

experimental protocols that are usually applied in the wet lab. In order for a screening routine to be 

capable of detecting and evaluating the fitness of a given candidate solution, we will need a feature 

which value increases according to the suitability of the solution. In our case, the size of the colony 

(i.e., the number of synthetic bacteria), the total expression of a reporter protein, e.g., green 

fluorescent protein (GFP), etc. In this work, we designed three screening procedures (Figure 3) based 

on the following bacterial features: (a) bacterial resistance to an antibiotic, (b) processing of lactose 

(i.e., bacteria use this sugar as an energy source) by Lac operon and (c) chemotaxis, i.e., the ability of 

bacteria to move to a food source or other attractive substance. 

 

Figure 3. Screening procedures developed in Gro language. (a) Antibiotic resistance, (left) detail of 

an antibiogram and (right) its simulation. (b) Lac operon, (left) A MacConkey agar plate with a 

bacterial culture of microbes fermenting lactose and (right) its simulation. (c) Chemotaxis, (left) 

Pseudomonas aeruginosa swarming motility and (right) its simulation. 

In the following, we describe the basis of the three screening routines, whereas the details of the 

scripts, i.e., their implementation in the Gro language, are described in the Appendix: 

Figure 2. SGA (left) and SMGA (right) evolutionary algorithms.

Using Gro language, we coded the scripts of the in silico microbial screening procedures and the
main synthetic bacteria features. The bacterial colony executes a program written in this language
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parallel to each bacterium, allowing the collective colony behaviors to be explored from individual
cell specifications. Specifically, the simulator can model different biological phenomena, such as cell
division, chemotaxis and signal diffusion, among other physiological phenomena [14,15]. An extended
version of Gro has recently been published allowing the design and recombination of plasmids [16].
Although the former feature is not used in our simulation experiments, we have used this version
because the execution of the scripts is slightly faster than the original version of Gro.

2.1. Microbial Screening Methods in Silico: Procedures and Implementation

Microbial screening procedures in silico are algorithms simulating biological mechanisms and
experimental protocols that are usually applied in the wet lab. In order for a screening routine to
be capable of detecting and evaluating the fitness of a given candidate solution, we will need a
feature which value increases according to the suitability of the solution. In our case, the size of the
colony (i.e., the number of synthetic bacteria), the total expression of a reporter protein, e.g., green
fluorescent protein (GFP), etc. In this work, we designed three screening procedures (Figure 3) based
on the following bacterial features: (a) bacterial resistance to an antibiotic, (b) processing of lactose
(i.e., bacteria use this sugar as an energy source) by Lac operon and (c) chemotaxis, i.e., the ability of
bacteria to move to a food source or other attractive substance.
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Figure 3. Screening procedures developed in Gro language. (a) Antibiotic resistance, (left) detail of an
antibiogram and (right) its simulation. (b) Lac operon, (left) A MacConkey agar plate with a bacterial
culture of microbes fermenting lactose and (right) its simulation. (c) Chemotaxis, (left) Pseudomonas
aeruginosa swarming motility and (right) its simulation.

In the following, we describe the basis of the three screening routines, whereas the details of the
scripts, i.e., their implementation in the Gro language, are described in the Appendix A:

• Antibiotic resistance: This selection method is the usual one in a laboratory of microbiology,
synthetic biology, etc., since it is easy to apply and resistance is known for a multitude of
antibiotics [20]. The implementation in Gro (Appendix A, Figure A1) of this screening procedure
simulates a randomly distributed signal emulating an antibiotic (Figure 4), being received by
all synthetic bacteria. Since in Gro there is a command to cause the death of bacterial cells,
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this command is used to simulate the effect of the antibiotic on those bacteria that do not satisfy
a particular logical condition. Thus, all synthetic bacteria with the desired phenotype will be
resistant to the signal, while the rest of the bacteria will die.

• Lac Operon: The genes of bacteria are organized into operons [21]. When nutrient levels in
the environment change, the genes of the bacteria vary in their expression in response to those
changes. For example, the operon lactose (Lac) changes its state depending on the levels of
lactose sugar in the environment. In the experimental realm, the Lac operon is one of the most
commonly used in synthetic biology experiments, contributing to the controlled and effective
implementation of diverse biotechnological processes. At the cellular level, the Lac operon is in
charge of regulating the synthesis of the molecular machinery necessary for lactose degradation.
Therefore, its presence in the bacteria is an advantage that can be used in a selection procedure.
The Lac operon implementation in Gro (Appendix A, Figure A2) is inspired by the logic that
regulates the operon (Figure 5), not including the regulating elements of the operon. In this work,
we have only simulated the conditions under lacZ effector acts on the operon: in the absence
or low levels of glucose and presence of lactose. In the Gro routine, such conditions will be
subrogated to the logical condition of the optimization problem to be solved. Therefore, if the
synthetic bacterium does not meet the logical condition of the problem, the bacterium will not
hold the operon, and therefore will not be able to degrade the lactose. In addition, as the bacterial
growth rate is related to the amount of available nutrients, bacterial colonies unable to degrade
lactose will have a lower fitness value. In this screening procedure, besides the logic described
above, the different metabolic reactions that occur during the degradation of the main carbon
source were also taken into account. For this reason, three reactions have been defined that will
regulate the system: (a) obtaining glucose from biomass by the catalytic action of an enzyme, (b)
lactose degradation by lacZ obtaining glucose and galactose and (c) degradation of galactose by
an enzyme.

• Chemotaxis: Although this biological phenomenon is not usually part of a laboratory experimental
protocol, we have designed a screening procedure based on this bacterial behavior. Chemotaxis
consists of directional locomotion of bacteria towards a source of a chemical stimulus.
This movement is made possible by a structure called a flagellum. A motor drives the flagellum,
consisting of a rotor and stator. Motor assembly was simulated in Reference [22], regulating
its assembly via the temporal expression of specific operons [23,24]. Gro routine (Appendix A,
Figure A3) is inspired by the logic [25] of the molecular mechanism involved in bacterial chemotaxis
(Figure 6) and in which Che proteins are the regulators of chemotaxis. The mechanism is not
simulated in detail, but the function that simulates it is based on the messenger role of CheY
protein. In short, the phosphorylation levels of this protein depend on signals from extracellular
receptors for nutrients such as sugars or amino acids. A higher phosphorylation of CheY implies
a more effective binding to the motor complex, allowing it to rotate effectively, and thus causing
the bacteria to move in a specific direction. If CheY is not sufficiently phosphorylated then the
binding to the motor complex is not effective, which translates into erratic movement by the
bacterial cell. At a logical level, CheY checks the levels of certain nutrients, making the motor
work at higher levels of phosphorylation. This behavior is modeled as follows: When the levels
of an ‘attractive’ substance increase, then the levels of phosphorylation will allow an effective
movement or ‘run’. Conversely, when attractor levels decrease, then CheY phosphorylation
declines, and then an erratic movement of the bacterium or ‘tumble’ is induced. Since the presence
of a motor system represents a bacterial advantage by allowing its access to an area with an
abundance of nutrients, the bacterial growth rate is related to the concentration of attractant
substance that bacteria receives. Therefore, only those synthetic bacteria that incorporate the
genes necessary to synthesize the motor machinery will succeed in the selection (Appendix A,
Figure A3).
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Figure 4. In our simulation experiments, when a bacterium satisfies a condition, it is equivalent in
synthetic biology to a bacterium carrying a gene of interest (GOI). This means that the protein it
synthesizes is useful in industry, clinics, etc. When GOI is expressed by synthesizing a protein, then the
antibiotic resistance gene is also expressed, for example, tetracycline resistance (TetR). As a result,
bacteria that do not meet the condition will not express the resistance gene and will die in the presence
of the antibiotic. The genome of the bacterium shows the promoter (P) and terminator (T).
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Figure 5. In simulation experiments, when a bacterium satisfies a given condition, then the bacterium
will bear the lactose (Lac) operon, being able to metabolize sugar and lactose. The figure displays
an elementary model of the Lac operon: The lacZ gene synthesizes an enzyme named galactosidase,
i.e., a protein with catalytic ability, transforming lactose into glucose and galactose. If the medium in
which the bacteria is present has enough levels of glucose, then the Lac operon is inhibited by the action
of a repressor known as LacI. Other genes in the operon are lacY involved in the entrance of lactose
into the bacterium, and lacA. The genome of the bacterium shows the promoter (P) and terminator (T).

The above routines were used to obtain the evaluation function, which in turn was used in the
evolutionary SGA and SMGA algorithms. Next, and in order to study the usefulness of the method
proposed to obtain the fitness function, the evolutionary algorithms were applied to solve two instances,
one of the 0/1 knapsack problem and the other of the 2-SAT (2-satisfiability) problem. In the following,
we describe the general methodology applied to obtain the evaluation function in each of the previously
cited optimization problems.

2.1.1. Method for Obtaining the Evaluation Function in the 0/1 Knapsack Problem

Let x be the value of a knapsack, xi the value of a set of items selected for the knapsack and yi

the fitness value for xi, the value for which is estimated by applying a method of screening in silico.
The procedure involves increasing x to a pre-set increase, ∆x. Once an initial value of x has been set,
for instance equal to 2.0 (Figure 7), the size of the synthetic bacteria colony grows according to an
exponential or Malthusian growth model [26]. As the number of bacteria increases, so do the levels
of a synthesized reporter protein, i.e., the green fluorescent protein (GFP). As the colony grows, in a
given time, t, the procedure records the average value of GFP/volume. The fitness value, yi, for each
value of xi is calculated by multiplying the colony size, i.e., the number of bacteria, by the average
GFP/volume. As a result, a scatter plot of the points (x1, y1), (x2, y2), . . . , (xn, yn) is obtained, and the
fitness regression line y = a + bx is fitted by the least squares method (Appendix A, Figure A4).
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Figure 6. Bacterial chemotaxis. (A) When the S signal is present in the medium, S binds to the MCP
(methyl-accepting chemotaxis proteins) receptor leading to CheY phosphorylation (CheY-P). Following,
CheY-P will bind with the engine’s FliM protein, resulting in the clockwise (CW) motor rotation,
which causes a random movement of the bacteria or bacterial ‘tumbling’. (B) On the other hand, in the
absence of the S signal, CheY is defosphorylated, leading to the counterclockwise (CCW) motor rotation
and therefore, the bacterium moves in a straight direction or ‘swimming’.
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Figure 7. Flowchart of 0/1 knapsack problem implemented in Gro language. The routine records three
variables of the optimization problem: weight (q.w), value (q.v) and maximum capacity or weight (q.W)
of the knapsack. Next, the algorithm calls the screening routine, saving the output in a csv file once the
time of the simulation reaches the imposed limit (ts). Afterwards, the q.v value is updated (i.e., 3 units)
and in the case that the resulting value is greater than the sum of all the knapsack values (q.vt), then
the Gro routine ends. Otherwise, when the condition is not satisfied, the new q.v is evaluated by the
screening method again. Eventually, the output file will contain the value of a set of items q.v (i.e., xi)
and its fitness (i.e., yi) for all the possible combinations.

The described procedure was carried out twice, obtaining two regression lines. In one case, we will
obtain the fitness function (regression line) for those instances that meet the knapsack weight restriction,
i.e., the weight is less than the maximum capacity set (w < W), whereas in the other, we obtain the
fitness function (regression line) for those instances that do not fulfill the constraint, and therefore,
w > W. In order to obtain the first regression line, we will select in the register of the script in Gro
(Figure 7; Appendix A, Figure A5) any desired value of q.w (total value of a set of items) that complies
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with q.w < q.W (maximum capacity restriction), i.e., q.w = 10, while to obtain the second regression
line, we will set a value of q.w, i.e., q.w = 109, that satisfies q.w > q.W.

2.1.2. Method for Obtaining the Evaluation Table in the 2-SAT (2-Satisfiability) Problem

The procedure involves evaluating the Boolean expression for all possible values, 0 or 1, of the
variables (Figure 8). The fast computation of the 2n (n is the number of variables) expressions is
possible because synthetic bacteria multiply exponentially and the computation is in parallel. Starting
with an initial value of 0 of all variables {0, 0, . . . , 0} of the Boolean expression, the size of the synthetic
bacterial colony grows according to an exponential or Malthusian law, registering in the colony for
a certain time, t, the average value of GFP/volume. Afterwards, for a particular combination of 0s
and 1s, i.e., {0, 0, . . . , 0}, {1, 0, . . . , 0}, . . . , {1, 1, . . . , 1}, the value of the function y = f (outcome) is
calculated, where outcome is the output of the Boolean expression. The levels of protein reporter,
i.e., the GFP, depend on the value of y, synthesizing GFP according to a Hill equation. Every certain
time, t, the total amount of GFP is recorded, multiplying the average value of GFP/volume by the
number of bacteria, i.e., the size of the colony. As a result, a fitness table with two main columns is
obtained: one of the columns with the number of variables with state 0 or 1 satisfying the expression,
with each row of the table representing the value 0, 1, 2, . . . , 2n, and the other column with the fitness
value, i.e., the total amount of GFP. Figure A6 (Appendix A) displays the script in Gro implementing
the described procedure.
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Figure 8. Flowchart of the 2-SAT (2-Satisfiability) problem implemented in Gro language. A list (gene)
whose elements are the variables of the Boolean expression φ is initialized as (0, 0, 0, 0, 0). At this step,
c (gene in decimal notation), which is a variable used for controlling the update of gene, is set to 0 along
with the time t. Thereafter, the routine calls the screening method in order to calculate the fitness for
the gene. Note that the flowchart shares the topology with the knapsack instance (Figure 7) but with
c as the control variable. In the output of the routine in Gro, the gene value is the number of variables
that satisfy expression φ while the total amount of GFP or fitness is given by multiplying the mean GFP
fluorescence by the colony size (total number of synthetic bacteria).

2.2. Simulation Experiments

In order to test the screening procedures, we performed simulation experiments with the two
classic optimization problems mentioned above.

First, we solved an instance of the 0/1 knapsack problem (Table 1). For this purpose, once a
microbial screening procedure has been chosen, in the script in Gro we set the optimization problem
instance and restrictions, i.e., maximum weight or maximum tolerated capacity of the knapsack. Next,
the script is executed in the Gro simulator, obtaining the evaluation function y = f (x). Afterwards,
the function is implemented in the step that evaluates the fitness in the genetic algorithm. From the
results obtained, and for each of the screening procedures, we plotted the evolutionary surfaces.
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Table 1. 0/1 knapsack instance.

Profit 40 35 18 4 10 2

Weight 100 50 45 20 10 5

In summary, for the general protocol, it is like the chromosomes were evaluated in a microbial
screening experiment with a colony of bacteria. Therefore, the simulated procedure is equivalent
to performing a laboratory experiment in which the fitness of the solution is obtained. Once the
DNA segment encoding the solution is inserted in a plasmid that is introduced into a bacterium,
the bacterium duplicates, growing the bacterial colony. The microbial screening protocol evaluating
the bacterial (solution) fitness will be applied in this colony.

Secondly, we solved an instance of the 2-SAT (2-satisfiability) problem. Similarly to the 0/1
knapsack example, we selected the microbial screening procedure, setting the optimization problem
instance, etc., in the script in Gro. For instance, a logical proposition written in formal mode:

φ = (X1 ∨X3)∧ (X1 ∨¬X4)∧ (X2 ∨¬X4)∧ (X2 ∨¬X5),

is written in Gro language according to the syntax defined for the logical functions as:

φ = (OR(X[1])(X[3])) ∗ (OR(X[1])(not(X[4]))) ∗ (OR(X[2])(not(X[4]))) ∗ (OR(X[2])(not(X[5])))

Once the evaluation table is obtained, it is included in the genetic algorithm. Since in the genetic
algorithm a chromosome encodes for the values (0 or 1) of the Boolean variables, once the values are
replaced in the Boolean expression, its fitness value is evaluated with the evaluation table obtained
from the Gro screening routine. In order to assess the similarity of all the solutions obtained, a cluster
analysis was conducted for each screening procedure, using the seaborn data representation module in
Python 3.6.

From simulation experiments previously conducted, we found the proper values of the parameters
in SGA and SMGA. Specifically, we found that the best number of generations was 100 and the best
population size, i.e., number of chromosomes, was 24, being the same values for both algorithms.
Conversely, the optimal mutation rate varies depending on the chosen algorithm, being 0.03 for SGA
and 0.035 for SMGA. In the case of SGA, the recombination rate was set to 0.75.

In order to find the proper values of the parameters of both SGA and SMGA, we tested different
ranges for mutation rate and number of generations (Figure 9). We found that the best number of
generations was 100, although for the SMGA with the antibiotic-based screening method (Figure 9B),
the optimal number of generations was around 25. The population size, i.e., number of chromosomes,
was set to 24 for both algorithms. Conversely, the optimal mutation rate varies depending on the
chosen algorithm, being 0.03 for SGA and 0.035 for SMGA. In the case of the SGA, the crossover rate
was set to 0.75.

2.3. Scalability and Run Time Complexity

One of the possible drawbacks of using a colony of synthetic bacteria to build the evaluation
function of an optimization problem is scalability. Thus, the colony grows exponentially and in some
class of optimization problems, this property of the bacterial agents can lead to a high computational
cost. In the case that a high number of bacterial agents are needed to solve a NP hard problem,
the result will be an exponential consumption of resources, e.g., memory or execution time. In addition,
the version [16] of Gro runs the simulations faster than the original version beta.4 [14]. For instance,
in preliminary studies, we found that in non-programmed bacteria, i.e., without holding a script to be
executed, the time it takes for the colony to reach a size of 10,000 bacterial agents differs considerably
(Table 2).
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Figure 9. Screening for the search of the optimal combination of a mutation rate and number of
generations values. Experiments conducted for the SGA (A) with antibiotic screening procedure and
(C) screening based on the Lac operon. Experiments performed for the SMGA (B) with antibiotic
screening procedure and (D) with the Lac operon screening method.

In order to prevent the above scenario in each of the screening in silico experiments, we set a
time limit or maximum simulation time, ts, which was set at a value equal to 150. This procedure
restricts the maximum time of a simulation experiment. In consequence, we avoided the excessive
consumption of computer resources and an excessively long execution time. In previous experiments,
it was observed that the length of 150 min (simulated time) is enough to build a satisfactory fitness
function in several repetitions of the screening experiment (Figures 7 and 8). In each version of
Gro [14,16], we evaluated the total run time of two instances of a SAT problem with different complexity.
In particular, we evaluated a 2-SAT proposition:

φ = (OR (X[0]) (X[2])) + (OR (X[0]) (not(X[3])))+
(OR (X[1]) (not(X[3]))) + (OR (X[1]) (not(X[4])))

and 3-SAT proposition:

φ = (OR (X[0]) (not(X[4])) (not(X[2]))) + (OR (X[2]) (not(X[2])) (X[3]))+
(OR (X[3]) (not(X[4])) (X[4])) + (OR (not(X[0])) (X[4]) (X[3]))+
(OR (X[2]) (X[3])) + (OR (not(X[0])) (X[4]) (X[3]))+
(OR (not(X[3])) (not(X[0])) (not(X[4]))) + (OR (X[1]) (not(X[5])) (X[2]))+
(OR (X[5]) (X[4]) (not(X[2]))) + (OR (X[0]) (not(X[4])) (X[1]))+
(OR (X[2]) (X[1]) (not(X[4]))) + (OR (not(X[2])) (X[0]) (not(X[5])))+
(OR (not(X[0])) (not(X[5])) (X[3])) + (OR (not(X[4])) (not(X[5])))

The experiments were conducted on a computer with an Intel Core i7-3770 CPU at 3.40 GHz with
16 GB of RAM.
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Table 2. Simulation times in the Gro simulator.

Gro Version Real Time Simulated Time

[14] 35 min 248 min

[16] 4 min 278 min

3. Results

The results obtained in the experiments with the genetic algorithms (Figures 10 and 11) opens
the possibility of evaluating fitness in evolutionary algorithms by applying a methodology inspired
by synthetic biology techniques. In consequence, the proposed screening procedures are helpful for
the fitness evaluation solving optimization problems with genetic algorithms. For example, in the 0/1
knapsack problem, with the microbial screening procedure, we obtained the following fitness function:

Fitness (yi) =

{
w ≤W, 352.37 xi − 142.71
w > W, 29.96 xi + 30.49

where xi is the value of a set of items selected for the knapsack, w is the weight of the knapsack and W
is the maximum weight capacity. Finally, the function was included in the genetic algorithm (in our
case, written in Python language).
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under (a) SGA with antibiotic screening procedure, (b) SMGA with antibiotic screening procedure,
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(e) SGA with chemotaxis screening procedure and (f) SMGA with chemotaxis screening procedure.
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Figure 11. Performance graph (average fitness per generation) for the 2-SAT problem obtained under
(a) SGA with antibiotic screening procedure, (b) SMGA with antibiotic screening procedure, (c) SGA
with Lac operon screening procedure, (d) SMGA with Lac operon screening procedure, (e) SGA with
chemotaxis screening procedure and (f) SMGA with chemotaxis screening procedure.

In the SAT optimization problem, the evaluation function is a table (Table 3) that includes the
number of satisfied clauses and a fitness average score.

Table 3. In silico screening output for the 2-SAT optimization problem.

Satisfied Clauses Gene Fitness (yi)

3 {0, 0, 0, 0, 0} 1669.2

3 {0, 0, 0, 0, 0} 1793.75

3 {0, 0, 0, 0, 0} 1848.92

2 {0, 0, 0, 0, 1} 290.837

2 {0, 0, 0, 0, 1} 282.283

2 {0, 0, 0, 0, 1} 319.313

1 {0, 0, 0, 1, 0} 36.958

1 {0, 0, 0, 1, 0} 31.8889

In general, screening methods in which the selection is based on an antibiotic or the Lac operon
are more effective in evaluating fitness than the screening inspired by bacterial chemotaxis.

Regarding the two evolutionary algorithms, we can conclude that there are no differences in
the evolutionary convergence between the SGA algorithm and the SMGA algorithm. According to
Figures 10 and 11, we can conclude that the kind of crossover operator does not affect the evolution of
the population, and in consequence, the algorithm performance.
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In the 0/1 knapsack problem, the evolutionary surfaces (Figure 10) obtained are very similar to each
other, not depending on the screening procedure. However, the most efficient screening method is the
one that simulates the Lac operon. In general, we observed a surface that rises from the solution with
weight 0 and profit 0 to the optimal solution for the instance with weight 100 and profit 55. Afterwards,
the surface underwent a sharp decrease, once the capacity of the knapsack was exceeded (maximum
tolerated weight of 100). Therefore, it can be concluded that the proposed screening procedures are
capable of generating a representative evolutionary surface (Figure 12) for the addressed problems.
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evaluating fitness with (A) Lac operon screening procedure (B) antibiotic screening procedure and
(C) chemotaxis screening procedure.

In the simulation experiments carried out to solve the 2-SAT problem (Figure 11), the screening
methods were evaluated as in the previous 0/1 knapsack problem, concluding that screening based on
antibiotic selection is the most suitable procedure. In order to evaluate the similarity of the solutions,
a cluster analysis was carried out with the solutions obtained for each screening procedure. According
to the cluster or conglomerate analysis shown in Figure 13, we can conclude that chemotaxis procedures
do not adequately select the optimal solutions, i.e., those that satisfy the 4 clauses, from the remaining
solutions. However, when the screening method was based on an antibiotic or Lac operon, the optimal
solution was detected and therefore discriminated from the remaining solutions.

When fitness was evaluated with the antibiotic-based screening method (Figure 13), then it can
be observed that there was a sharp change in the standardized fitness values or scores between the
optimal solution and the remaining solutions. Thus, the resistance of the bacteria to the antibiotic
was only achieved for the optimal Boolean propositions. When the screening procedure was based
on antibiotic resistance, then the simulation with synthetic bacteria fairly well captured the type of
selection that an antibiotic does with real bacteria. In such a case, all antibiotic-sensitive bacteria die,
with only the antibiotic-resistant ones surviving. Furthermore, the results obtained with the screening
procedure based on the Lac operon (Figure 13) also reflect the molecular mechanisms involved in
this form of genetic regulation, which is proper to bacteria. In this case, we observed that the fitness
values obtained with this screening method vary gradually, depending on the number of clauses that
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fulfill the proposition. The explanation behind this fact is that our simulations captured the logic of
the operon, since the gradual adjustment of the output with respect to the input is required in an
operon genetic network, e.g., the Lac operon. In the Lac operon network, different responses were
generated depending on the range of lactose concentrations and the relative presence of its activators
or inhibitors.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 22 
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Figure 13. Spectra of solutions for the 2-SAT problem solved with the SGA, evaluating fitness with
screening tools based on (A) the chemotaxis screening procedure, (B) the Lac operon screening procedure
and (C) the antibiotic screening procedure.

In the study that we conducted of the run time as a function of complexity, we have shown how
it is feasible to find evaluation functions by conducting tests in triplicate by defining a time limit, ts,
avoiding the exponential use of resources in the computer. Table 4 shows the total simulation time for
all variable combinations in triplicate with ts = 120 (Figure 8). Therefore, we conducted 96 tests per
simulation experiment for the 2-SAT and 3-SAT problems in each version of the Gro simulator.

Table 4. Run times as a function of complexity and Gro version.

Gro Version 2-SAT 3-SAT

[14] 4 min 8 min

[16] 3 min 6 min

4. Discussion

In general, the results obtained allow us to conclude that the main goal of the work has been
successfully achieved. The possibility of simulating the microbial screening procedures used in the



Appl. Sci. 2020, 10, 3936 15 of 21

laboratory of microbiology, biotechnology or synthetic biology to obtain a fitness evaluation function,
opens up interesting possibilities in evolutionary computing. The simulation of a colony of synthetic
bacteria, in which we applied a method of screening in silico, also allows us to explore and generate a
representative evolutionary surface for the problem addressed. Consequently, the present approach
could be useful both in evolutionary computation and in synthetic biology experiments.

It is interesting to note that in SGA and SMGA, there are no differences in their evolutionary
convergence to an average maximum fitness. However, we can observe that when recombination is
simulated with the Harvey algorithm [19], then the average fitness of the population is slightly higher
than the average fitness achieved by classical one-point recombination. Likewise, it is worth noting
that of the three procedures studied, the best screening procedure is the one that simulates the presence
of antibiotics, a method that constitutes one of the standard protocols in microbiology and synthetic
biology laboratories.

Nevertheless, even when the proposed method to obtain the fitness function performs satisfactorily,
the fact that it is based on the exponential growth of a bacterial colony could represent a high
computational cost. Since the Gro simulator assumes that a synthetic bacterium is a single computational
unit, then the screening routines are executed in parallel, one per bacterium. Therefore, the run-time
complexity is of the order of O(N2), with N being the number of synthetic bacteria. As the simulated
colony grows exponentially, simulations could become computationally demanding. In order to
prevent such a scenario, in each of the screening in silico experiments, the simulation time, ts, was
limited to 150 simulated minutes (in real time it is equivalent to seconds). This approach avoids the
excessive consumption of computer resources, obtaining the fitness output expected to be included in
a genetic algorithm.

However, many questions remain open for further study. For example, the effectiveness of
screening procedures depends on the nature of the optimization problem to be solved. In the case of
the 2-SAT problem, the fitness values vary gradually when the selection and evaluation of the fitness
is conducted with the Lac operon, whereas in the case of screening based on antibiotic resistance,
the fitness varies in a stepwise fashion (Figure 13B,C). Furthermore, the fitness values obtained by the
antibiotic screening method are more homogeneous in terms of score. However, the Lac operon method
yields score values that differ significantly between sequences with a different number of clauses.
Therefore, in a 2-SAT problem, the antibiotic-based screening technique is the most suitable tool to
differentiate between optimal and remaining solutions. However, if we want to identify the number of
clauses fulfilling a given sequence, screening with the Lac Operon is more efficient. Therefore, we can
conclude that the results obtained with the microbial screening procedures suggest that the selection
by antibiotic better solves the problems of discontinuous type, while the selection with the Lac operon
provides a better performance for the problems of continuous nature.

Although there are other programming languages [27] available in synthetic biology,
the implementation of screening procedures as well as the programming of synthetic bacteria are coded
in Gro language. We believe that this cellular programming language has a potential future for the
design of routines that could be later used in evolutionary algorithms. The programming in Gro will
allow for the design of new genetic operators to simulate many of the genetic features of bacteria [28].
For example, microbial DNA, expression of operons, conjugation, plasmids, etc., developing new
protocols and algorithms in the field of evolutionary computing.

Today, advances in synthetic biology represent a source of inspiration from which to develop new
algorithms in evolutionary computing. Conversely, synthetic biology finds a source of inspiration in
evolutionary computing, therefore the hybridization between the two disciplines could give rise to
interesting approaches. The present paper illustrated how from the crossing between both disciplines,
it is possible to develop new ideas with potential practical applications.

Supplementary Materials: The scripts for the microbial screening procedures described in this paper are available
online at https://doi.org/10.6084/m9.figshare.12156582.v1.
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Appendix A

Simulation experiments have been conducted using the microbial screening routines written in
Gro language. The Microbial Screening Methods In Silico (MSMIS) scripts can be downloaded from
Reference [17]. In the case of the 0/1 knapsack problem, the routines based on antibiotic, Lac operon
and chemotaxis are explained in Figures A1–A3.

However, in the 2-SAT problem, the implementation of the routines is based on a different
approach. For example, in the 0/1 knapsack optimization problem, when fitness function is obtained
based on the antibiotic resistance screening method, the procedure is implemented according to the
script shown in Figure A1. Nevertheless, for the 2-SAT optimization problem, the antibiotic resistance
screening method is implemented changing the statement 1 (Figure A1) by:

(OR (gene[0]) (gene[2])) + (OR (gene[0]) (not(gene[3]))) + (OR (gene[1]) (not(gene[3]))) +

(OR (gene[1]) (not(gene[4]))) <= 3 & get_signal(antibiotic)>0.1 :{ die()}

Likewise, in the 2-SAT optimization problem, the screening procedure based on the Lac operon
(Figure A2, statement 3) is coded with statements:

(OR (gene[0]) (gene[2])) + (OR (gene[0]) (not(gene[3]))) + (OR (gene[1]) (not(gene[3]))) +

+ (OR (gene[1]) (not(gene[4]))) > 3 & glucose <= 0 :{emit_signal(operon_lac,1)}

(OR (gene[0]) (gene[2])) + (OR (gene[0]) (not(gene[3]))) + (OR (gene[1]) (not(gene[3]))) +

(OR (gene[1]) (not(gene[4]))) > 3 & glucose>0 :{emit_signal(operon_lac,0)}

(OR (gene[0]) (gene[2])) + (OR (gene[0]) (not(gene[3]))) + (OR (gene[1]) (not(gene[3]))) +

(OR (gene[1]) (not(gene[4]))) < 4 :{emit_signal(operon_lac,0)}

Finally, in the chemotaxis screening procedure (Figure A3, statement 3), we would write:

(OR (gene[0]) (gene[2])) + (OR (gene[0]) (not(gene[3]))) + (OR (gene[1]) (not(gene[3]))) +

+ (OR (gene[1]) (not(gene[4]))) > 3 : {motion m1 m2}
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Figure A1. Antibiotic selection routine implemented in Gro language for the 0/1 knapsack problem.
The code shows q.w or weight of the knapsack and q.W, which is the maximum capacity (weight)
of the knapsack. (1) Conditional sentence of the antibiotic resistance. (2) Antibiotic signal randomly
distributed in the environment where the colony of synthetic bacteria grows.
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Figure A2. Lac operon selection routine implemented in Gro language for the 0/1 knapsack problem.
(1) Declaration of interactions between signals. The first-order reaction simulates the degradation of
biomass (b) by an enzyme (e), i.e., a protein acting as a metabolic reaction catalyst, from which the
resulting product is glucose (f). A second reaction command simulates the degradation of lactose by
lacZ (operon_lac), resulting in glucose and galactose (f_lac). The third reaction command simulates
the degradation of galactose (f_lac) by an enzyme (e). (2) Effect of glucose (f) on bacterial growth rate.
(3) Conditional sentences of the Lac operon. (4) Glucose and lactose signals are randomly distributed
in the environment where the colony of synthetic bacteria grows.

Once we have obtained the file with the points (x1, y1), (x2, y2), . . . , (xn, yn) of the evaluation
function, for example for the 0/1 knapsack problem, we must obtain the fitness function applying the
linear regression method. However, in the 2-SAT problem, this step is not required since we can use
the table obtained directly as a method to evaluate the fitness. Assume in the example that we run the
script in R:

# Reads in data file
df<-read.table(file=”C:/Users/ . . . ./Gro/knapsack.csv”,header = F, sep = “,”, dec = “.”)
attach(df)
names(df)
# Regression line: gfp = qv * m + b
fitness.model<-lm(V2 ~ V1, data = df)
summary(fitness.model)
# Plot the chart
plot( df$V1, df$V2, xlab = ”q.v”, ylab = ”GFP” )
abline(fitness.model)

Resulting in the fitting table and line regression (Figure A4). Thus, the fitness function (GFP is
the fitness) is:

GFP = 807.91 q.v − 68.98
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Coefficients:
Estimate Standard Error t value Pr(>|t|)
(Intercept) −68.989 80.577 −0.856 0.403
V1 807.918 5.959 135.585 <2e-16 ***
—
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 197.4 on 19 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.9989
F-statistic: 1.838e+04 on 1 and 19 DF, p-value: < 2.2e-16
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Figure A3. Chemotaxis selection routine implemented in Gro language for the 0/1 knapsack problem.
(1) Code displaying the function that simulates the mechanism of bacterial chemotaxis. When the
extracellular signal decreases, i.e., m2 < m1 in the Gro function, then CheY phosphorylation drops,
resulting in erratic movement of the bacterium or tumble. Otherwise, if levels of extracellular substance
increase, i.e., m2 > m1, then levels of CheY phosphorylation also rise, resulting in the bacterium
effectively moving or running. (2) Command to declare the attractive extracellular substance(s) and
its degradation (d). (3) Conditional sentence of bacterial chemotaxis. (4) Effect of the extracellular
substance on bacterial growth rate.
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Figure A5. 0/1 knapsack problem implemented in Gro language. (1) Record with the three variables
of the optimization problem: weight (q.w), value (q.v) and maximum capacity or weight (q.W) of
the knapsack. Note how the weight of the knapsacks is set lower (q.v = 10) than the maximum
tolerated weight (q.W = 100), with the initial value of the knapsacks being set in two units (q.v = 2.0).
(2) Knapsack instance. (3) Call for the screening routine, in this case, selection is conducted with
antibiotics. (4) Save the evaluation or fitness in a file “knapsack.csv”. (5) The termination condition is
met when the knapsack includes all items reaching the maximum value, but does not satisfy the weight
restriction. In the output of the routine in Gro, i.e., the points (x1, y1), (x2, y2), . . . , (xn, yn), the value of x
is the value of the knapsack (q.v), whereas y, i.e., the total amount of GFP or fitness value, is calculated
as stats.num*stats.mean.
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Figure A6. SAT problem implemented in Gro language. (1) List (gene) of which elements are the
variables included in the Boolean expression, initializing the list as {0, 0, 0, 0, 0}. (2) Boolean expression
for a 2-SAT problem. (3) Calculation of y = (outcome). (4) Conditional sentence of the antibiotic resistance.
(5) Hill function models the GFP reporter protein synthesis as a function of y value, and therefore,
the number of satisfied clauses. In the output of the routine in Gro, i.e., evaluation table, the gene value
is the number of variables that satisfy the Boolean expression (2), while the total amount of GFP or
fitness is given by stats.num*stats.average.
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