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Abstract: Assembly line balancing improves the efficiency of production systems by the optimal
assignment of tasks to operators. The optimisation of this assignment requires models that provide
information about the activity times, constraints and costs of the assignments. A multilayer
network-based representation of the assembly line-balancing problem is proposed, in which the
layers of the network represent the skills of the operators, the tools required for their activities
and the precedence constraints of their activities. The activity–operator network layer is designed
by a multi-objective optimisation algorithm in which the training and equipment costs as well
as the precedence of the activities are also taken into account. As these costs are difficult to
evaluate, the analytic hierarchy process (AHP) technique is used to quantify the importance of
the criteria. The optimisation problem is solved by a multi-level simulated annealing algorithm (SA)
that efficiently handles the precedence constraints. The efficiency of the method is demonstrated by a
case study from wire harness manufacturing.

Keywords: assembly-line balancing; multi-objective optimization; simulated annealing;
multilayer network

1. Introduction

Production line-based assembly lines are still the most widely applied manufacturing systems [1].
Assembly-Line Balancing (ALB) [2] deals with the balanced assignment of tasks to the workstations,
resulting in the optimisation of a given objective function without violating precedence constraints [3].
The efficiency of these optimisation tasks is mostly determined by the model of the manufacturing
process represented [4].

The concept of Industry 4.0 has already had a significant influence on how production and
assembly lines are designed [5] and managed [6]. The requirement of practical design at a high
automation level ensures that sensors and equipment can be integrated in a fast, secure, and reliable
way. In our research, we study how the interoperability capabilities of Industry 4.0 solutions can be
improved and how the efficiency of solution development can be increased.

As Internet of Things-based products and processes are rapidly developing in the industry,
there is a need for solutions that can support their fast and cost-effective implementation. There is
a need for further standardization to achieve more flexible connectivity, interoperability, and fast
application-oriented development; furthermore, advanced model-based control and optimisation
functions require a better understanding of sensory and process data [7].

Usually, production systems include multiple subsystems and layers of connectivity. Thus,
although research-based solutions for classical operations typically use a graph-based representation
of problems and flow-based optimisation algorithms, conventional single-layer networks quickly
become incapable of representing the complexity and connectivity of all the details of the production
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line. With the overlapping data in Industry 4.0 solutions, it should be highlighted that multilayer
networks are expected to be the most suitable options for representing modern production lines.
The concept of a multilayer network was developed to represent multiple types of relationships [8],
and these models have been proven to be applicable to the representation of complex connected
systems [9]. Network-based models can also represent how products, resources and operators are
connected [10], which is beneficial in terms of solving manufacturing cell formation problems [11].
This work demonstrates how the multilayer network representation of production lines can be utilised
in line balancing.

In the proposed novel network model, the layers represent the skills of the operators, the tools
required for the activities, and the precedence constraints of the activities. At the same time,
a multi-objective optimisation algorithm designs the assignment of activities and operators to
network layers. The proposed multilayer network approach supports the intuitive formulation
of multi-objective line balancing optimisation tasks. Besides the utilisation of operators, the utilisation
of the tools and the number of skills of an operator are also taken into account. The main advantage of
the proposed network-based representation is that the latter two objectives are directly related to the
structural properties of the optimised network.

Line balancing is a non-deterministic polynomial-time hard (NP-hard) optimisation problem,
which means that the computational complexity of the optimisation problem increases exponentially
as the dimensions of the problem increase. This challenge explains why numerous meta heuristic
approaches such as simulated annealing (SA) [12,13], hybrid heuristic optimisation [13,14],
chance-constrained integer programming [15], recursive and dynamic programming [16], as well
as tabu search [17] have been utilised in the field of production management. Fuzzy set theory
provides a transparent and interpretable framework to represent the uncertainty of information and
solve the ALB problem [18,19]. Among the wide range of heuristic methods capable of achieving
reasonable solutions [20], SA is the most widely used search algorithm [21], so it has already been
applied to solve mixed and multi-model line-balancing problems [22].

To deal with the complexity of this problem, an SA algorithm was also developed. The proposed
algorithm utilises a unique problem-oriented sequential representation of the assignment problem
and applies a neighbourhood-search strategy that generates feasible task sequences for every iteration.
Since the algorithm has to handle multiple aspects of line balancing, the analytic hierarchy process
(AHP) technique is used to quantify the importance of the objectives, also known as Saaty’s method [23].
AHP is a method for multi-criteria decision-making which is used to evaluate complex multiple criteria
alternatives involving subjective judgments [24]. This method is a useful and practical approach to
solving complex and unstructured decision-making problems by calculating the relative importance
of the criteria based on the pairwise comparison of different alternatives [25]. The method has been
widely applied thanks to its effectiveness and interpretability. Two papers were found in which it
has already been applied to determine the cost function of multi-objective SA optimisation problems.
In the first case study of supplier selection, AHP was applied to calculate the weight of every objective
by applying the Taguchi method [26] (Adaptive Tabu Search Algorithm—ATSA [27]). In contrast,
in the second report, this concept was applied to the maintenance of road infrastructure [28].

The novelties of the work are the following:

• In Section 2, the main problem formulation is introduced, including the multilayer network
representation of multiple aspects concerning the balancing of production lines, and the details of
the objective function.

• In Section 3, an SA algorithm will be introduced based on a novel sequential representation
of the line-balancing problem and the search algorithm that guarantees the fulfilment of the
precedence constraints.

• Section 4 demonstrates how AHP can be used to aggregate the multi layer network-represented
objectives of the line-balancing problem for SA.
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2. Problem Formulation

In this section, the problem formulation is presented. First, the representation of production line
modelling with the multilayer network is introduced in Section 2.1. The details of the minimised
function and its AHP-based aggregation are given in Section 2.2.

2.1. Multilayer Network-Based Representation of Production Lines

The proposed network model of the production line consists of a set of bipartite graphs
that represent connections between operators, o = {o1, . . . , oNo}; skills of the operators needed
to perform the given activity, s = {s1, . . . , sNs}; equipment, e = {e1, . . . , eNe}; activities

(operations), a = {a1, . . . , aNa}; and the precedence constraints between activities, a
′
=

{
a1
′
, . . . , a

′
Na

}
.

The relationships between these sets are defined by bipartite graphs Gi,j = (Oi, Oj, Ei,j) represented by
A[Oi, Oj] biadjacency matrices, where Oi and Oj denote a general representation of the sets of objects,

such that Oi, Oj ∈
{

s, e, a
′
, a, o

}
.

The edges of these bipartite networks represent structural relationships; e.g., the biadjacency
matrix A[a, a′] represents the precedence constraints or A[a, o] represents the assignments of
activities to operators. Moreover, the edge weights can be proportional to the number of shared
components/resources or time/cost (see Table 1) [10].

Table 1. Definition of the biadjacency matrices of the bipartite networks used to illustrate how a
multidimensional network can represent a production line.

Nodes Description

W Activity (a)–operator (o) Operator assigned to the activity
S Activity (a)–skill (s) Skill/education required for a category of activities
E Activity (a)–equipment (e) Equipment which is in use in an activity
A′ Activity (a)–activity (a′) Precedence constraint between activities

As can be seen in Figure 1, these bipartite networks are strongly connected. The proposed model
can be considered as an interacting or interconnected network [8], where bipartite networks define
the layers. Since different types of connections are defined, the model can also be handled as a
multidimensional network. As illustrated in Figure 2, when relationships between the sets Oi and Oj
are not directly defined, it is possible to evaluate the relationship between their elements oi,k and oj,l in
terms of the number of possible paths or the length of the shortest path between these nodes [10].

Figure 1. Illustrative network representation of a production line. The definitions of the symbols are
given in Table 1.
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Figure 2. Projection of a property connection.

In the case of connected unweighted multipartite graphs, the number of paths intersecting the set
O0 can be easily calculated based on the connected pairs of bipartite graphs as follows:

AO0 [Oi, Oj] = A[O0, Oi]
T ×A[O0, Oj] . (1)

In the proposed network model, the optimisation problem is defined by the allocation of tasks that
require the allocation of different skills and tools to an operator that might necessitate extra training,
labour and investment costs. The main benefit of the proposed network representation is that these
costs can be directly evaluated based on the products of the biadjacency matrices S and W:

A[s, o] = A[s, a]A[a, o] = SW. (2)

The resultant network A[s, o] represents how many times a given skill should be utilised by an
operator, while its unweighted version Au[s, o] models which skills the operators should have.

The design of the presented network model is based on the analysis of the semantically
standardized models of production lines [29], and the experience gained in the development project
connected to the proposed case study. The details of the multilayer network-based modelling of a
wire-harness production process can be found in [10].

2.2. The Objective Function

A simple assembly line balancing problem (SALBP) assigns Na tasks/activities to No

workstations/operators. Each activity is assigned to precisely one operator, and the sum of task
times of workstation should be less or equal to the cycle time Tc [30]. Precedence relations between
activities must not be violated [31]. There are two important variants of this problem [32]: SALBP-1
aims to minimise No for a given Tc, while the goal of SALBP-2 is to minimise Tc for a predefined
No [1,33,34]. In this paper, the SALBP-2 problem was investigated and extended to include the
following skill and equipment-related objective functions:

Station-time-related objective: The main objective of line balancing is to minimise the cycle time
Tc, which is equal to the sum of the maximum of the station times Tj. The utilisation of the whole
assembly line can be calculated as follows:

Tc = arg max
j

Tj =
Na

∑
i=1

wi,jti, (3)

where ti represents the elementary activity times of the ai-th activity.
As the theoretical minimum of Tc is

T∗c =
∑Na

i=1 ti

No.
, (4)

the following ratio evaluates the efficiency of the balancing of the activity times:
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QT(π) =
T∗c
Tc

=

∑Na
i=1 ti
No

∑Na
i=1 wi,jti.

(5)

Skill-related (training) objective: The training cost is calculated with the node degree between
skill-operator elements s− o. The number of skills Ns is divided by the sum of the node degrees ki
between sub-networks s and o in the multilayer representation:

QS(π) =
Ns

∑s−o,o
i ki.

(6)

Equipment-related objective function: The equipment cost is calculated with the node degree
between equipment-operator elements e− o. The number of pieces of equipment Ne is divided by the
sum of the node degrees ki between sub-networks e and o in the multilayer representation:

QE(π) =
Ne

∑e−o,o
i ki.

(7)

Since the importance of these objectives is difficult to quantify, a pairwise comparison is used to
evaluate their relative importance, and the analytic hierarchy process (AHP) is used to determine the
weights λ in the objective function:

Q(π) = λ1QT(π) + λ2QS(π) + λ3QE(π), (8)

where QT(π) ∈ [0, 1] represents the balance of the production line, and QS(π) ∈ [0, 1] and QE(π) ∈
[0, 1] measure the efficiency of how the skills and tools are utilised, respectively.

The application of AHP-based weighting is beneficial to integrate the normalised values of the
easy to evaluate station-time and equipment-related objectives, and the less specific training-related
costs. Although the pairwise comparison of the importance of these objectives and cost-items is
subjective, the consistency of the comparisons can be evaluated based on the numerical analysis of the
resulted comparison matrices (which will be shown in the next section), which clarifies the reason for
our choice of AHP as an ideal tool to extract expert knowledge for the formalisation of the cost function.

3. Simulated Annealing-Based Line-Balancing Optimization

This section presents the proposed optimisation algorithm. The representation of the SA problem
is introduced in Section 3.1. Section 3.2 discusses how the precedence constraints of the activities are
represented, while Section 3.3 presents how the assignment of activities to operators is formulated by
a sequencing problem that can be efficiently solved by the proposed simulated annealing algorithm.

3.1. Representation of the Problem

In the proposed network representation (Figure 1), the assignment of activities to operators is
defined by the elements wi,j of the matrix W that represent the ith activity assigned to the jth operator.
Instead of the direct optimisation of these Na×No elements, a sequence Nπ = Na + No− 1 is optimised,
where Na represents the number of activities and No denotes the number of operators.

The concept of sequence-based allocation is illustrated in Figure 3, where the horizontal axis
represents the fixed order of the operators oj and the vertical axis stands for the activities ai , where π(i)
represents the index of the activity by the ith sequence number. The ordered activities are assigned
to the operators by No − 1 boundary elements, represented as aπ(i) = ∗, which ensure that the next
activity in the sequence is assigned to the following operator.
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Figure 3. Illustration of the sequencing method. The activities are separated into the different groups
of activities that are assigned to different operators.

3.2. Handling Precedence Constraints

In addition to these three objectives of the simulated production line, a so-called soft limit is also
defined, which is the amount of the unaccomplished precedence of the activities (A′). This limitation
of the order with regard to the activities is stored in the multilayer network.

The completion of a task is a precondition for the start of another because tasks depend on other
tasks. The π sequence has some constraining condition and cannot be entirely arbitrary. The precedence
graph is used to represent these dependencies in SALBP [1,35,36]. Figure 4 shows a problem from
a well-known example by Jackson [37] with Na = 11 tasks, where task 7 requires tasks 3–5 to be
completed directly (direct predecessor) and task 1 indirectly (indirect predecessor). The precedence
graph can be described by matrix A′(i, j), i, j = 1, 2, . . . , Na, where A′(i, j) = 1 if task i is the direct
predecessor of task j, otherwise, it is 0 [32]. The precedence graph is partially ordered if tasks cannot be
performed in parallel. It must be determined whether a permutation π = (π1, π2, . . . , πNa) is feasible
or not according to the precedence constraint.

Based on the transitive closure A∗ of A′, π is feasible if A∗(pj, pi) = 0, ∀i, j, i < j; otherwise, π is
infeasible [32]. A sub-sequence (πi, πi+1, . . . , πj), where i < j of π, can be defined by π(i:j). For example,
a feasible sequence π of the precedence graph in Figure 4 is π = (1, 4, 3, 2, 5, 7, 6, 8, 9, 10, 11) and
π(2:4) = (4, 3, 2) is a sub-sequence of π.

Figure 4. Precedence graph of the example problem taken from Jackson [32,37].

As will be presented in the next subsection, the key idea of the algorithm is that it determines the
interchangeable sets of activity pairs and uses these in the guided simulated annealing optimisation.
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3.3. Sequence-Based Activity Grouping and Operator Assignment

The optimization algorithm is shown in Algorithm 1 and consists of the following steps:

• Generating the initial feasible sequence.
• SA I: Optimization of the sequences of the activities.

– SA II (embedded in SA I): in the case of a specific sequence, the activities are assigned to the
operators by optimizing the location of the boundary elements in sequence π as has been
presented in Figure 3, so SA I uses a cost function that relates to the optimal assignment.

Algorithm 1: Pseudocode of the proposed SA-ALB algorithm
Input: s, e, Time, Precedence
Output: π, Q(π)

Annealing: maxiter, T, Tmax, Tmin, mmax, mmin
1 α = ( Tmin

Tmax
)1/maxiter, T1 = Tmax

2 αm = ( mmin
mmax

)1/maxiter, m1 = mmax

3 Begin
4 T = Tmax; Tmax = maximum value of temperature
5 while T < Tmin; Tmin = minimum value of temperature
6

7 Generate initial sequence π, which satisfies the constraints
8 Generate initial placement of the boundary elements
9 Evaluate the cost function Q(π), as functions (5), (6) and (7)

10 for i = 1 to maxiter do
11

12 Select randomly one interchangeable activity pair
13 Interchange the activities and evaluate the new solution by implementing SA II that

optimizes the placement of the boundary elements in this sequence
14 // SA II is working with the same principle as this main SA I
15

16 NewQ(πnew) = Q(πnew)

17 ∆ = Q(πnew)−Q(π)

18 if ∆ < 0 then
19 π = πnew

20 Q(π) = Q(πnew)

21 else
22 if random() < exp(−∆

Ti ) then
23 π = πnew

24 Q(π) = Q(πnew)

25 Ti+1 = αTi, mi+1 = αimi

26 End

4. Case Study

This study was inspired by an industrial case study of wire harness manufacturing,
where operators work with several tools that perform different activities at workstations to manufacture
cables. The problem assumes that it is possible to improve the manufacturing efficiency if the resources,
activities, skills and precedence are better designed.

The development of the proposed line-balancing algorithm is motivated by a development project
which was defined to improve the efficiency of an industrial wire harness manufacturing process [38].
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In this work, a subset of this model is used which consists of 24 activities, five operators, six skills and
eight pieces of equipment.

The elementary activity times that influence the line balance were determined based on expert
knowledge [39] (see Table 2).

A more detailed description of the activities, pieces of equipment and skills can be found in
Tables 2–6.

Table 2. List of the elementary activities that should be allocated in the line balancing problem.

Activity ID Description Time

A1 Connector handling 4 s
A2 Connector handling 3 s
A3 Connector handling 2 s
A4 Connector handling 3 s
A5 Insert 1st end + routing 10 s
A6 Insert 2nd end 5 s
A7 Insert 1st end + routing 10 s
A8 Insert 2nd end 5 s
A9 Insert 1st end + routing 10 s
A10 Insert 2nd end 5 s
A11 Insert 1st end + routing 10 s
A12 Insert 2nd end 5 s
A13 Insert 1st end + routing 10 s
A14 Insert 2nd end 5 s
A15 Insert 1st end + routing 10 s
A16 Insert 2nd end 5 s
A17 Insert 1st end + routing 10 s
A18 Insert 2nd end 5 s
A19 Taping 15 s
A20 Taping 13 s
A21 Taping 11 s
A22 Taping 17 s
A23 Taping 15 s
A24 Quality check 10 s

The following tables give a more detailed description of the activities, equipment (Table 3) and
skills (Table 4) which are involved in the proposed case study. Furthermore, the activity–equipment
(Table 5) and activity–skill (Table 6) connectivity matrices show the requirements of the given
base activity.

Table 3. List of equipment that should be allocated in the line balancing problem.

Equipment ID Description

E1 Connector fixture
E2 Connector fixture
E3 Routing tool
E4 Insertion tool
E5 Taping tool (expert)
E6 Taping tool (normal)
E7 Taping tool (normal)
E8 Repair tool
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Table 4. Description of skills that should be used in the studied production process.

Skill ID Description

S1 Connector handling skill
S2 Insertion (normal) and routing skills
S3 Insertion (expert) skill
S4 Taping (normal) skill
S5 Taping (expert) skill
S6 Quality (expert) skill

Table 5. Activity–equipment matrix that defines which equipment are required to perform a given activity.

E1 E2 E3 E4 E5 E6 E7 E8

A1 1 1
A2 1 1
A3 1 1
A4 1 1
A5 1
A6 1
A7 1
A8 1
A9 1
A10 1
A11 1
A12 1
A13 1
A14 1
A15 1
A16 1
A17 1
A18 1
A19 1
A20 1
A21 1 1
A22 1 1
A23 1 1
A24 1

Table 6. Activity–skill matrix that defines which skills are required to perform a given activity.

S1 S2 S3 S4 S5 S6

A1 1
A2 1
A3 1
A4 1
A5 1
A6 1
A8 1
A9 1
A10 1
A11 1
A12 1
A13 1
A14 1
A15 1
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Table 6. Cont.

S1 S2 S3 S4 S5 S6

A7 1
A16 1
A17 1
A18 1
A19 1
A20 1
A21 1
A22 1
A23 1
A24 1

The tables illustrate that the practical implementation of line balancing problems is also influenced
by how much equipment is needed for the designed production line and how many skills should be
learnt by the operators.

All the collected information is transformed into network layers, as shown in Figure 5. The top of
the figure shows the bipartite networks that represent the details of the assignments, while the bottom
of the figure represents the tree layers of the network that define the activity–operator, skill–operator,
and equipment–operator assignments. As can be seen, this representation is beneficial as it shows how
similar operators, skills and equipment can be grouped into clusters.

Figure 5. Illustration of the skill–operator and equipment–operator assignments after line balancing.
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Although this is not shown in the figure, the weights of the edges represent the costs or benefits
of the assignments. The final form of the network is formed based on a multi-objective optimisation of
the sets of active edges.

As some of these objectives are difficult to measure, we utilised the proposed AHP-based method
to convert the pairwise comparisons of the experts into weights of criteria. The structure of the decision
problem is represented in Figure 6. As this figure illustrates, the AHP is used to compare difficult to
evaluate equipment and skill assignment costs and the importance of the objectives. The pairwise
comparison was performed by a process engineer, and the resulting comparison matrices can be found
in Tables 7–9. Based on the analysis of the the eigenvalues of these matrices [25], we found that the
evaluations were consistent.

Since the activities cannot be performed in parallel, a precedence graph defines the most crucial
question, namely whether a permutation of sequence π is feasible. Based on the transitive closure of
the adjacency matrix of the graph, the interchangeable sets of activities can be defined as depicted
in Figure 7.

The result of the optimization is shown in Figure 5, which illustrates that the five operators
assigned to different skills and pieces of equipment.

The reliability and the robustness of the proposed method are evaluated by ten independent runs
of the optimisation algorithm to highlight how the stochastic nature of the proposed method influences
the result, as well as showing the effect of the number of operators on the solutions. The aim of the
analysis of the independent runs was to estimate the variance of the solutions caused by the stochastic
nature of the process and the optimisation algorithm. The sample size of such repeat studies can be
determined based on the statistical tests of the estimated variance. In our analysis, we found that ten
experiments were sufficient to get a proper estimation of the variance (which is in line with the widely
applied ten-fold cross-validation concept).

Figure 6. Analytic hierarchy process (AHP) used to solve a decision problem.

Table 7. AHP TOP matrix that shows the relative importance of the objectives. It can be seen that,
in this pair-wise comparison, the skill-related cost is evaluated as being twice as important as the
equipment-related costs.

Balancing Equipment Skill

Balancing 2.00 4.00
Equipment 0.50 2.00
Skill 0.25 0.50
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Table 8. AHP equipment matrix that shows the relative importance of the equipment.

E1 E2 E3 E4 E5 E6 E7 E8

E1 1 0.33 0.50 2 3 3 2
E2 1 0.33 0.50 2 3 3 2
E3 3 3 2 5 7 7 5
E4 2 2 0.50 3 5 5 3
E5 0.50 0.50 0.20 0.33 2 2 1
E6 0.33 0.33 0.14 0.20 0.50 1 0.50
E7 0.33 0.33 0.14 0.20 0.50 1 0.50
E8 0.50 0.50 0.20 0.33 1 2 2

Table 9. AHP skill matrix that shows the relative importance of the skills.

S1 S2 S3 S4 S5 S6

S1 0.20 0.30 0.50 0.50 0.14
S2 5 2 3 3 0.50
S3 3 0.50 2 2 0.33
S4 2 0.30 0.50 1 0.20
S5 2 0.30 0.50 1 0.20
S6 7 2 3 5 5

Figure 7. Possible path (left), precedence (middle) and transitive closure (right) of the activities (the
unmarked pairs are interchangeable).

Figure 8 presents the different time, skill and equipment-related objectives in the case of different
operators. As the results show, the increase in the number of operators decreases the efficiency of
the utilisation of the tools and skills (this trend is the main driving force for forming manufacturing
cells). The process can be well balanced in the case of 3–5 operators; e.g., in the case of five operators,
in one of the best solutions, the balancing objectives are a time cost of 94.3%, training cost of 75.0%
and equipment cost of 72.8%. Figure 9 shows the different total activity times of each operator during
the simulation. In this case, the station times do not differ greatly, and the result is optimal [10].
The proposed algorithm was implemented in MATLAB and is available on the website of the authors
(www.abonyilab.com/about-us/software-and-data); interested readers can make further comparisons,
and the proposed problem can serve as a benchmark for constrained multi-objective line balancing.

Based on the simple modification of the code, the algorithm can be compared to classical simulated
annealing-based line balancing; this comparison demonstrates that the main benefit of the proposed
constrained handling is the acceleration of the optimisation. At the same time, the application of the
inner-loop-based assignment significantly reduces the variance and increases the chance of obtaining
improved line balancing results.

https://www.abonyilab.com/about-us/software-and-data
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Figure 8. Boxplot of time, skill and equipment-related objectives for different independent runs of the
algorithm and with different numbers of operators.
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Figure 9. Comparison of the operators’ activity times.

5. Conclusions

We proposed an assembly line balancing algorithm to improve the efficiency of production
systems by the multiobjective assignment of tasks to operators. The optimisation of this assignment is
based on a multilayer network model that provides information about the activity times, constraints
and benefits (objectives) of the assignments, where the layers of the network represent the skills of the
operators, the tools required for their activities and the precedence constraints of their activities.

The training and equipment costs as well as the precedence of the activities are also taken into
account in the activity–operator layer of the network. As these costs and benefits are difficult to
evaluate, the analytic hierarchy process (AHP) technique is used to quantify the importance of the
criteria. The optimisation problem is solved by a multi-level simulated annealing algorithm (SA) that
efficiently handles the precedence constraints thanks to the proposed problem-specific representation.

The proposed algorithm was implemented in MATLAB and the applicability of the method
demonstrated with an industrial case study of wire harness manufacturing. The results confirm that
multilayer network-based representations of optimisation problems in manufacturing seem to be
potential promising solutions in the future.

The main contribution of the work is that it presents tools that can be used for the efficient
representation of expert knowledge that should be utilised in complex production management



Appl. Sci. 2020, 10, 3932 14 of 16

problems. The proposed multilayer network-based representation of the production line supports
the incorporation of advanced (ontology-based) models of production systems and provides an
interpretable and flexible representation of all the objectives of the line balancing problem.

The AHP-based pairwise comparison of the importance of the nodes, edges and complex paths of
this network can be used to evaluate the objectives of the optimisation problems. The integration of
the network-based knowledge representation and the AHP-based knowledge extraction makes the
application of the proposed methodology attractive in complex optimisation problems.
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Abbreviations

The following abbreviations are used in this manuscript:

SA Simulated annealing
ALB Assembly line balancing
Gi,j Bipartite graphs between the ith and jth sets of objects

Oj, Oj General representation of a set of objects as Oi, Oj ∈
{

s, e, a
′
, a, w

}
a = a1, . . . , aNa Index of activities
o = o1, . . . , oNo Index of operators
s = s1, . . . , sNs Index of skills
e = e1, . . . , eNe Index of equipment
w = w1, . . . , wNw Index of workstations
W Workstation assigned for the activity, Na × Nw

O Operators assigned for the activity, Na × No

S Skills assigned for the activity, Na × Ns

E Equipment assigned for the activity, Na × Ne

A′ Precedence constraint between activities, Na × Na

T = t1, . . . , tNa Activity time
c1 Station-time-related cost
c2 Skill-related (training) cost
c3 Equipment-related cost
Tc Cycle time
Nw Number of workstations
No Number of operators
Ns Number of skills
Ne Number of pieces of equipment
Nπ Number of sequence elements
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