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Featured Application: The aim of this study is to provide an accurate model reference for the
analysis of vibration characteristics of hub-driven electric vehicles with permanent magnet
synchronous motors (PMSM) and the optimization, control and improvement of its vibration
performance. It can be applied to intelligent suspension design of hub-driven electric vehicles.

Abstract: In this paper, after investigating the coupling effect in a permanent magnet synchronous
in-wheel motor, a robust control method for active suspension of hub-driven electric vehicles (EVs) to
enhance the performance of the in-wheel motor and the vehicle is proposed. Based on the electric
vehicle model addressing the coupling effect between the electromagnetic excitation of the permanent
magnet synchronous motor (PMSM) and the transient dynamics in EVs, the influence of the coupling
effect on the motor and the vehicle performance is analyzed. The results reflect that the coupling
effect in in-wheel motors intensifies the magnetic force oscillation, aggravates the eccentricity of the
rotor, deteriorates the motor operation performance, and worsens the ride comfort. To suppress the
magnetic force oscillation in motor and enhance the vehicle comfort, the active suspension system
considering five aspects of suspension performance is introduced. Simultaneously, on the basis of
Lyapunov stability theory, a reliable robust H∞ controller considering model uncertainties, actuator
failure and electromagnetic force interference is designed. The simulation results reflect that the
robust H∞ feedback controller can not only achieve better ride comfort, but also restrain the coupling
effect in the motor. Meanwhile the other requirements such as the road holding capability, the actuator
limitation, and the suspension deflection are also maintained. The proposed robust control method
demonstrates a potential application in the practice of EV control.

Keywords: robust control; active suspension; in-wheel motor; unbalanced electromagnetic force;
actuator failure

1. Introduction

Due to the aggravation of environmental pollution and the energy crisis, automotive products are
required to be energy-saving, highly efficient, and environmentally-friendly [1–3]. Compared with
traditional diesel locomotives, electric vehicles (EVs) which have several advantages such as no CO2

emission and energy efficiency have caught widespread attention in recent years [4,5]. The propulsion
configurations of EVs can be classified as a distributed motor driven layout and a centralized driven
layout. Compared with centralized driven layout EVs, in-wheel motor (IWM) propelling EVs, as the
distributed propulsion system, enjoy various additional structure and control merits [6,7]. As in the
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IWM the brake and the reducer are integrated into the rim, the mechanical transmission system of
hub-driven EVs is simpler and more efficient. Moreover, by controlling the torque of each electric
motor precisely and independently, hub-driven EVs have played a significant role in enhancing the
performance of existing vehicle stability/motion control systems, such as electronic stability control
systems (ESC) and traction control systems (TCS) [8]. However, the development of hub-driven EVs
has introduced some new technical problems. The integration of the driving system into the rim leads
to an increase in the unsprung mass, which deteriorates road handling capacities and the ride comfort
of vehicles [9,10]. What is more, the road surface roughness excitation and the coupling effect in IWM
make the magnet gap deformed. The deformed magnet gap then leads to magnetic force oscillation
which is a critical vibration source for vehicle dynamics [11,12].

In the past decades, some passive and active methods, such as optimization of the vibration
isolator, redesign of the IWM, and active control for suspension systems, have been adopted to suppress
magnetic force oscillation and improve the ride comfort. However, there are some deficiencies which
remain to be solved. Luo et al. [12] proposed a novel IWM topology scheme and studied the coupling
effect of the IWM system. By mounting rubber bushings in the IWM device, the vibration energy from
the road surface was absorbed and the deformation of magnet gap was restricted. However, the life of
the rubber bushing was short due to the severe operating environment of the IWM, making it difficult
for practical use. Moreover, due to neglect of the permanent magnet brushless direct current (PMBDC)
motor model which could provide the phase current for calculating the unbalanced electromagnetic
force (UEF), the established coupling model was simple and inaccurate. The transient characteristics
of electromechanical coupling effect cannot be effectively studied under vehicle running conditions.
Zhao et al. [13] designed the motor mount, making the motor mass as dynamic vibration absorber.
The results show that the ride comfort was improved. However, there was a distinct axis relative
displacement between the rotor and the stator, prompting magnet gap deformed and magnetic force
oscillation. The active suspension control methods have been proposed to suppress the magnetic
force oscillation. Nevertheless, the majority of the active suspension system of hub-driven EVs are
based on switched reluctance in-wheel driven motors [14,15] or neglect the negative electromagnetic
coupling effect in IWM [16–19]. Different from switched reluctance motors (SRM), the magnetic field
in permanent magnet synchronous motors (PMSM) is provided by permanent magnets. Consequently,
as a permanent magnet synchronous IWM, more complex multi-field coupling effects need to be
studied to enhance the ride comfort of EVs. In brief, it is meaningful to suppress magnetic force
oscillation and improve the ride comfort. However, for the PMSM, the passive methods to suppress
magnetic force oscillation have some defects and the active methods are rarely studied. Furthermore,
the electromagnetic coupling model of hub-driven electric vehicle based on PMSM that has been
established by Luo is inaccurate [12]. It is necessary to establish the complete electromagnetic coupling
model, investigate the coupling mechanism of PMSM and study the active control methods for the
suspension system of hub-driven electric vehicle to solve the negative coupling effect of the PMSM.

Besides, failures of electrical components, sensors, and the actuator are fairly common to active
suspension systems, which will lead to a series of problems, such as system instability, performance
degradation, and even disaster traffic accidents. Therefore, it is of great significance to design the active
suspension considering actuator failures. Choi et al. [20] proposed a robust controller for a semi-active
suspension system with actuator saturation. The vehicle vibration attenuation problem under two
cases was addressed, namely, without actuator fault and with base oil leakage in MR damper. Liu
et al. [21] proposed a new adaptive fault tolerant control scheme by employing adaptive feed-back
stepping technique which ensured the boundedness in probability of the considered systems. Alain
et al. [22] presented an application of a diagnosis and a fault-tolerant control method for an active
suspension system. This method could improve the vehicle performance in the presence of road
disturbances by identifying an actuator fault and reconfiguring the controller. In the literature [23–25],
the fault-tolerant control was proposed for an active suspension system with an actuator fault. The
results showed that the control effects of the active suspension system deteriorated without considering



Appl. Sci. 2020, 10, 3929 3 of 26

the actuator failure. Similarly, the control effects will be unsatisfactory if the model parameter
uncertainties are neglected. In the literature [26–28], the robust control was proposed for vehicle
active suspensions. The comparative simulations presented the availability of the designed controllers
considering the model uncertainties. In addition, some other control methods were also proposed
to suppress disturbance and obtain the better performance of the system, such as u-synthesis [29],
neural network method [30], mixed H∞/H2 [31], slide-mode control [32–36], adaptive control [37],
and nonlinear control [38,39]. However, most of the control strategies are proposed for conventional
vehicles and rarely for PMSM-driven EVs. From the existing studies, the issues of active suspension
systems associated with actuator fault tolerance, model parameter uncertainties, and coupling effect in
IWM based on PMSM have not been well studied in previous research.

This paper focuses on the coupling effect in permanent magnet synchronous IWM and the robust
control for active suspension of hub-driven EVs. The challenges and technical contributions are
summarized as follows: (1) unlike studies in Ref. [11,12], in which the established electromechanical
coupling model was simple and inaccurate, in this paper, according to the electromagnetic field theory,
the complete electromechanical coupling model of the hub-driven EVs composed of four sub-models is
established. The transient characteristics of electromechanical coupling effect can be effectively studied
under vehicle running conditions; (2) unlike studies in Ref. [15,16,24], in which the authors proposed
active suspension controller for the SRM driven electric vehicle, the electric vehicle neglecting the
coupling effect or the conventional vehicle, in this study, a multi-objective control is designed for
the PMSM driven EV to obtain better ride comfort and restrict coupling effect of in-wheel PMSM.
Meanwhile, the other performances such as actuator limitation, small suspension deflection and
road holding capability are also maintained; (3) the suspension parameter uncertainties and actuator
fault are simultaneously considered and a reliable robust H∞ controller is designed to attenuate
the effects caused by the magnetic force oscillation, parameter uncertainties, the actuator fault and
road disturbances.

The rest of this paper is organized as follows. In Section 2, the mathematical model of a hub-driven
electric vehicle is established and the coupling effect is analyzed. In Section 3, a reliable robust H∞
controller is presented. The simulation results are described in Section 4 and key conclusions are given
in Section 5.

2. System Modelling and Problem Formulation

As magnetic force oscillation worsens the performance of EV, the electric vehicle model considering
the coupling effect of IWM is established to explore the influence of the coupling effect on vehicle
performance and provide a theoretical basis for designing active suspension controller later.

2.1. Hub-Driven Electric Vehicle Modelling

To obtain more precise results, an electric vehicle model considering coupling effect in IWM is
developed. It consists of four sub-models: a UEF model, permanent magnet brushless direct current
(PMBDC) motor model, driving model and vertical vibration model. The information exchange among
them is depicted in Figure 1 and described in detail in following sub-models.

The electric vehicle model consists of two controllers: a PMBDC motor proportional-integral-
derivative (PID) controller and an active suspension controller in a vertical vibration model. The active
suspension controller is designed to improve the performance of the motor and the vehicle. The PID
controller is used to calculate the pulse width modulation (PWM) duty cycle according to the vehicle
speed error between the current and the reference. Then, the driving torque of IWM is adjusted based on
PWM duty cycle.
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Figure 1. Hub-driven electric vehicle model.

2.1.1. Unbalanced Electromagnetic Force Model

The dynamic vibration in vehicle and UEF (calculated by the UEF model) can evoke a magnet gap
deformation which results in magnetic force oscillation as shown in Figure 2a, where Os and Or are the
geometric center of the stator and the rotor, respectively. In this paper, we are mainly concerned about
the rotor eccentricity in the vertical direction. Hence, the uneven magnet gap of IWM is a function of
angle am and its expression is

δe(am) = δ− ed(z) cos(am) (1)

where ed (z) denotes relative displacement between the rotor and the stator. It can be provided by
vertical vibration model of the EVs with IWMs.
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Figure 2. (a) Magnet gap deformation of the in-wheel motor (IWM) (air-gap exaggerated) and (b) the
winding distribution of the permanent magnet brushless direct contact (PMBDC) motor.

Rotor eccentricity leads to the change of the permeance in magnet gap, and it can be calculated by:

λe = u0
δe(am)

= u0
δ−ed(z) cos(am)

= u0
δ ·

δ
δ−ed(z) cos(am)

= λ · δ
δ−ed(z) cos(am)

= λξδ
(2)

where ξδ is the correction coefficient for the permeance. In this study, the 27-slot/24-pole surface
PMBDC motor is adopted. The analytical expressions of the radial and the tangential flux density
(B_pru(r, am, t) and B_ptu(r, am, t)) of the slotless field model in the middle of the air gap (r = Rs − g/2)
produced by the permanent magnets (PMs) can be given by

B_pru(r, am, t) =
∞∑

n=1,3,5...

KB(n) · fBr(r) · cos[np(am −ωrt− θ0)] (3)

B_ptu(r, am, t) =
∞∑

n=1,3,5...

KB(n) · fBt(r) · sin[np(am −ωrt− θ0)] (4)
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where p denotes the rotor pole-pair number, αm denotes the angular position, and ωr denotes angular
velocity of the rotor. The parameters of IWM are listed in Appendix A. (The details about the motor
can be found in the literature [40,41]).

The winding distribution of the PMBDC motor is shown in Figure 2b. The radial and the tangential
flux density (B_aru(r, am, t) and B_atu(r, am, t)) produced by 3-phase winding of the IWM in the middle
of the air gap can be calculated as

B_aru(r, am, t) =
∞∑

v=1
Bvr

{
IA(t)

9∑
i=1

sAi cos v
[
am −

2π
Qs
(aAi − 1)

]
+ IB(t)

9∑
i=1

sBi cos v
[
am −

2π
Qs
(aBi − 1)

]
+IC(t)

9∑
i=1

sCi cos v
[
am −

2π
Qs
(aCi − 1)

]} (5)

B_aru(r, am, t) =
∞∑

v=1
Bvt

{
IA(t)

9∑
i=1

sAi cos v
[
am −

2π
Qs
(aAi − 1)

]
+ IB(t)

9∑
i=1

sBi cos v
[
am −

2π
Qs
(aBi − 1)

]
+IC(t)

9∑
i=1

sCi cos v
[
am −

2π
Qs
(aCi − 1)

]} (6)

where IA(t), IB(t), and IC(t) denote three phase winding current. The detailed derivation of Equations (5)
and (6) are referred to in the literature [42,43].

The flux density can be decomposed as the superposition of stator and rotor magnetic fields in the
linear case [34]. Thus, the total radial and the tangential flux density (B_ru(r, am, t) and B_tu(r, am, t))
neglecting the slotting effect can be deduced as

B_ru(r, am, t) = B_pru(r, am, t) + B_aru(r, am, t) (7)

B_tu(r, am, t) = B_ptu(r, am, t) + B_atu(r, am, t) (8)

It can be found that B_ru and B_tu are functions of phase currents (IA, IB, IC), rotor position
∫
ωrdt.

By introducing the correction coefficient for the permeance ξδ, the radial and the tangential flux density
(B_er(r, am, t) and B_et(r, am, t)) considering the influence of rotor eccentricity can be deduced as [44]

B_er(r, am, t) = B_ru(r, am, t)λaξδ + B_tu(r, am, t)λbξδ (9)

B_et(r, am, t) = B_tu(r, am, t)λaξδ − B_ru(r, am, t)λbξδ (10)

where λa and λb denote the influence factors of the stator slotting [45,46]. On the basis of Maxwell
magnet stress tensor theory, the radial and tangential magnetic force density distribution (Per and Pet)
under polar coordinate can be calculated [47,48].

Per(r, am, t) = 1
2u0

[
B_er(r, am, t)2

− B_et(r, am, t)2
]

Pet(r, am, t) = 1
u0
[B_er(r, am, t) · B_et(r, am, t)]

(11)

The magnetic force density distribution in Cartesian coordinate can be obtained according to
coordinate transform relationship. Thus, the UMF (Fr) that acts on the stator and the rotor in vertical
direction is calculated as

Fr = Lr

2π∫
0

(Per(r, am, t) cos(am) − Pet(r, am, t) sin(am))dam (12)

where L is the axial gap length of IWM.

2.1.2. PMBDC Motor Model

The PMBDC motor model offers driving torque to promote EV movement and provides phase
current for the UEF model to calculate an unbalanced electromagnetic force, as shown in Figure 1.
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When three-phase winding is star connected, the circuit equations of three windings in phase variables
can be expressed as [49]

d
dt IA = 1

3Ls
(2vAB + vBC − 3RsIA + λpωr(−2eA + eB + eC))

d
dt IB = 1

3Ls
(−vAB + vBC − 3RsIB + λpωr(eA − 2eB + eC))

d
dt IC = −( d

dt IA + d
dt IB)

(13)

where IA, IB and IC denote three phase winding current. ωr represents the rotor angular velocity. vab
and vbc represent phase voltage of AB and BC, respectively. p represents the number of pole pairs.
λ represents the amplitude of the flux induced by permanent magnets. Rs and Ls represent stator
winding resistance and winding inductance, respectively. λ, Rs, and Ls can be obtained by means of
Ansoft–Maxwell analysis. eA, eB, and eC denote electromotive force, respectively, which has trapezoidal
shapes. Therefore, the driving torque Te produced by IWM can be calculated.

Te = pλ(eAIA + eBIB + eCIC) (14)

2.1.3. Driving Model

The driving model provides the rotor velocity ωr for the UEF model and PMBDC motor model.
Simultaneously, it also offers the vehicle velocity for the vertical vibration model to produce the road
excitation. The dynamic equation of rotation motion of the IWM can be deduced as

dωr

dt
= (Te − Fd f Rr − f W)/J (15)

where J represents the rotational inertia of the total rotor; W represents wheel load which consists of
static load and dynamic load, which can be obtained by vertical vibration model; f denotes rolling
resistance coefficient; Rr denotes wheel rolling radius; ωr denotes the angular velocity of the wheel or
the rotor; and Fdf denotes reaction force between the road and tire which can be calculated using Magic
Formula [50]. In addition, Fdf refers to the driving force that promotes EV move, i.e.,

Fd f = MEV
.
ua + Fw + Fi (16)

where MEV (MEV = mb + ms + mr) and ua represent the total vehicle mass and vehicle velocity,
respectively. Assuming that the wind speed is small and the road is horizontal, the wind resistance Fw

and the gradient resistance Fi could be ignored.

2.1.4. Vertical Vibration Model

Figure 3a shows the main structure of an IWM driving system. According to the structure, a
quarter vehicle model is employed to analysis the influence of the magnetic force oscillation in IWM,
as depicted in Figure 3b.
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Figure 3. IWM-driven system without a speed reducer. (a) Main structure. (b) Quarter vehicle model.

In the model, the hub and the motor bearings connect the stator and rotor. They are simplified
and equalized as an equivalent spring km in the vertical direction, as shown in Figure 3b. Fr and F a.

represent UEF and actuator force, respectively. The dynamics equations can be described according to
Newton’s second law as follows.

mb
..
zb + ks(zb − zs) + cs(

.
zb −

.
zs) − Fa = 0

ms
..
zs + ks(zs − zb) + cs(

.
zs −

.
zb) + km(zs − zr) − Fr + Fa = 0

mr
..
zr + kt(zr − zg) + ct(

.
zr −

.
zg) + km(zr − zs) + Fr = 0

(17)

where mb, ms, and mr denote body mass, stator mass, and rotor mass in the motor, respectively. kt,
ct, ks, and cs denote tire stiffness, tire damp, suspension stiffness and suspension damp, respectively.
zb, zs, and zr represent the displacements of mb, ms, and mr, respectively; zg refers to road excitation
represented by filtered white noise model

.
zg

(
t) = −2π f0zg

(
t) + 2π

√
G0uaw(t) (18)

where w(t), f 0 G0 represent white noise, low cutoff frequency and roughness coefficient, respectively.
ua refers to vehicle velocity obtained by Equation (16).

2.2. Characteristics of UEF and Its Influence on the Vehicle Performance

In this paper, the rotor pole-pair number of PMBDC motor adopted is 12. Thus, rotational angular
of the rotor is 2π/12 = 0.52 (rad) in one PWM duty cycle, as shown in Figure 2b. For above-mentioned
mathematical formulas, it can be found that UMF is a function of rotor position

∫
ωrdt, phase currents

(IA, IB, IC) and eccentricity ed (z). Figure 4a shows the influence of the eccentricity and rotor position
on UEF when the phase current is 20A. It can be observed that the mean value of UEF rises rapidly
with the minor increase of the eccentricity. Similarly, Figure 4b presents the relationship between the
rotor eccentricity, phase current and UMF when the rotor eccentricity is 0.1 mm. The mean value and
amplitude value of the UEF rise as the phase current increases. By examining the influence of the
eccentricity, rotor position and the phase current on the UEF, it can be noted that the sensitivity of the
eccentricity is greater than the sensitivity of the rotor position and phase current. This means that the
discussion of the eccentricity is of great significance.
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Figure 4. The characteristics of unbalanced electromagnetic force (UEF): (a) under different rotor
position and eccentricity; (b) under different rotor position and phase current.

The parameters of the hub-driven EV are listed in the Appendix A. Based on the electric vehicle
model driven by IWM established in Section 2.1, the performance of an electric vehicle with a passive
suspension was investigated at a speed of 25 km/h on a B-class road (Figure 5). Figure 5a shows the
error between the ideal and real vehicle speed; Figure 5b–f describe wheel speed (rotor speed), slip rate,
A-phase current of IWM, driving torque Te produced by PMBDC motor, and road speed excitation,
respectively. It can be observed that all signals are reasonable, indicating that the model established
is correct. Figure 5g–i describe the vertical component of the UEF, the eccentricity of rotor and the
acceleration of the body with or without coupling effect, respectively. In Figure 5, the coupling effect
is considered if there is Fr, while it is not considered if there is no Fr. It can be concluded that the
coupling effect exacerbates the electromagnetic force oscillation, increases the eccentricity of the rotor,
and aggravates the acceleration of sprung mass. The eccentricity of rotor provokes UEF, as shown
in Figure 4a. Synchronously, the UEF intensifies the eccentricity, as shown in Figure 5e. This mutual
promotion phenomenon aggravates the electromagnetic coupling effect, thus intensifying the wear of
bearing and shortening the life of the motor. Furthermore, it aggravates the acceleration of sprung
mass and provokes cacophony, deteriorating the vehicle comfort. Therefore, the coupling effect in
IWM should be seriously considered when designing active suspension system for hub-driven EVs.
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Figure 5. The response of the electric vehicle on stochastic uneven road: (a) vehicle speed; (b) wheel
speed; (c) slip rate; (d) A-phase current; (e) driving torque; (f) road speed excitation; (g) vertical
component of the UEF; (h) the rotor eccentricity; (i) the sprung mass acceleration.
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2.3. Active Suspension System Modelling

The sprung mass mb includes the driver mass and passenger mass, so it usually changes with the
number of drivers and passengers. The tire stiffness kt usually varies due to tire pressure. In this study,
it is supposed that the sprung mass and the tire stiffness reside in an interval as follows:

mb = mb0(1 + λ1)kt = kt0(1 + λ2) (19)

where mb0 and kt0 are the nominal sprung mass and the nominal tire stiffness, respectively. |λ1| ≤ λ10

and |λ2| ≤ λ20 are used to exhibit the interval that the sprung mass and the tire stiffness are located within.
Furthermore, mbl = mb0(1 + λ1)

∣∣∣
λ1=−λ10 and ktl = kt0(1 + λ2)

∣∣∣
λ2=−λ20 are, respectively, expressed as

the lower bounds of the sprung mass and the tire stiffness. Similarly, mbu = mb0(1 + λ1)
∣∣∣
λ1=λ10 and

ktu = kt0(1 + λ2)
∣∣∣
λ2=λ20 are expressed as the corresponding upper bounds. Therefore, the uncertain

parameter vector can be described as λ = [λ1,λ2].
According to Equation (11), and defining vehicle state vector as

x(t) =
[ .

zb
.
zs

.
zr zs − zb zr − zs zg − zr

]T
(20)

the dynamic model of the vehicle can be described by the following state-space equations.

.
x(t)=A(λ)x(t)+B1(λ)w(t)+B2(λ)ξu(t) (21)

where

A(λ) =



−csm−1
b csm−1

b 0 ksm−1
b 0 0

csm−1
s −csm−1

s 0 −ksm−1
s kmm−1

s 0

0 0 −ctm−1
r 0 −kmm−1

r ktm−1
r

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 0 0 0


, B1(λ) =

 0 0 ctm−1
r 0 0 1

0 m−1
s −m−1

r 0 0 0


T

,

B2(λ) =
[

m−1
b −m−1

s 0 0 0 0
]T

, w(t) =
[ .

zg Fr
]T

,

where λ represents uncertain parameter vector and u(t) is the actuator force produced by active
suspension. As shown in Figure 6a, the active suspension system consists of an electro-magnetic
actuator and a mechanical spring. Fail safe passive damping is provided by means of eddy-currents.
The linear motor actuator is a tubular slotted three-phase permanent magnet actuator with a peak force
of 2000 N. The actuator is shown as Figure 6b, where τp represents the PM pole pitch; Rs represents the
coils outer radius; τcp and τsp represent the coil and slot pitches, respectively; τmz and τmr denote the
pitches of axially and radially magnetized PMs, respectively; τs represents the slot width; and R0 and
Rm represent the inner and outer radii of the PMs. The details can be found in the literature [51,52].
The thrust force according to axial direction is shown in Figure 6c (detailed calculation of the thrust
force can be found in literature [52]).
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3. Reliable Robust H∞ Controller Design

Traditionally, most studies mainly consider three requirements, namely, road-holding stability,
suspension deflection, and the ride comfort, when designing a control law for suspension systems.
Some studies also take energy-saving into consideration. However, few papers have covered the
coupling performance of IWMs in suspension design, especially for PMSM. The issues for active
suspension system associated with actuator fault tolerance, model parameter uncertainties and coupling
effect in IWM based on PMSM have not been well studied in any previous research. Therefore, the
reliable robust H∞ control law for active suspension of hub-driven EVs is designed. Considering
factors mentioned above, the following suspension performances should be taken into account.

(1). Maximum actuator force. The active control force provided by the suspension system should
be constrained by a threshold due to the limited power of the actuator, that is∣∣∣u(t)∣∣∣ ≤ umax (22)

where umax is the maximum force of the actuator.
(2). Ride comfort. To provide comfort for passengers, a control u is designed to isolate the sprung

mass from the road and magnetic force induced vibration, i.e., to minimize the vertical acceleration
..
zb

in the presence of parameter uncertainties mb and kt, unknown dynamics Fr, and road speed excitation.
(3). Suspension deflection. The suspension deflection should not exceed its travel limit to avoid

ride comfort degradation and vehicle component damage. i.e.,∣∣∣zs(t) − zb(t)
∣∣∣ ≤ zmax (23)

where zmax is the maximum deflection of the suspension.
(4). Motor unbalance dynamic force. The UEF in IWM promotes the rotor eccentricity which

intensifies the bearing wear, shortening the motor life. Furthermore, it aggravates the sprung mass
acceleration and provokes cacophony, deteriorating the vehicle comfort significantly. As previously
analyzed, the UEF is closely related to the rotor eccentricity. Thus, another primary objective is to
minimize the rotor eccentricity when the controller is designed. That is, |zr − zs|.

(5). Road-holding stability. The firm uninterrupted contact of wheels to road should be ensured
to make sure the vehicle safety, that is to say, the dynamic load of the tire should not exceed its
corresponding static load, i.e.,

kt(zr(t) − zg(t)) ≤ (mb + ms + mr)g (24)

To analyze the performances mentioned above, for the sake of convenience the controlled outputs
are defined as

z1 =
[ ..

zb β(zr − zs)
]T

z2 =
[
γ

zs(t)−zb(t)
zmax

kt(zr(t)−zg(t))
(mb+ms+mr)g

]T
(25)
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Thus, active suspension control system can be described by a state-space equation as:
.
x(t)=A(λ)x(t)+B1(λ)w(t)+B2(λ)u(t)
z1=C1(λ)x(t)+D1(λ)u(t)
z2=C2(λ)x(t)+D2u(t)

(26)

where

C1(λ) =

[
−csm−1

b csm−1
b 0 ksm−1

b 0 0
0 0 0 0 β 0

]
, D1(λ) =

[
m−1

b 0
]T

,

C2(λ) =

[
0 0 0 γz−1

max 0 0
0 0 0 0 0 kt(mb + ms + mr)

−1g−1

]
, D2 = [00]T,

where γ and β are weight coefficients. To obtain a better control performance of the suspension,
a state-feedback controller as ud = k(λ)x(t) is designed. Then, by considering the actuator fault, a
state-feedback controller can be modelled as

uactual(t) = ξud = ξk(λ)x(t) (27)

where k(λ) is a gain matrix of the feedback controller that needs to be determined, ξ represents the
possible actuator fault, ud is the desired force calculated by the controller, and uactual is the actual force
generated by the actuator. Assuming that ξ is constrained by its maximum ξmax value and minimum
value ξmin, the control law considering actuator faults and parameter uncertainties can be denoted as

uactual(t) = ξk(λ)x(t) = ξ0(I + L)k(λ)x(t) (28)

where ξ0 = (ξmax + ξmin)/2 and L = (ξ− ξ0)/ξ0. Defining J = (ξmax − ξmin)/(ξmax + ξmin), then, we
have LTL ≤ JTJ ≤ I.

Therefore, the closed-loop system with state-feedback controller is rewritten as:

.
x(t)=(A(λ) + ξ0(I + L)B2(λ)k(λ))x(t)+B1(λ)w(t)

z1=C1(λ)x(t)+D1(λ)u(t)z2=C2(λ)x(t)+D2u(t)
(29)

where the system matrices A(λ), B1(λ), B2(λ), C1(λ), D2(λ) and C2(λ), which are dependent on the
sprung mass mb and the tire stiffness kt, are functions of λ. It is assumed that A(λ), B1(λ), B2(λ), C1(λ),
D2(λ) and C2(λ) are constrained within the polytope Ω

Ω =


(A, B1, B2, C1, D1, C2)(λ) :

(A, B1, B2, C1, D1, C2)(λ) =
4∑

i=1
ai(λ)(A, B1, B2, C1, D1, C2)(i),

4∑
i=1

ai(λ) = 1, ai(λ) ≥ 1,


(30)

where

(A, B1, B2, C1, D1, C2)1 = (A(λ), B1(λ), B2(λ), C1(λ), D1(λ), C2(λ))
∣∣∣
λ1=−λ10,λ2=−λ20

(A, B1, B2, C1, D1, C2)2 = (A(λ), B1(λ), B2(λ), C1(λ), D1(λ), C2(λ))
∣∣∣
λ1=−λ10,λ2=λ20

(A, B1, B2, C1, D1, C2)3 = (A(λ), B1(λ), B2(λ), C1(λ), D1(λ), C2(λ))
∣∣∣
λ1=λ10,λ2=−λ20

(A, B1, B2, C1, D1, C2)4 = (A(λ), B1(λ), B2(λ), C1(λ), D1(λ), C2(λ))
∣∣∣
λ1=λ10,λ2=λ20
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Additionally, the relationship between the uncertain masses (mb and kt) and the vector a(λ) =
(a1(λ), a2(λ), a3(λ), a4(λ)) is expressed by

a1(λ) = M1(λ) ×N1(λ)a2(λ) = M1(λ) ×N2(λ)

a3(λ) = M2(λ) ×N1(λ)a4(λ) = M2(λ) ×N2(λ)
(31)

where
M1(λ) =

(
m−1

b −m−1
bu

)
/
(
m−1

bl −m−1
bu

)
M2(λ) =

(
m−1

bl −m−1
b

)
/
(
m−1

bl −m−1
bu

)
N1(λ) =

(
k−1

t − k−1
tu

)
/
(
k−1

tl − k−1
tu

)
N2(λ) =

(
k−1

rl − k−1
r

)
/
(
k−1

rl − k−1
ru

)
Lemma 1. [18] For matices R and S, the inequality RΣS + STΣTRT

≤ εRVRT + ε−1STVS holds, if ε > 0,
Σ(t) = diag

(
σ(t)1, σ(t)2, . . . , σ(t)p

)
is a time varying diagonal matrix, and satisfies |Σ| ≤ V.

Theorem 1. For given positive constant ρ, a robust reliable H∞ controller in the form of Equation (28) exists,
such that the closed-loop system in Equation (29) is asymptotically stable and satisfies ‖z1(t)‖2 < γ‖w(t)‖2 for
all w satisfying ‖w(t)‖22 ≤ ‖w(t)‖max = ρ/γ2, while the constrains in inequalities (32–34) are guaranteed, if
there exist symmetric matrices P(λ), general matrix k(λ) and any scalar η > 0, ε > 0 satisfying

Λ11 B1(λ) Λ13 ηB2 k
T
(λ)ξT

0
∗ −γ2I 0 0 0
∗ ∗ −I ηD1(λ) 0
∗ ∗ ∗ −ηJ−1 0
∗ ∗ ∗ ∗ −ηJ−1


< 0 (32)


−I + εJ

√
ρξ0k(λ) 0

∗ −u2
maxP(λ)

√
ρk

T
(λ)ξT

0
∗ ∗ εJ−1

 < 0 (33)

[
−I

√
ρC2(λ)P(λ)

∗ −z2
maxP(λ)

]
< 0 (34)

with
Λ11= sym(A(λ)P(λ) + B2(λ)ξ0k(λ)), Λ13 = P(λ)CT

1 (λ)+k
T
(λ)ξT

0 DT
1 (λ).

Proof. Choose the Lyapunov–Krasovskii functional candidate as follows:

v(t,λ) = xT(t)P(λ)x(t) (35)

To establish a system in Equation (29) that is robust asymptotically stable with disturbance
attenuation γ > 0, the following Hamiltonian should be less than zero

H(x,λ, w, t) = zT
1 (t)z1(t) − γ2wT(t)w(t) +

.
v(λ, t) < 0 (36)

H(x,λ, w, t) = xT(t)
{
[A(λ) + B2(λ)ξ0(I + L)k(λ)]TP(λ) + P(λ)[A(λ) + B2(λ)ξ0(I + L)k(λ)]

}
x(t)+

xT(t)P(λ)B1(λ)w(t) + w(t)TB1
T(λ)P(λ)x(t) − γ2w(t)Tw(t) + xT(t)[C1(λ)+

D1(λ)ξ0(I + L)k(λ)]T[C1(λ)+D1(λ)ξ0(I + L)k(λ)]x(t)

= ΓT(t)

 Π1 P(λ)B1(λ)

B1
T(λ)P(λ) −γ2I

ΓT(t)
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where

ΓT(t)= [xT(t), w(t)T
]T Π1 = [A(λ) + B2(λ)ξ0(I + L)k(λ)]TP(λ) + P(λ)[A(λ) + B2(λ)ξ0(I + L)k(λ)]+

[C1(λ)x(t)+D1(λ)ξ0(I + L)k(λ)]T [C1(λ)x(t)+D1(λ)ξ0(I + L)k(λ)]

To achieve H(x, λ, w, t) < 0 for all Γ(t) , 0, the following inequality should hold[
Π1 P(λ)B1(λ)

B1
T(λ)P(λ) −γ2I

]
< 0 (37)

By using the Schur complement, inequality (37) can be converted into inequality (38).
Λ11 P(λ)B1(λ) Λ13

∗ −γ2I 0
∗ ∗ −I

+


P(λ)B2(λ)

0
D1(λ)

L[
ξ0k(λ) 0 0

]

+




P(λ)B2(λ)

0
D1(λ)

L[
ξ0k(λ) 0 0

]
T

< 0

(38)

where
Λ11= sym(P(λ)A(λ) + P(λ)B2(λ)ξ0k(λ)), Λ13 = [C1(λ)+D1(λ)ξ0k(λ)]T.

Based on Lemma 1, inequality (38) can be converted into inequality (39).
Ψ11 P(λ)B1(λ) Ψ13

∗ −γ2I 0
∗ ∗ −I + ηD1(λ)JDT

1 (λ)

 < 0 (39)

where

Ψ11 = Λ11 + ηP(λ)B2(λ)BT
2 (λ)P(λ) + kT(λ)ξT

0η
−1Jξ0k(λ), Ψ13 = Λ13 + ηP(λ)B2JDT

1 (λ).

By the Schur complement, we get
Λ11 P(λ)B1(λ) Λ13 ηP(λ)B2 kT(λ)ξT

0
∗ −γ2I 0 0 0
∗ ∗ −I ηD1(λ) 0
∗ ∗ ∗ −ηJ−1 0
∗ ∗ ∗ ∗ −ηJ−1


< 0 (40)

Pre- and post-multiplying diag
{
P(λ)−1 I I I I

}
, the congruent transformation of the matrix is

achieved. Subsequently, by defining P(λ)= P(λ)−1 and k(λ) = k(λ)P(λ)−1, the inequality (40) is
equivalent to the first LMI in inequality (32). Then we will show that hand constrains in inequalities
(22)–(24) are guaranteed. From the Lyapunov function in inequality (35), it can be known that xTPx < ρ,
with ρ = γ2wmax + v(0). Similarly, the following inequalities hold:

max
t>0

∣∣∣u(t)∣∣∣2 = max
t>0
‖ξ0(I + L)k(λ)x(t)‖22 = max

t>0
‖x(t)T[ξ0(I + L)k(λ)]T[ξ0(I + L)k(λ)]x(t)‖2

< ρ · θmax(P−1/2[ξ0(I + L)k(λ)]T[ξ0(I + L)k(λ)]P−1/2) < u2
maxI

(41)

max
t>0

∣∣∣{z2(t)
}∣∣∣2 = max

t>0
‖x(t)TC2(λ)

TC2(λ)x(t)‖2
= max

t>0
‖

{
x(t)TP(λ)1/2P(λ)−1/2C2(λ)

TC2(λ)P(λ)
−1/2P(λ)1/2x(t)

}
‖

2

< ρ · θmax(P(λ)
−1/2C2(λ)

TC2(λ)P(λ)
−1/2) < z2

maxI

(42)
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where θmax(·) represents the maximal eigenvalue. Using the Schur complement and Lemma 1,
inequality (41) can be written as

−I + εJ
√
ρξ0k(λ) 0

∗ −u2
maxP(λ)

√
ρkT(λ)ξT

0
∗ ∗ εJ−1

 < 0 (43)

Pre- and post-multiplying inequality (43) by diag
{
I P(λ)−1 I

}
, defining P(λ)= P(λ)−1 and k(λ) =

k(λ)P(λ)−1, the inequality is equivalent to the second LMI in inequality (33). Furthermore, based on
the Schur complement, the inequality matrix in inequality (42) can be change to[

−I
√
ρC2(λ)

∗ −z2
maxP(λ)

]
< 0 (44)

Pre- and post-multiplying inequality (44) by diag
{
I P(λ)−1

}
, using P(λ) to replace P(λ)−1, the

LMI inequality (44) is equal to the third LMI in inequality (34). Thus, the proof is completed.
According to the inner property of the polytopic tire stiffness uncertainties and sprung mass

uncertainties, Equations (32)–(34) in Theorem 1 are equivalent to the inequalities as follows:

Λ11 B1i Λ13 ηi jB2i k
T
j ξ

T
0

∗ −γ2I 0 0 0
∗ ∗ −I ηi jD1i 0
∗ ∗ ∗ −ηi jJ−1 0
∗ ∗ ∗ ∗ −ηi jJ−1


< 0 i, j = 1, 2, 3, 4 (45)


−I + ε jJ

√
ρξ0k j 0

∗ −u2
maxP j

√
ρk

T
j ξ

T
0

∗ ∗ ε jJ−1

 < 0 j = 1, 2, 3, 4 (46)

[
−I

√
ρC2iP j

∗ −z2
maxP j

]
< 0 i, j = 1, 2, 3, 4 (47)

where
Λ11= sym(AiP j + B2iξ0k j), Λ13 = P jCT

1i+k
T
j ξ

T
0 DT

1i.

Thus, by solving the following convex optimization problem, the robust state-feedback controller
design can be accomplished.

min γ

s.t. inequalities (45)–(47), P j > 0, ηi j > 0, ε j > 0
for k j, i, j = 1, 2, 3, 4,
The gain matrix of the controller can be expressed by

K = ξ

 4∑
j=1

a j(λ)k j


 4∑

j=1

a j(λ)P j


−1

(48)

This convex optimization problem can be solved by the function mincx provided by MATLAB.
Employing a similar method to what is proposed in Theorem 1, the theorem 2 can be achieved for the
active suspension of the hub-driven EVs without actuator faults and parameter uncertainties.
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Theorem 2. Given positive constant ρ, a H∞ controller exists, such that the closed-loop system is asymptotically
stable and satisfies ‖z1(t)2‖ < γ‖w(t)‖2 for all w satisfying ‖w(t)‖22 ≤ ‖w(t)‖max = ρ/γ2, while the constrains
in inequalities (22–24) are guaranteed, if there exist symmetric matrices P and general matrix k satisfying


sym(AP + B2k) B1 PCT

1+kTDT
1

∗ −γ2I 0
∗ ∗ −I

 < 0 (49)

[
−I

√
ρk

∗ −u2
maxp

]
< 0 (50)

[
−I

√
ρC2P

∗ −z2
maxP

]
< 0 (51)

Thus, the feedback gain matrix K2 of the controller can be given by K2 = kP−1.

4. Results and Discussion

To reflect the superiority of reliable robust H∞ controller in improving the vehicle and the motor
performances, the responses of the hub-driven EV under different controllers are investigated in both
the frequency domain and time domain. The parameters of the hub-driven EV are given in Appendix A.
We assume umax = 2000 N and zmax = 0.11 m. Moreover, the uncertain parameters about the sprung
mass and the tire stiffness are supposed to satisfy |λ1| ≤ 0.3, |λ2| ≤ 0.2.

A conventional robust controller KC is designed firstly, as described by Theorem 2, in which the
actuator failure and the model uncertainties are not considered. The gain matrix of the conventional
controller is

KC = 103
× [−1.092− 0.326− 0.12− 5.802− 4.6833.91]

Then, a parameter-dependent controller KP is designed for parameter uncertainties by applying
the method in Theorem 1 with the ξ0 and J terms dropped out. This design does not consider the
actuator failure, and its corresponding gain matrix is

KP = 103
× [−0.865− 0.425− 0.109− 6.747− 3.6634.018]

Lastly, a reliable robust controller KPF is designed for active suspension in the hub-driven EV
according to Theorem 1. in which the actuator failure and the parameter uncertainties are both
considered. The gain matrix of a reliable robust controller is KPF1 and KPF2 when the actuator thrust
loss is 0% and 40% respectively.

KPF1 = 103
× [−1.082− 0.531− 0.136− 8.434− 4.5795.022]

KPF2 = 103
× [−0.649− 0.319− 0.082− 5.061− 2.7473.014]

Figure 7 illustrates the control structure for the active suspension system. The control structure
can be divided into two parts: the outer control loop and the inner control loop. In the inner control
loop, the states which are sampled by sensors act as an input to the reliable robust H∞ controller.
The ideal control force is first generated by the controller based on control strategy. Then, the linear
motor is controlled to produce thrust force (detailed control process can be found in the literature [52]).
In the outer control loop, with the change of the sprung mass, tire stiffness or actuator thrust losses
exceed a certain limit, the gain matrix of the controller will be updated by solving proposed convex
optimization problem. This convex optimization process takes 20 s. However, the degree of actuator
thrust loss, the sprung mass, and the tire stiffness do not change rapidly in real time. In other words,
the gain matrix of the controller is not updated in real time. In addition, in inner control loop, the
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absolute CPU-time (0.00081 s) per time step is shorter than the real-time simulation time-step (0.01 s),
thus illustrating the viability of its real-time implementation.Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 25 
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Figure 7. Control structure of the active suspension system.

4.1. Bump Road Excitation

To reveal the transient response characteristics of the electric vehicle and the IWM, the bumpy
road excitation is introduced as follows:

zg =

 a
2 (1− cos( 2πv0

l t)), t0 ≤ t ≤ l
v0

+ t0

0, t > l/v0 + t0
(52)

where a denotes the height of the bump; l denotes the length of the bump; v0 denotes vehicle forward
velocity. Here we choose v0 = 25 km/h, l = 0.2 m and a = 0.1 m. Figure 8a,b show the road displacement
excitation and speed excitation, respectively.
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Figure 8. Bump input from the ground: (a) displacement excitation; (b) speed excitation.

Figure 9 shows the time-domain responses of passive suspension, KC and KP. It can be observed
that, compared with passive suspension, the body acceleration, tire dynamic force and suspension
deflection of active suspension with KC and KP are obviously reduced. Furthermore, the periods of
their transients become much shorter. These imply that the performance of the electric vehicle has
been improved with active control system. In addition, it can be observed that the control effects of KC

and KP are similar in time domain.
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Besides, the corresponding responses of the rotor eccentricity and the UEF of IWM are illustrated
in Figure 10. It can be seen that the magnitudes of the eccentricity and the UEF under active suspension
are significantly reduced in time domain, indicating that the active suspension greatly improve the
performance of the IWM. The reason behind this is that active suspension inhibits the rotor eccentricity,
restricting the magnetic force oscillation. Thus, the coupling effect in IWM is alleviated.
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Figure 10. The motor responses under bump excitation: (a) the rotor eccentricity; (b) the UEF.

Figure 11a,b show the frequency responses from the ground velocity to the body vertical
acceleration for the open and closed-loop systems using the conventional robust controller and
the parameter-dependent controller. It can be observed that the closed-loop system minimizes the
acceleration of the sprung mass in the frequency range from 1 Hz to 8 Hz implying that the ride
comfort of EV is enhanced. The parameter-dependent controller for active suspension systems achieve
less value of sprung mass acceleration than the conventional robust controller. It means that the
control effect of the parameter-dependent controller is slightly better. In addition, the second peak
value of T..

zb/
.
zg

, which decreases with an increase in the sprung mass, is the fixed point for active
suspension system.
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Figure 11c,d demonstrate the frequency responses from the ground velocity to the rotor eccentricity
for the open and closed-loop systems. It can be seen that the closed-loop system reduces the value of
T(zr−zg)/

.
zg

in the frequency range from 1 Hz to 4 Hz, implying that active suspension can suppress
the interference from the ground to the IWM in the corresponding frequency range, alleviating the
coupling effect in IWM.

Figure 11e,f show the frequency responses from the Fr (UEF) to the body vertical acceleration
for the open and closed-loop systems. One can observe that the closed-loop system can suppress the
influence of the UEF on the body vertical acceleration, improving the ride comfort of EV. Compared
with the conventional robust controller, the parameter-dependent controller performs better in
frequency domain.

Figure 12 shows the first peak value of the closed-loop transfer function T..
zb/

.
zg

with the
parameter-dependent controller and the reliable robust controller versus the uncertain parameters
λ1 and λ2 in existence of 0%, 40%, and 80% actuator thrust loss. One can observe that the peak
value of T..

zb/
.
zg

goes up with an increase of actuator thrust loss. This indicates that, with the extent
of failure increasing, the effect of active suspension to isolate the disturbance from the ground to the
sprung mass becomes worse, deteriorating the ride comfort. In addition, one can observe that, along
with the changes of the uncertain parameters λ1 and λ2, the reliable robust controller yields smaller
closed-loop peak value than the parameter-dependent controller, indicating that the reliable robust
controller considering actuator fault-tolerant can achieve better the ride comfort of EV than the one
without fault-tolerant.
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Figure 13 shows the first peak value of the closed-loop transfer function T(zr−zg)/
.
zg

with the
parameter-dependent controller and the reliable robust controller versus the uncertain parameters
λ1 and λ2 in the existence of 0%, 40%, and 80% actuator thrust loss. Clearly, under different actuator
thrust loss, the reliable robust controller can obtain outstanding performances in terms of isolating
the disturbance from the ground to the IWM, compared with the parameter-dependent controller.
In addition, one can observed that the peak value of T(zr−zg)/

.
zg

goes up with an increase of λ1, indicating
that with the increase of sprung mass, the effect of active suspension to isolate the disturbance from the
ground to the IWM becomes worse. That is to say, the increase of the sprung mass intensifies coupling
effect in IWM.

Figure 14 shows the frequency responses of the open and closed-loop systems by using the
parameter-dependent controller and the reliable robust controller in the existence of 0% and 40%
actuator thrust loss. Similar to Figure 11a,b, one can observe that compared with passive suspension
and the parameter-dependent controller, the reliable robust controller can achieve better vehicle and
motor performance, when actuator thrust loss occurs.
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Figure 13. The first peak value of T(zr−zg)/
.
zg

with the parameter-dependent controller and the reliable
robust controller versus the uncertain parameters λ1 and λ2: (a) versus λ1 under 0% actuator loss;
(b) versus λ2 under 0% actuator loss; (c) versus λ1 under 40% actuator loss; (d) versus λ2 under 40%
actuator loss; (e) versus λ1 under 80% actuator loss; (f) versus λ2 under 80% actuator loss.
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Figure 14. Frequency responses for the open (passive mode) and closed loop (active mode) systems
with actuator thrust loss: (a) transfer function T..

zb/
.
zg

under 0% actuator loss; (b) transfer function T..
zb/

.
zg

under 40% actuator loss; (c) transfer function T(zr−zg)/
.
zg

under 0% actuator loss; (d) transfer function
T(zr−zg)/

.
zg

under 40% actuator loss.

Figures 15 and 16 illustrate the time-domain responses of passive suspension and active suspension
with the parameter-dependent controller and the reliable robust controller in the existence of 0% and
40% actuator thrust loss. Similar to Figure 13, those figures reveal the advantage of the reliable robust
controller in improving the ride comfort and inhibiting the coupling effect in IWM.
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Figure 15. Body acceleration of the vehicle: (a) under 0% actuator loss; (b) under 40% actuator loss.
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Figure 16. The in-wheel motor dynamic responses: (a) the rotor eccentricity under 0% actuator loss;
(b) the rotor eccentricity under 0% actuator loss; (c) UEF under 0% actuator loss; (d) UEF under 40%
actuator loss.

4.2. Random Road Excitation

To further evaluate the advantages of the reliable robust controller, the performances of electric
vehicles are investigated at a speed of 25 km/h on a B-class road. Figure 17 and Table 1 show the
stochastic responses of three suspensions (KC, KP, and the passive suspension). Responses of the
sprung mass acceleration and the rotor eccentricity are plotted in Figure 17. A detailed numerical
comparison using the root mean square values (RMS) is shown in Table 1. One can observe that both
of active control methods KC and KP can obviously enhance the ride comfort and slightly intensify the
rotor eccentricity compared with passive suspension. It can be found that compared with KC, the RMS
of the sprung mass acceleration controlled by KP decreased by 4.5%, from 0.7 to 0.67, and the rotor
eccentricity only rose by 0.8%, from 174.5 to 176. The comprehensive performance of KP is obvious
better than that of KC.
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Table 1. The root mean square (RMS) of electric vehicle (EV) responses.

Dynamics Response Passive
Active Suspension

Kc KP

Sprung mass acceleration (m/s2) 0.92 0.70 0.67
Deflection of suspension (m) 0.0046 0.0043 0.0045

Dynamic force of tire (N) 647.7 787 819
Eccentricity (m) 6.1 × 10−5 6.4 × 10−5 6.5 × 10−5

UEF (N) 164.4 174.5 176
Control force (N) – 90.97 103.3

Figure 18 and Table 2 show the stochastic responses of three suspensions (KP, KPF and the passive
suspension). It can be seen from Table 2 and Figure 18 that the reliable robust controller achieves a lower
peak value and lower RMS value of sprung mass acceleration, compared with passive system and the
parameter-dependent controller system without actuator fault-tolerant, which clearly illustrates that
KPF can effectively improve the ride comfort. Furthermore, from Table 2, it can be observed that when
the extent of failure is minor, the RMS of the body acceleration is greatly reduced and the RMS of the
UEF increased slightly compared to passive suspension and the parameter-dependent control system.
The results imply that the reliable robust controller with slight actuator failure can significantly enhance
the ride comfort and avoid large increases of the coupling effect in IWM. When the extent of failure is
major, both the body acceleration and the UEF decreased to a certain extent, indicating that the ride
comfort and the IWM performance are improved. According to the analysis, it can be inferred that in
the presence of actuator failure and model parameter uncertainties, the active suspension system with
the reliable robust controller improves the ride comfort and PMBDC motor operation performance.
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Table 2. The RMS of EV dynamic responses with different actuator thrust losses and parameter variation.

Suspension Types
Body

Accele-Ration
(m/s2)

Suspension
Deflection

(m)

Tire
Dynamic
Force (N)

Control
Force (N)

Eccentricity
(m) UEF (N)

Passive 0.92 0.0046 647.7 – 6.1 × 10−5 164.4
Pra-dependent 0% 0.67 0.0045 819 103.3 6.5 × 10−5 176
Reliable robust 0% 0.61 0.0047 893.9 136.5 6.9 × 10−5 187.5
Pra-dependent 40% 0.77 0.0043 732.4 58.9 6.1 × 10−5 166.1
Reliable robust 40% 0.72 0.0043 761.4 74.6 6.1 × 10−5 169.2
Pra-dependent 80% 0.86 0.0044 671.1 19.5 5.9 × 10−5 160.9
Reliable robust 80% 0.85 0.0044 677.7 24.3 5.9 × 10−5 161.0

In general, the active suspension system considering the eccentricity of the rotor can greatly enhance
the ride comfort and weaken the influence of UEF on the performance of the hub-driven EV. When the
model parameters are perturbed, the parameter-dependent controller shows better comprehensive
performance than conventional robust controller. In addition, the reliable robust controller can achieve
better vehicle and motor performance in the presence of different actuator thrust losses and parameter
variation, compared with the conventional robust controller and parameter-dependent controller.
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5. Conclusions

The mathematical model for a hub-driven electric vehicle considering the coupling effect in IWM
was established based on electric magnetic field theory. The influences of the coupling effect on
the vehicle performances were analyzed. Then, a reliable robust H∞ controller considering model
uncertainties, actuator failure and electromagnetic force interference was designed. The results are
given as follows:

(1). The vertical UEF in the motor is strongly coupled with rotor rotation position, phase current,
and rotor eccentricity. High phase current and large rotor eccentricity promoted by the coupling effect
provoke the UEF of the motor. The mutual promotion phenomenon (i.e., the rotor eccentricity provokes
the UEF; synchronously, the UEF intensifies the rotor eccentricity) aggravates the electromagnetic
coupling effect, thus worsening the motor operation performance. Furthermore, this phenomenon
aggravates the car body acceleration, deteriorating the ride comfort of vehicle.

(2). Based on Lyapunov stability theory, a reliable robust H∞ controller for active suspension
of a hub-driven EV associated with model uncertainties, actuator failure, and electromagnetic force
interference was investigated. The control objective is to enhance the ride comfort and restrict
the coupling effect in IWM while satisfying the hard constraints such as road holding capability,
suspension deflection limitation, actuator failure, and parameter variation. Simulation results in both
the frequency-domain and time-domain show the robustness and advantageous performances of the
reliable robust H∞ controller method. This work can provide a practical model reference for the
study of vibration performance of hub-driven EVs with PMSM and the optimization, control and
improvement of its vibration performance. In the future, the influence of bearing nonlinear force and
bearing clearance on the ride comfort and the motor operation performance will be studied. Moreover,
the experimental validation will be investigated.
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Appendix A

Table A1. Nomenclature and value.

EV Symbol Value Unit Expression

The parameter values of the hub-driven electric vehicle
Rs 0.028 ohm Stator resistances
J 1.2 kg·m2 Rotor rotational inertia

Ls 0.00187 H Inductance of phase
mr 65 kg Motor rotor mass
ms 37.5 kg Motor stator mass
mb 337.5 kg Sprung mass
kt 250,000 N/m Stiffness of tire
ks 23500 N/m Stiffness of suspension
km 8,000,000 N/m Stiffness of motor bearing
cs 1450 N·s/m Damp of suspension
ct 375 N·s/m Damp of tire
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Table A1. Cont.

EV Symbol Value Unit Expression

Parameters of a 27-slot/24-pole surface PMBDC motor
2p 24 - Pole number
QS 27 - Slot number
Rr 169.8 mm Rotor surface radius
Rm 163.8 mm Magnet surface radius
Rs 163 mm Stator surface radius
αp 0.8 - Ratio of magnet arc to pole pitch
L 42 mm Stack length
lm 6 mm Radial thickness of magnet
δ 0.8 mm Length of air gap

Ns 20 - Number of turns of winding
b0 2 mm Stator slot opening
Br 1.29 T Magnet remanence
ur 1.07 - Relative recoil permeability
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