
applied
sciences

Article

Technology Mapping of FSM Oriented to
LUT-Based FPGA

Marcin Kubica * and Dariusz Kania

Department of Digital Systems, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland;
dkania@polsl.pl
* Correspondence: marcin.kubica@polsl.pl

Received: 5 May 2020; Accepted: 3 June 2020; Published: 5 June 2020
����������
�������

Abstract: The main purpose of the paper is to present technology mapping of FSM (finite state machine)
oriented to LUT (look-up table)-based FPGA (field-programmable gate array). The combinational
part of an automaton, which consists of a transition block and an output block, was mapped in
LUT-based logic blocks. In the paper, the idea of carrying out the combinational part of FSM was
presented and leads to the reduction of the number of LUTs needed to carry out an automaton.
The essence of this method is a simultaneous synthesis of the whole combinational block described in
the form of multi-output function. The proposed idea makes it possible to conduct decomposition
that may enable to share logic blocks, which can lead to the reduction of using resources of FPGA.
The decomposition process was conducted using the analyzed DECOMP system. The effectiveness of
the proposed idea of the FSM description was also confirmed by conducting decomposition with the
usage of the ABC system. The obtained results prove the efficiency of the proposed synthesis method
of FSM in comparison with the separate synthesis of a transition block and an output block.

Keywords: decomposition; fitting; FSM; partitioning; technology mapping

1. Introduction

Logic synthesis algorithms targeted at programmable logic devices are extremely important.
Their effectiveness leads to obtaining solutions: faster, cheaper, whose power consumption has been
significantly reduced. This is particularly important in the case of sequential circuits where FSM (finite
state machine) plays a key role. The process of carrying out FSM in programmable logic devices is
associated with the problem of an efficient technology mapping. The state assignment has a substantial
influence on technology mapping. Technology mapping is usually oriented at precisely described
project limitations. The goal of optimization may be the area [1,2], the speed [3], and minimization of
the power consumption [4,5] or testability of a circuit [6].

The state assignment is the most important element of FSMs synthesis. Despite the fact that
advanced methods of state assignment [7,8] are often regarded as optimal, more effective methods of
carrying out FSM have been still searched for [9–14]. The problem of state assignment is often reduced
to i.e., input and output coding [15]. Some known methods are based on dichotomies [16], adjacency
analysis [17], or dominance graphs [18]. In recent years, the problem of the synthesis of low-power
circuits has been the matter of the main interest. Classic methods of coding directed at minimization of
the power consumption are based on minimization of the switching activity. The codes with minimum
code distance are assigned to the states and transitions occur between them [19–21] (minimum weighted
hamming distance method). There are also well-known coding methods that are based on integer
linear programming [19] and those that use genetic algorithms [22,23]. However, the most popular
state coding methods include those using heuristic methods [24,25]. A series of methods of carrying
out FSM are also very well-known and the essence lies in the usage of various solutions enabling

Appl. Sci. 2020, 10, 3926; doi:10.3390/app10113926 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8256-7726
http://dx.doi.org/10.3390/app10113926
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/11/3926?type=check_update&version=2

Appl. Sci. 2020, 10, 3926 2 of 20

to limit the power consumption by local lowering of both power supply as well as clock frequency
signals. In many cases, the main idea of FSM logic synthesis is based on decomposition. Different
kinds of decomposition are considered such as structural decomposition of FSMs [11,26–28], functional
decomposition [29–31], or general decomposition [22]. The decomposition-based logic synthesis is
especially crucial in the case of LUT-based (look-up table) FPGAs (field-programmable gate array).
The complexity of synthesis led to searching for new forms of FSM specification. The most promising
are binary decision diagrams (BDD) [32,33] and and-inverter graphs (AIG) [34]. Binary decision
diagrams as well as and-inverter graphs, implemented in the tool ABC [35], may be used in the
synthesis of FSMs. The process of synthesis can be also directed at using inbuilt memory blocks [36].
A special place is dedicated to the methods enabling to carry out circuits in the form of asynchronous
circuits [37] or GALS structures (globally asynchronous locally synchronous) [38]. A logic synthesis is
also especially essential from the point of view of designing cyber-physical systems [39–42].

It should be mentioned that skillful coding of states does not solve all the problems enabling for
effective mapping of FSM in a programmable structure. It is also worth to mention that in commercial
tools, the most basic methods of coding the states such as ‘one-hot’ encoding or binary encoding are
used. The solutions, obtained this way, are usually far from optimal. In the case of carrying out FSM
in LUT-based FPGAs, decomposition is an especially crucial element of the logic synthesis. It is a
theoretical basis of mapping of logic functions into LUTs [43]. A series of various decomposition
strategies are known [44]. In the process of decomposition, multi-output functions decomposition
should be considered as it gives the possibility to search for shared LUTs. This type of attitude connected
with a skillful unicoding leads to more efficient solutions than decomposing of each function separately.
The above observations are the source of inspiration to search for the method of a simultaneous
synthesis of combinational FSM blocks that have to be effectively mapped into LUT-based FPGA.

The goal of the paper is to present synthesis methods of FSM dedicated to LUT-based FPGAs,
whose essence is based on a simultaneous synthesis of a transition block and an output block, enabling
for effective decomposition process. The process of decomposition is based on the method of evaluating
the efficiency of technology mapping that is known from literature. The method uses triangle tables
which are directed at optimization of a decomposition of a multi-output function.

In comparison with the earlier works of the authors, an innovative element of this work is the
introduction of a method for estimating the technology mapping of entire multi-output function using
previously known triangle tables. Appropriate multi-output function is created taking into account
sharing of resources through various combination blocks that are part of FSM. The object of interest is
FSM, for which an innovative combination of the concept of joint implementation of FSM combination
blocks known from the literature has been proposed with our concept of effective implementation of
multi-output function, tailored to the internal resources of the structure used.

2. Theoretical Background

FSM is an abstract mathematical model of a sequential circuit. This model is a five-tuple:
{X,Y,S,S0,δ,λ}, where X is a set of input vectors, S—the set of internal states, S0—initial state, and Y—the
set of output vectors. The relations between these elements are determined by a transition function,
usually marked with the symbol δ, and an output function (λ) describing the values of output signals.
A general structure of FSM is shown in Figure 1. Transition and output functions are associated with
combinational blocks marked δ and λ, respectively. A memory block was symbolically marked as DFF
(D-type flip-flop) in Figure 1.

In accordance with the designations, included in Figure 1, a transition function is determined by δ:
BN+K

→ BK, where B = {0,1}. Depending on a type of automaton λ: BK
→ BM (Moore’s automaton) or λ:

BN+K
→ BM (Mealy’s automaton). In the process of coding states, each internal state of an automaton is

associated with K-bit vector of a state. The number of a state vector’s bits depends on the accepted
method of coding internal states and fulfills the inequality dlg2(card(S))e ≤ K ≤ card(S) [13].

Appl. Sci. 2020, 10, 3926 3 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 21

DFFδ

λ

clk

N

K

M

N

K

K

X
YS

S +

Figure 1. The block scheme of FSM (finite state machine).

In accordance with the designations, included in Figure 1, a transition function is determined

by δ: BN+K → BK, where B = {0,1}. Depending on a type of automaton λ: BK → BM (Moore’s automaton)

or λ: BN+K → BM (Mealy’s automaton). In the process of coding states, each internal state of an

automaton is associated with K-bit vector of a state. The number of a state vector’s bits depends on

the accepted method of coding internal states and fulfills the inequality lg2(card(S) K card(S) [13].

Logic blocks, included in FPGAs, contain necessary resources needed to carry out FSM. A

memory block includes D flip-flops placed in logic blocks. The number of flip-flops depends on the

state assignment. The transition and output blocks are carried out using LUTs whose outputs may be

directly joined to the inputs of D flip-flops. One vital feature of LUTs is the fact that they enable to

carry out any function that has a limited (usually low) number of variables. A low number of inputs of

LUTs requires a multilevel carrying out of a combinational logic in the form of the net of LUTs.

Decomposition is a mathematical model of a partition that is a basis of mapping of a logic function into

LUT-based FPGAs.

A decomposition model, which is the basis of the series of synthesis strategies, relies on the

theorem by Ashenhurst–Curtis [45,46].

Let f be n-input and m-output logic function reflecting Bn set into Bm set i.e., f: Bn → Bm, where B =

{0,1}. Function f: Bn → Bm may be presented as Y = {ym−1, ..., y1, y0} = f(In−1, ..., I1, I0).

Function f: Bn → Bm is subjected to decomposition i.e.:

f(Xf,Xb) = F[g1(Xb), g2(Xb), …, gp(Xb), Xf], (1)

if and only if column multiplicity of Karnaugh map υ(Xf | Xb) ≤ 2p.

The sets Xb and Xf are called a bound and a free set, respectively, where Xb ∪ Xf = {In−1, ..., I1, I0}

and Xb ∩ Xf = Φ.

The above theorem is a mathematical model of technology mapping of a function f: Bn → Bm in

two LUTs: LUT_card(Xb)/p and LUT_card(Xf)+p/m, where LUT_a/b is the block that is a-inputs and

b-outputs (Figure 2).

bX

fX

bX

fX

)(1 bXg

)(2 bXg

)(bp Xg

B
o

u
n

d
 b

lo
c

k

F
re

e
 b

lo
c

k

Y Y
m

n

m

n

LUT_card(Xb)/p

LUT_p+card(Xf)/m

Figure 2. The idea of serial decomposition.

The partition of a circuit is implied from the partition of variables. One part of n-input variables

is the set of variables for p bound functions carried out in a bound block. The rest of the part of the

variables creates a free set. From technology mapping of multi-output function point of view, it is

key for LUT_k/x blocks that card(Xb) ≤ k and card(Xf) + p ≤ k, where k indicates the number of inputs of

LUT.

Figure 1. The block scheme of FSM (finite state machine).

Logic blocks, included in FPGAs, contain necessary resources needed to carry out FSM. A memory
block includes D flip-flops placed in logic blocks. The number of flip-flops depends on the state
assignment. The transition and output blocks are carried out using LUTs whose outputs may be
directly joined to the inputs of D flip-flops. One vital feature of LUTs is the fact that they enable to
carry out any function that has a limited (usually low) number of variables. A low number of inputs
of LUTs requires a multilevel carrying out of a combinational logic in the form of the net of LUTs.
Decomposition is a mathematical model of a partition that is a basis of mapping of a logic function into
LUT-based FPGAs.

A decomposition model, which is the basis of the series of synthesis strategies, relies on the
theorem by Ashenhurst–Curtis [45,46].

Let f be n-input and m-output logic function reflecting Bn set into Bm set i.e., f: Bn
→ Bm,

where B = {0,1}. Function f: Bn
→ Bm may be presented as Y = {ym−1, . . . , y1, y0} = f (In−1, . . . , I1, I0).

Function f: Bn
→ Bm is subjected to decomposition i.e.:

f (Xf,Xb) = F[g1(Xb), g2(Xb), . . . , gp(Xb), Xf], (1)

if and only if column multiplicity of Karnaugh map υ(Xf | Xb) ≤ 2p.
The sets Xb and Xf are called a bound and a free set, respectively, where Xb ∪ Xf = {In−1, . . . , I1, I0}

and Xb ∩ Xf = Φ.
The above theorem is a mathematical model of technology mapping of a function f: Bn

→ Bm in
two LUTs: LUT_card(Xb)/p and LUT_card(Xf)+p/m, where LUT_a/b is the block that is a-inputs and
b-outputs (Figure 2).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 21

DFFδ

λ

clk

N

K

M

N

K

K

X
YS

S +

Figure 1. The block scheme of FSM (finite state machine).

In accordance with the designations, included in Figure 1, a transition function is determined

by δ: BN+K → BK, where B = {0,1}. Depending on a type of automaton λ: BK → BM (Moore’s automaton)

or λ: BN+K → BM (Mealy’s automaton). In the process of coding states, each internal state of an

automaton is associated with K-bit vector of a state. The number of a state vector’s bits depends on

the accepted method of coding internal states and fulfills the inequality lg2(card(S) K card(S) [13].

Logic blocks, included in FPGAs, contain necessary resources needed to carry out FSM. A

memory block includes D flip-flops placed in logic blocks. The number of flip-flops depends on the

state assignment. The transition and output blocks are carried out using LUTs whose outputs may be

directly joined to the inputs of D flip-flops. One vital feature of LUTs is the fact that they enable to

carry out any function that has a limited (usually low) number of variables. A low number of inputs of

LUTs requires a multilevel carrying out of a combinational logic in the form of the net of LUTs.

Decomposition is a mathematical model of a partition that is a basis of mapping of a logic function into

LUT-based FPGAs.

A decomposition model, which is the basis of the series of synthesis strategies, relies on the

theorem by Ashenhurst–Curtis [45,46].

Let f be n-input and m-output logic function reflecting Bn set into Bm set i.e., f: Bn → Bm, where B =

{0,1}. Function f: Bn → Bm may be presented as Y = {ym−1, ..., y1, y0} = f(In−1, ..., I1, I0).

Function f: Bn → Bm is subjected to decomposition i.e.:

f(Xf,Xb) = F[g1(Xb), g2(Xb), …, gp(Xb), Xf], (1)

if and only if column multiplicity of Karnaugh map υ(Xf | Xb) ≤ 2p.

The sets Xb and Xf are called a bound and a free set, respectively, where Xb ∪ Xf = {In−1, ..., I1, I0}

and Xb ∩ Xf = Φ.

The above theorem is a mathematical model of technology mapping of a function f: Bn → Bm in

two LUTs: LUT_card(Xb)/p and LUT_card(Xf)+p/m, where LUT_a/b is the block that is a-inputs and

b-outputs (Figure 2).

bX

fX

bX

fX

)(1 bXg

)(2 bXg

)(bp Xg

B
o

u
n

d
 b

lo
c

k

F
re

e
 b

lo
c

k

Y Y
m

n

m

n

LUT_card(Xb)/p

LUT_p+card(Xf)/m

Figure 2. The idea of serial decomposition.

The partition of a circuit is implied from the partition of variables. One part of n-input variables

is the set of variables for p bound functions carried out in a bound block. The rest of the part of the

variables creates a free set. From technology mapping of multi-output function point of view, it is

key for LUT_k/x blocks that card(Xb) ≤ k and card(Xf) + p ≤ k, where k indicates the number of inputs of

LUT.

Figure 2. The idea of serial decomposition.

The partition of a circuit is implied from the partition of variables. One part of n-input variables
is the set of variables for p bound functions carried out in a bound block. The rest of the part of the
variables creates a free set. From technology mapping of multi-output function point of view, it is key
for LUT_k/x blocks that card(Xb) ≤ k and card(Xf) + p ≤ k, where k indicates the number of inputs of LUT.

The choice of an appropriate partition of variables is not so simple. It is directly connected with the
choice of a decomposition path. In the process of searching for decomposition, various partitions are
considered for which column multiplicity of a partitions’ matrix is determined. Using binary decision
diagrams, column multiplicity may be determined by defining so called number of cut nodes [47].
It shall be noticed that in i-step, there is a necessity to choose one partition (one decomposition) that is

Appl. Sci. 2020, 10, 3926 4 of 20

the essence of the best mapping of the analyzed function. In the process of choosing an appropriate
decomposition, it is worth to take into account configurable abilities of logic blocks included in FPGA.

Let us consider the choice of decomposition of the multi-output function in the block that may be
configured as LUT_5/1 or LUT_4/2. Let us assume that while analyzing various partitions of variables,
four different partitions were found. They are characterized by ordered pairs of numbers (card(Xb),p)
that have the values (4,3), (4,2), (5,3), and (5,4), respectively. The question is, which partition of
variables is the most efficient in the situation when we want to use the blocks LUT_5/1 or LUT_4/2.
In order to limit the number of inputs to maximum in i-step of decomposition, it is advantageous
to use the solution for which card(Xb) − p takes the maximum value. In this situation, it is better to
choose one of two decompositions characterized by the ordered pair (card(Xb),p) equal (4,2) or (5,3).
Assuming the possibility of configuration of LUTs to the form of LUT_4/2 or LUT_5/1, the most effective
decomposition is (card(Xb),p) = (4,2) as it requires using only one LUT_4/2 block. Decomposition,
for which (card(Xb),p) = (5,3) forces using up to three blocks LUT_5/1.

The above considerations enable to form the rule of the choice of decomposition in i-step which is
based on the choice of the solution for which the cofactor:

δ = Number_of _blocks − (card(Xb) − p), (2)

takes the maximum value.
The values of the cofactor δ directly depend on card(Xb), p, and additionally configurable abilities

of LUTs. The choice of configuration of a logic block should be carried out in the way to use minimum
number of configurable logic blocks.

In the process of searching for the best mapping, appears the problem of choosing an appropriate
decomposition. The choice of an appropriate decomposition is based on the choice of the minimum
value of the cofactor δ whose values are included in separate cells of a triangle table (Figure 3) [48].
The values of the cofactor δ are indicated in accordance with the dependency (2). Configurable abilities
of LUTs to one of two forms LUT_5/1 or LUT_4/2 are taken into account.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 21

The choice of an appropriate partition of variables is not so simple. It is directly connected with

the choice of a decomposition path. In the process of searching for decomposition, various partitions

are considered for which column multiplicity of a partitions’ matrix is determined. Using binary

decision diagrams, column multiplicity may be determined by defining so called number of cut

nodes [47]. It shall be noticed that in i-step, there is a necessity to choose one partition (one

decomposition) that is the essence of the best mapping of the analyzed function. In the process of

choosing an appropriate decomposition, it is worth to take into account configurable abilities of logic

blocks included in FPGA.

Let us consider the choice of decomposition of the multi-output function in the block that may

be configured as LUT_5/1 or LUT_4/2. Let us assume that while analyzing various partitions of

variables, four different partitions were found. They are characterized by ordered pairs of numbers

(card(Xb),p) that have the values (4,3), (4,2), (5,3), and (5,4), respectively. The question is, which

partition of variables is the most efficient in the situation when we want to use the blocks LUT_5/1 or

LUT_4/2. In order to limit the number of inputs to maximum in i-step of decomposition, it is

advantageous to use the solution for which card(Xb) − p takes the maximum value. In this situation, it

is better to choose one of two decompositions characterized by the ordered pair (card(Xb),p) equal

(4,2) or (5,3). Assuming the possibility of configuration of LUTs to the form of LUT_4/2 or LUT_5/1,

the most effective decomposition is (card(Xb),p) = (4,2) as it requires using only one LUT_4/2 block.

Decomposition, for which (card(Xb),p) = (5,3) forces using up to three blocks LUT_5/1.

The above considerations enable to form the rule of the choice of decomposition in i-step which is

based on the choice of the solution for which the cofactor:

δ = Number_of_blocks − (card(Xb) − p), (2)

takes the maximum value.

The values of the cofactor δ directly depend on card(Xb), p, and additionally configurable

abilities of LUTs. The choice of configuration of a logic block should be carried out in the way to use

minimum number of configurable logic blocks.

In the process of searching for the best mapping, appears the problem of choosing an

appropriate decomposition. The choice of an appropriate decomposition is based on the choice of

the minimum value of the cofactor δ whose values are included in separate cells of a triangle table

(Figure 3) [48]. The values of the cofactor δ are indicated in accordance with the dependency (2).

Configurable abilities of LUTs to one of two forms LUT_5/1 or LUT_4/2 are taken into account.

5 4 3 2

4

3

2

1

p

card(Xb)

-3 -2.5 -1.5 -0.5

-1 -1 0

1 0.5

3

Figure 3. A triangle table dedicated at determining efficiency of mapping to configurable logic blocks

LUT_5/1 or LUT_4/2.

The process of choosing an appropriate decomposition in i-stage of mapping enables to create

appropriate paths leading to very effective solutions taking area into account [47]. Ashenhurst–

Curtis decomposition (often named as a simple serial decomposition) is the basis of more complex

decomposition models such as iterative, multiple, and mixed decomposition [43,46].

Implemented combinational circuits are usually multi-output. Thus, it is key to determine the

effectiveness of mapping for a multi-output function.

Figure 3. A triangle table dedicated at determining efficiency of mapping to configurable logic blocks
LUT_5/1 or LUT_4/2.

The process of choosing an appropriate decomposition in i-stage of mapping enables to create
appropriate paths leading to very effective solutions taking area into account [47]. Ashenhurst–Curtis
decomposition (often named as a simple serial decomposition) is the basis of more complex
decomposition models such as iterative, multiple, and mixed decomposition [43,46].

Implemented combinational circuits are usually multi-output. Thus, it is key to determine the
effectiveness of mapping for a multi-output function.

3. Indicating the Efficiency of Mapping for a Multi-Output Function

A structure carrying out a multi-output function in FPGA structures may be characterized by
existing two types of logic resources: shared and non-shared. If in a given structure there are no
shared logic resources, methods from Section 2 may be used to assess the efficiency of technology
mapping. Otherwise, it is necessary to take into account shared resources in the process of technology

Appl. Sci. 2020, 10, 3926 5 of 20

mapping. It is essential to determine the number of LUT blocks in the structures associated with
obtained solutions. The best way to illustrate the problem is to analyze the following example.

Example:

Let us consider technology mapping for two functions f 0 and f 1 in LUT_4/2 and LUT_5/1. It was
assumed that bound sets may have four or five elements. In both cases, it is necessary to introduce
three bound functions after a decomposition. Let us presuppose that one of bound functions may be
common for f 0 and f 1 (for both card(Xb) = 4 as well as card(Xb) = 5). Thus, it is necessary to choose an
appropriate function card(Xb) that will provide better technology mapping.

First, let us consider the situation in which a possibility of sharing resources is ignored.
Two separate structures are associated with both functions. Because of the fact that sharing logic
resources does not exist, a cofactor δ may be used to estimate the efficiency of technology mapping.
In order to do that, it is needed to create triangle tables for given cutting parameters shown in
Figure 4a,d. Technology mappings are marked with the symbol ‘o’ in triangle tables and five a chance
to gain the structures Figure 4c,d. For both structures, may be indicated the sum of efficiency cofactors
δ and needed number of logic blocks. In the case of Figure 4c, the sum of cofactors δ is 1 and the sum of
blocks is 4 (free blocks are not taken into consideration). In the case of Figure 4d, the sum of efficiency
δ is 2 and the sum of blocks is 6. Thus, it is obvious that a four-element bound set is a better solution.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 21

3. Indicating the Efficiency of Mapping for a Multi-Output Function

A structure carrying out a multi-output function in FPGA structures may be characterized by

existing two types of logic resources: shared and non-shared. If in a given structure there are no

shared logic resources, methods from Section 2 may be used to assess the efficiency of technology

mapping. Otherwise, it is necessary to take into account shared resources in the process of

technology mapping. It is essential to determine the number of LUT blocks in the structures

associated with obtained solutions. The best way to illustrate the problem is to analyze the following

example.

Example:

Let us consider technology mapping for two functions f0 and f1 in LUT_4/2 and LUT_5/1. It was

assumed that bound sets may have four or five elements. In both cases, it is necessary to introduce

three bound functions after a decomposition. Let us presuppose that one of bound functions may be

common for f0 and f1 (for both card(Xb) = 4 as well as card(Xb) = 5). Thus, it is necessary to choose an

appropriate function card(Xb) that will provide better technology mapping.

First, let us consider the situation in which a possibility of sharing resources is ignored. Two

separate structures are associated with both functions. Because of the fact that sharing logic

resources does not exist, a cofactor δ may be used to estimate the efficiency of technology mapping.

In order to do that, it is needed to create triangle tables for given cutting parameters shown in Figure

4a,d. Technology mappings are marked with the symbol ‘o’ in triangle tables and five a chance to

gain the structures Figure 4c,d. For both structures, may be indicated the sum of efficiency cofactors

δ and needed number of logic blocks. In the case of Figure 4c, the sum of cofactors δ is 1 and the sum

of blocks is 4 (free blocks are not taken into consideration). In the case of Figure 4d, the sum of

efficiency δ is 2 and the sum of blocks is 6. Thus, it is obvious that a four-element bound set is a better

solution.

card(Xb)=4 card(Xb)=5p=3 p=3

5 4 3 2

4

3

2

1

p

card(Xb)

-3 -2.5 -1.5 -0.5

-1 -1 0

1 0.5

3

5 4 3 2

4

3

2

1

p

card(Xb)

-3 -2.5 -1.5 -0.5

-1 -1 0

1 0.5

3δ= 0.5 1δ=

x0

x1

x2

x3

L
U

T
4

/2

f0

F
re

e

B
lo

c
k

f1

x0

x1

x3

L
U

T
4
/2

x2

x0

x1

x2

x3

L
U

T
4
/2

x0

x1

x3

L
U

T
4

/2

x2

Xf

Xf

x0

x1

x2

x3

3
*L

U
T

5
/1

f0

Xf
x4

x0

x1

x2

x3

3
*L

U
T

5
/1

f1

Xf
x4

δ= 1Sum

Sum of blocks = 4

δ= 2Sum

Sum of blocks = 6

a) b)

c) d)

F
re

e

B
lo

c
k

F
re

e

B
lo

c
k

F
re

e

B
lo

c
k

Figure 4. Triangle tables and gained structures (without considering blocks’ sharing); (a) a triangle
table for card(Xb) = 4, (b) a triangle table for card(Xb) = 5, (c,d) gained structures.

Let us consider a situation in which one of g functions is shared. A cofactor δ cannot be used to
evaluate the efficiency of mapping as a part of logic resources is common for the structures associated
with separate functions. It was assumed that a logic resource usage of a ‘bound structure’ (a structure

Appl. Sci. 2020, 10, 3926 6 of 20

connected with bound blocks) will be a decisive criterion while choosing technology mapping. It is
key to determine the number of logic bound blocks for the functions f 0 and f 1. First, it is essential to
determine the number of shared LUT blocks and then the number of non-shared blocks. In order to do
that, modified triangle tables may be used. There is a substantial difference between modified triangle
tables and triangle tables. The first ones include the values of a cofactor δ in their cells. The second
ones include the number of LUT blocks for a given value of the number of bound functions and the
number of a bound set. The usage of modified triangle tables (Figure 5a,b) determines the number
of shared blocks (the symbol ‘o’ marked with a red color) and the number of non-shared blocks (the
symbol ‘o’ marked with a purple color) for each function. For the function card(Xb) = 4, it is necessary
to use 0.5 of a block to carry out a shared part and two blocks to carry out a non-shared part of a
bound structure. For the function card(Xb) = 5, in order to carry out a shared part, one block is needed.
In the case of a non-shared part, it is necessary to use four LUT blocks. It may be noticed that the
function card(Xb) = 4 gives a technology mapping that requires 2.5 of a LUT block (to carry out a
bound structure). The function card(Xb) = 5 uses five LUT blocks. Taking into account the criterion
mentioned above, card(Xb) = 4 gives better technology mapping. The obtained structures are presented
on Figure 5c,d.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 21

Figure 4. Triangle tables and gained structures (without considering blocks’ sharing); (a) a triangle

table for card(Xb) = 4, (b) a triangle table for card(Xb) = 5, (c,d) gained structures.

Let us consider a situation in which one of g functions is shared. A cofactor δ cannot be used to

evaluate the efficiency of mapping as a part of logic resources is common for the structures

associated with separate functions. It was assumed that a logic resource usage of a ‘bound structure’

(a structure connected with bound blocks) will be a decisive criterion while choosing technology

mapping. It is key to determine the number of logic bound blocks for the functions f0 and f1. First, it

is essential to determine the number of shared LUT blocks and then the number of non-shared

blocks. In order to do that, modified triangle tables may be used. There is a substantial difference

between modified triangle tables and triangle tables. The first ones include the values of a cofactor δ

in their cells. The second ones include the number of LUT blocks for a given value of the number of

bound functions and the number of a bound set. The usage of modified triangle tables (Figure 5a,b)

determines the number of shared blocks (the symbol ‘o’ marked with a red color) and the number of

non-shared blocks (the symbol ‘o’ marked with a purple color) for each function. For the function

card(Xb) = 4, it is necessary to use 0.5 of a block to carry out a shared part and two blocks to carry out

a non-shared part of a bound structure. For the function card(Xb) = 5, in order to carry out a shared

part, one block is needed. In the case of a non-shared part, it is necessary to use four LUT blocks. It

may be noticed that the function card(Xb) = 4 gives a technology mapping that requires 2.5 of a LUT

block (to carry out a bound structure). The function card(Xb) = 5 uses five LUT blocks. Taking into

account the criterion mentioned above, card(Xb) = 4 gives better technology mapping. The obtained

structures are presented on Figure 5c,d.

card(Xb)=4 card(Xb)=5p=3 p=3

5 4 3 2

4

3

2

1

p

card(Xb)

1 0.5 0.5 0.5

2 1 1

3 1.5

4

5 4 3 2

4

3

2

1

p

card(Xb)

1 0.5 0.5 0.5

2 1 1

3 1.5

4

x0

x1

x2

x3

L
U

T
4

/2

F
re

e

b
lo

c
k

f0

f1

x0

x1

x3 0
.5

*L
U

T
4
/2

x2

x0

x1

x2

x3

L
U

T
4
/2

Xf

Xf

x0

x1

x2

x3

2
*L

U
T

5
/1

f0

Xf
x4

x0

x1

x2

x3

2
*L

U
T

5
/1

f1

Xf
x4

Sum of blocks = 2.5 Sum of blocks = 5

x0

x1

x2

x3 L
U

T
5

/1

x4

a) b)

c) d)

F
re

e

b
lo

c
k

F
re

e

b
lo

c
k

F
re

e

b
lo

c
k

.

Figure 5. Modified triangle tables (a) for card(Xb)=4, (b) for card(Xb)=5 and obtained mappings (c) for

card(Xb)=4, (d) for card(Xb)=5 (sharing blocks is taken into account).

Figure 5. Modified triangle tables (a) for card(Xb) = 4, (b) for card(Xb) = 5 and obtained mappings
(c) for card(Xb) = 4, (d) for card(Xb) = 5 (sharing blocks is taken into account).

4. A Separate Implementation of Transition and Output Block of FSM

A typical method of carrying out FSM is based on separate synthesis of two independent blocks:
a transition block described in the form of the function δ: BN+K

→ BK and an output block whose form

Appl. Sci. 2020, 10, 3926 7 of 20

depends on a type of used automaton. In the case of Moore’s FSM, a synthesis is based on mapping in
LUT-based blocks of multi-output function λ: BK

→ BM. In the case of Mealy’s FSM—multi-output
function λ: BN+K

→ BM is synthesized.
The result of a logic synthesis includes independent blocks that have no common elements. Thus,

there is no sharing of logic resources that would enable to use common logic resources to carry out a
transition and on output blocks.

Figure 6 illustrates the example of a typical carrying out of FSM. A symbolic description of
FSM, in the format kiss2, includes four states s0, s1, s2, s3, and 10 symbolic multi-output implicants.
After having associated the states s0–s3 with two-bit words (s0: = 00; s1: = 01; s2: = 10; s3: = 11),
a coded FSM, which includes 5 bits in an output part, is the result. The first two bits describe a transition
function (δ: B5

→ B2) and the other three bits determine the states of FSM’s outputs (λ: B5
→ B3).

The function description δ: B5
→ B2 and λ: B5

→ B3 is presented in the form of files in a pla format.
An independent logic synthesis of separate functions leads to the structure with a clearly split transition
block marked on Figure 6 with the symbol δ and an output block marked with the symbol λ.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 21

4. A Separate Implementation of Transition and Output Block of FSM

A typical method of carrying out FSM is based on separate synthesis of two independent blocks: a

transition block described in the form of the function δ: BN+K → BK and an output block whose form

depends on a type of used automaton. In the case of Moore’s FSM, a synthesis is based on mapping in

LUT-based blocks of multi-output function λ: BK → BM. In the case of Mealy’s FSM—multi-output

function λ: BN+K → BM is synthesized.

The result of a logic synthesis includes independent blocks that have no common elements. Thus,

there is no sharing of logic resources that would enable to use common logic resources to carry out a

transition and on output blocks.

Figure 6 illustrates the example of a typical carrying out of FSM. A symbolic description of FSM,

in the format kiss2, includes four states s0, s1, s2, s3, and 10 symbolic multi-output implicants. After

having associated the states s0–s3 with two-bit words (s0: = 00; s1: = 01; s2: = 10; s3: = 11), a coded FSM,

which includes 5 bits in an output part, is the result. The first two bits describe a transition function (δ:

B5 → B2) and the other three bits determine the states of FSM’s outputs (λ: B5 → B3). The function

description δ: B5 → B2 and λ: B5 → B3 is presented in the form of files in a pla format. An independent

logic synthesis of separate functions leads to the structure with a clearly split transition block marked

on Figure 6 with the symbol δ and an output block marked with the symbol λ.

.i 3

.o 3

.p 26

.s 4

00- s0 s1 001

01- s0 s3 000

10- s0 s0 101

110 s0 s0 101

111 s0 s0 100

00- s1 s1 011

01- s1 s3 110

10- s1 s0 111

110 s1 s1 011

111 s1 s1 010

000 s2 s3 110

001 s2 s2 100

010 s2 s0 110

011 s2 s0 001

100 s2 s0 110

101 s2 s0 000

110 s2 s3 111

111 s2 s2 100

000 s3 s0 101

001 s3 s3 110

010 s3 s2 000

011 s3 s0 111

100 s3 s0 001

101 s3 s0 110

110 s3 s0 101

111 s3 s3 110

.i 3

.o 5

ilb a b c Q1 Q0

.ob D1 D0 y2 y1 y0

.p 26

.s 4

00- 00 01 001

01- 00 11 000

10- 00 00 101

110 00 00 101

111 00 00 100

00- 01 01 011

01- 01 11 110

10- 01 00 111

110 01 01 011

111 01 01 010

000 10 11 110

001 10 10 100

010 10 00 110

011 10 00 001

100 10 00 110

101 10 00 000

110 10 11 111

111 10 10 100

000 11 00 101

001 11 11 110

010 11 10 000

011 11 00 111

100 11 00 001

101 11 00 110

110 11 00 101

111 11 11 110

DFFδ

λ

clk

X
YS

S +

 λ.pla

.i 5

.o 3

.ilb a b c Q1 Q0

.ob y2 y1 y0

.p 12

0111- 001

01-01 100

11--0 100

-00-1 001

1101- 101

1-00- 001

00-1- 100

10-0- 100

--010 110

--111 110

---01 010

-0-0- 001

.e

δ.pla

.i 5

.o 2

.ilb a b c Q1 Q0

.ob D1 D0

.p 10

11010 01

000-0 01

00111 11

11111 11

00-10 10

11-10 10

010-1 10

-1-01 01

01-0- 10

0--0- 01

.e

s0 - 00

s1 - 01

s2 - 10

s3 - 11

δ: B5 → B2

λ: B5 → B3

Figure 6. The result of separate implementation of transition and output blocks of FSM.

In the case of carrying out FSM in LUT-based FPGA, an especially vital element of a synthesis

turns out to be the process of multi-output decomposition of the function δ: B5 → B2 and λ: B5 → B3. In a

standard approach of carrying out FSM, decomposition is conducted separately for a transition block

and an output block. Logic synthesis of multi-output function, in which the DECOMP system [49] was

used and is presented in Figure 6, led to the solution illustrated in Figure 7.

Figure 6. The result of separate implementation of transition and output blocks of FSM.

In the case of carrying out FSM in LUT-based FPGA, an especially vital element of a synthesis turns
out to be the process of multi-output decomposition of the function δ: B5

→ B2 and λ: B5
→ B3. In a

standard approach of carrying out FSM, decomposition is conducted separately for a transition block
and an output block. Logic synthesis of multi-output function, in which the DECOMP system [49] was
used and is presented in Figure 6, led to the solution illustrated in Figure 7.

Appl. Sci. 2020, 10, 3926 8 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 21

a

b

c

a

b

c

a

b

c

clk

DFF

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Q0

g2

g1

g0

y1

g1

g0

y2

g1

g0

y0

D1

D0

3
*L

U
T

_
4

/1

2
*L

U
T

_
4

/1

2
*L

U
T

_
4

/1

2
*L

U
T

_
4
/1

2
*L

U
T

_
3

/1

L
U

T
_

3
/1

a) b)

5*LUT_4/1

4*LUT_4/1 + 3*LUT_3/1

Figure 7. The result of the synthesis of FSM directed at mapping of a function into LUT_4/1: (a)

carrying out of a transition block; (b) carrying out of an output block.

5. The Method of Carrying out FSM Using Sharing of Logic Resources

In the process of a simultaneous synthesis of the whole combinational logic, the efficiency of the

technology mapping should be improved. In this case, it is possible to search for common logic

resources used to carry out both a transition block as well as an output block. The essence of sharing

is presented in the form of block schemes in Figure 8.

DFFδ

λ

clk

X

Y

S
S +

DFFδ

λ

clk

X

Y

S
S +

DFFδ

λ

clk

X
Y

S
S ++

DFF

clk

Y

S
S +

X

Shared

Blocks

a) b) c)

d)

Figure 8. The idea of carrying out FSM using sharing of logic resources: (a)(b) FSM form in which

both combination blocks are shown separately, (c) FSM form in which both combination blocks are

presented together, (d) FSM form in which the combined block has a shared block.

A block scheme of FSM, shown in Figure 8a,b, may be presented in the form in which separated

blocks δ and λ were replaced with one block that is symbolically marked as δ + λ (Figure 8c). This

block is described by a multi-output function δ + λ: BN+K → BM+K. The synthesis of a multi-output

function δ + λ: BN+K → BM+K gives a possibility to make the process of decomposition more effective in

relation to conducting the process of decomposition separately for a transition function δ: BN+K → BK

and an output function λ: BN+K → BM. It is possible to search for a shared block that is symbolically

presented in Figure 8d.

The synthesis process of FSM consists of the process of state assignment that results in the

possibility of determining the function δ + λ: BN+K → BM+K describing the whole combinational logic.

Next, decomposition of multi-output function is carried out and its essence is based on mapping of a

synthesized function in LUTs that have a precisely determined number of inputs. A part of outputs

Figure 7. The result of the synthesis of FSM directed at mapping of a function into LUT_4/1: (a) carrying
out of a transition block; (b) carrying out of an output block.

5. The Method of Carrying out FSM Using Sharing of Logic Resources

In the process of a simultaneous synthesis of the whole combinational logic, the efficiency of
the technology mapping should be improved. In this case, it is possible to search for common logic
resources used to carry out both a transition block as well as an output block. The essence of sharing is
presented in the form of block schemes in Figure 8.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 21

a

b

c

a

b

c

a

b

c

clk

DFF

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Q0

g2

g1

g0

y1

g1

g0

y2

g1

g0

y0

D1

D0

3
*L

U
T

_
4

/1

2
*L

U
T

_
4

/1

2
*L

U
T

_
4

/1

2
*L

U
T

_
4
/1

2
*L

U
T

_
3

/1

L
U

T
_

3
/1

a) b)

5*LUT_4/1

4*LUT_4/1 + 3*LUT_3/1

Figure 7. The result of the synthesis of FSM directed at mapping of a function into LUT_4/1: (a)

carrying out of a transition block; (b) carrying out of an output block.

5. The Method of Carrying out FSM Using Sharing of Logic Resources

In the process of a simultaneous synthesis of the whole combinational logic, the efficiency of the

technology mapping should be improved. In this case, it is possible to search for common logic

resources used to carry out both a transition block as well as an output block. The essence of sharing

is presented in the form of block schemes in Figure 8.

DFFδ

λ

clk

X

Y

S
S +

DFFδ

λ

clk

X

Y

S
S +

DFFδ

λ

clk

X
Y

S
S ++

DFF

clk

Y

S
S +

X

Shared

Blocks

a) b) c)

d)

Figure 8. The idea of carrying out FSM using sharing of logic resources: (a)(b) FSM form in which

both combination blocks are shown separately, (c) FSM form in which both combination blocks are

presented together, (d) FSM form in which the combined block has a shared block.

A block scheme of FSM, shown in Figure 8a,b, may be presented in the form in which separated

blocks δ and λ were replaced with one block that is symbolically marked as δ + λ (Figure 8c). This

block is described by a multi-output function δ + λ: BN+K → BM+K. The synthesis of a multi-output

function δ + λ: BN+K → BM+K gives a possibility to make the process of decomposition more effective in

relation to conducting the process of decomposition separately for a transition function δ: BN+K → BK

and an output function λ: BN+K → BM. It is possible to search for a shared block that is symbolically

presented in Figure 8d.

The synthesis process of FSM consists of the process of state assignment that results in the

possibility of determining the function δ + λ: BN+K → BM+K describing the whole combinational logic.

Next, decomposition of multi-output function is carried out and its essence is based on mapping of a

synthesized function in LUTs that have a precisely determined number of inputs. A part of outputs

Figure 8. The idea of carrying out FSM using sharing of logic resources: (a,b) FSM form in which
both combination blocks are shown separately, (c) FSM form in which both combination blocks are
presented together, (d) FSM form in which the combined block has a shared block.

A block scheme of FSM, shown in Figure 8a,b, may be presented in the form in which separated
blocks δ and λwere replaced with one block that is symbolically marked as δ + λ (Figure 8c). This block
is described by a multi-output function δ + λ: BN+K

→ BM+K. The synthesis of a multi-output function
δ + λ: BN+K

→ BM+K gives a possibility to make the process of decomposition more effective in relation
to conducting the process of decomposition separately for a transition function δ: BN+K

→ BK and an
output function λ: BN+K

→ BM. It is possible to search for a shared block that is symbolically presented
in Figure 8d.

The synthesis process of FSM consists of the process of state assignment that results in the
possibility of determining the function δ + λ: BN+K

→ BM+K describing the whole combinational logic.
Next, decomposition of multi-output function is carried out and its essence is based on mapping of a

Appl. Sci. 2020, 10, 3926 9 of 20

synthesized function in LUTs that have a precisely determined number of inputs. A part of outputs
of an obtained structure is associated with the signals that are joined to information inputs of DFFs.
The rest of the part constitutes output signals of FSM.

Let us consider it as a previous mapping of multi-output function δ + λ: B5
→ B5 in the

LUT_4/1. In the process of searching for mapping of the function δ + λ, appropriately conducted
decomposition plays a key role. Now, multi-output function with more number of outputs is
synthetized. While simultaneous decomposing of the multi-output function δ + λ: B5

→ B5, it is
possible to find a more effective solution. It is usually more efficient than decomposition of a transition
and an output function or searching for decomposition separately for each single-output function
(δ + λ)i: B5

→ B1, i = 1, 2, . . . , 5. However, it is more difficult to find decomposition of a multi-output
function. When it is found, it gives better solutions, taking LUT use into consideration.

In the analyzed case, which used the DECOMP system in the process of decomposition, it turned
out that it was impossible to decompose the function δ + λ: B5

→ B5, but it was possible to find a
very advantageous solution while partitioning of the multi-output function δ + λ: B5

→ B5 into two
functions (δ + λ)1: B5

→ B2 i.e., output Q1, y0, and (δ + λ)2: B5
→ B3 i.e., output Q0, y2, y1.

The next stages of decomposition are carried out in the DECOMP system and lead to mapping of
a combinational block in the form of the blocks LUT_4/1 presented in Figure 9.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 21

of an obtained structure is associated with the signals that are joined to information inputs of DFFs.

The rest of the part constitutes output signals of FSM.

Let us consider it as a previous mapping of multi-output function δ + λ: B5 → B5 in the LUT_4/1.

In the process of searching for mapping of the function δ + λ, appropriately conducted

decomposition plays a key role. Now, multi-output function with more number of outputs is

synthetized. While simultaneous decomposing of the multi-output function δ + λ: B5 → B5, it is

possible to find a more effective solution. It is usually more efficient than decomposition of a

transition and an output function or searching for decomposition separately for each single-output

function (δ + λ)i: B5 → B1, i = 1, 2, …, 5. However, it is more difficult to find decomposition of a

multi-output function. When it is found, it gives better solutions, taking LUT use into consideration.

In the analyzed case, which used the DECOMP system in the process of decomposition, it

turned out that it was impossible to decompose the function δ + λ: B5 → B5, but it was possible to find

a very advantageous solution while partitioning of the multi-output function δ + λ: B5 → B5 into two

functions (δ + λ)1: B5 → B2 i.e., output Q1, y0, and (δ + λ)2: B5 → B3 i.e., output Q0, y2, y1.

The next stages of decomposition are carried out in the DECOMP system and lead to mapping of

a combinational block in the form of the blocks LUT_4/1 presented in Figure 9.

y0

5*LUT_4/1 + 4*LUT_3/1

a

b

c

Q1

Q0

g1

g0

2
*L

U
T

_
4

/1

2
*L

U
T

_
3

/1

clk

DFF
Q1

Q0

D1

D0

a

b

c

Q1

Q0

g1

g0

3
*L

U
T

_
4

/1

2
*L

U
T

_
3

/1

y1

y2

δ + λ.pla

.i 5

.o 5

ilb a b c Q1 Q0

.ob D1 D0 y2 y1 y0

.p 26

00- 00 01 001

01- 00 11 000

10- 00 00 101

110 00 00 101

111 00 00 100

00- 01 01 011

01- 01 11 110

10- 01 00 111

110 01 01 011

111 01 01 010

000 10 11 110

001 10 10 100

010 10 00 110

011 10 00 001

100 10 00 110

101 10 00 000

110 10 11 111

111 10 10 100

000 11 00 101

001 11 11 110

010 11 10 000

011 11 00 111

100 11 00 001

101 11 00 110

110 11 00 101

111 11 11 110

.e

Figure 9. The result of technology mapping of the function (δ + λ)1: B5 → B2 and (δ + λ)2: B5 → B3.

It turns out that the circuit, presented in Figure 9, may be simplified using the method of

unicoding [50,51]. The essence of unicoding is also based on specific sharing of resources. The

sharing takes place on a lower level as it is based on such a coding of column patterns that leads to

determining common bound functions.

Example:

Let us consider mapping of the multi-output function (δ + λ)1: B5 → B2 in the LUT_4/1. The

essence of unicoding may be easily shown while describing the functions using Karnaugh maps.

Firstly, let us consider the process of mapping without using the method of unicoding. The functions

y0 and D1 are described by Karnaugh maps and presented in Figure 10. Decomposition of each

function separately leads to the solution using five blocks, among which, there are four LUT_3/1 and

one LUT_4/1 (Figure 10a). Carrying out of a multi-output function requires using only four blocks

(2*LUT_3/1 and 2*LUT_4/1) which is illustrated in Figure 10b. Carrying out of the function, shown in

Figure 10, is identical with mapping of the function (δ + λ)1: B5 → B2 presented in Figure 9.

Figure 9. The result of technology mapping of the function (δ + λ)1: B5
→ B2 and (δ + λ)2: B5

→ B3.

It turns out that the circuit, presented in Figure 9, may be simplified using the method of
unicoding [50,51]. The essence of unicoding is also based on specific sharing of resources. The sharing
takes place on a lower level as it is based on such a coding of column patterns that leads to determining
common bound functions.

Example:

Let us consider mapping of the multi-output function (δ+ λ)1: B5
→ B2 in the LUT_4/1. The essence

of unicoding may be easily shown while describing the functions using Karnaugh maps. Firstly,
let us consider the process of mapping without using the method of unicoding. The functions y0 and
D1 are described by Karnaugh maps and presented in Figure 10. Decomposition of each function
separately leads to the solution using five blocks, among which, there are four LUT_3/1 and one LUT_4/1
(Figure 10a). Carrying out of a multi-output function requires using only four blocks (2*LUT_3/1
and 2*LUT_4/1) which is illustrated in Figure 10b. Carrying out of the function, shown in Figure 10,
is identical with mapping of the function (δ + λ)1: B5

→ B2 presented in Figure 9.

Appl. Sci. 2020, 10, 3926 10 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 21

 cQ1Q0

ab 000 001 011 010 110 111 101 100

00 01 01 01 10 10 10 01 01

01 11 11 11 00 01 01 10 10

11 00 00 00 10 10 10 00 00

10 01 01 01 01 00 00 01 01

 X X X Y Z Z V V

D1 y0

 cQ1Q0

ab 000 001 011 010 110 111 101 100

00 0 0 0 1 1 1 0 0

01 1 1 1 0 0 0 1 1

11 0 0 0 1 1 1 0 0

10 0 0 0 0 0 0 0 0

 A A A B B B A A

D1
 cQ1Q0

ab 000 001 011 010 110 111 101 100

00 1 1 1 0 0 0 1 1

01 0 0 0 0 1 1 0 0

11 1 1 1 1 0 0 0 0

10 1 1 1 0 0 0 1 1

 K K K L M M N N

y0

a

b

c

Q1

Q0

y0

L
U

T
_

3
/1

c

Q1

Q0

a

b

D1

y0

c

Q1

Q0

a

b

D1

L
U

T
_

3
/1

2
*L

U
T

_
3

/1

L
U

T
_

4
/1

2
*L

U
T

_
3

/1

2
*L

U
T

_
4

/1

b)a)

LUT_4/1 + 4*LUT_3/1

2*LUT_4/1 + 2*LUT_3/1

Figure 10. Implementation of a multi-output function that is the result of (a) decomposition of each

function separately; (b) decomposition of multi-output function.

It is worth to mention that Karnaugh map of the function D1, presented in Figure 10a, includes

only two types of columns. In order to distinguish them, only one bit is needed. Thus, the question is

whether it is possible to code the column patterns K, L, M, N in such a way, the values of one of the

bits would be the same as those used to distinguish the column patterns A and B.

Let us create a compatibility graph of columns for the functions D1 and y0. In such a way, the

nodes corresponding to the columns would be placed in one line and let us mark compatibility

relations of column patterns for separate functions using the edges placed above (D1) and below (y0)

the nodes (Figure 11a). A newly created graph may be divided into two disjoint parts. Let us order

the value 0 to the nodes of one subgraph and the value 1 to the second one. Both graphs include the

nodes associated with two column patterns of the function y0. The first subgraph includes the

patterns K and N, whereas the second one includes the patterns L and M. Such a location of the

column patterns enables to use a common bit g0 applied in order to distinguish the column patterns

of the function D1 and y0 (Figure 11a). It leads to the solution, presented in Figure 11b, in which the

limitation of the number of inputs was obtained in one free block (a free block D1). This solution is

said to be ‘better’ than the solutions shown in Figure 12 as it uses 3*LUT_3/1 and only one LUT_4/1.

The usage of unicoding usually lowers the number of inputs in free blocks but when it is connected

with the possibility of configuration of logic block, it may result in a substantial improvement of this

solution. Let us presume that without unicoding, technology mapping, in the form of the set of

LUTs, requires using 2*LUT_5/1 and LUT_4/1. Configurable abilities of the Spartan structure [52], in

this situation, create the possibility of technology mapping in the form of three logic cells configured

to the form of 2*LUT_5/1 and 1*LUT_4/2. The usage of unicoding may create the possibility to

slightly limit the number of inputs of used cells. Let us presume that there is a solution in the form of

the set 1*LUT_5/1 and 2*LUT_4/1. In comparison with the solution without unicoding, it was

possible to remove one input. Thus, it leads to a substantial improvement of the effectiveness of

technology mapping because, in the Spartan structure, it is possible to carry out on two logic cells

configured to the form of 1*LUT_5/1 and 1*LUT_4/2.

Figure 10. Implementation of a multi-output function that is the result of (a) decomposition of each
function separately; (b) decomposition of multi-output function.

It is worth to mention that Karnaugh map of the function D1, presented in Figure 10a, includes
only two types of columns. In order to distinguish them, only one bit is needed. Thus, the question is
whether it is possible to code the column patterns K, L, M, N in such a way, the values of one of the bits
would be the same as those used to distinguish the column patterns A and B.

Let us create a compatibility graph of columns for the functions D1 and y0. In such a way,
the nodes corresponding to the columns would be placed in one line and let us mark compatibility
relations of column patterns for separate functions using the edges placed above (D1) and below (y0)
the nodes (Figure 11a). A newly created graph may be divided into two disjoint parts. Let us order the
value 0 to the nodes of one subgraph and the value 1 to the second one. Both graphs include the nodes
associated with two column patterns of the function y0. The first subgraph includes the patterns K
and N, whereas the second one includes the patterns L and M. Such a location of the column patterns
enables to use a common bit g0 applied in order to distinguish the column patterns of the function
D1 and y0 (Figure 11a). It leads to the solution, presented in Figure 11b, in which the limitation of
the number of inputs was obtained in one free block (a free block D1). This solution is said to be
‘better’ than the solutions shown in Figure 12 as it uses 3*LUT_3/1 and only one LUT_4/1. The usage
of unicoding usually lowers the number of inputs in free blocks but when it is connected with the
possibility of configuration of logic block, it may result in a substantial improvement of this solution.
Let us presume that without unicoding, technology mapping, in the form of the set of LUTs, requires
using 2*LUT_5/1 and LUT_4/1. Configurable abilities of the Spartan structure [52], in this situation,
create the possibility of technology mapping in the form of three logic cells configured to the form
of 2*LUT_5/1 and 1*LUT_4/2. The usage of unicoding may create the possibility to slightly limit the
number of inputs of used cells. Let us presume that there is a solution in the form of the set 1*LUT_5/1
and 2*LUT_4/1. In comparison with the solution without unicoding, it was possible to remove one
input. Thus, it leads to a substantial improvement of the effectiveness of technology mapping because,
in the Spartan structure, it is possible to carry out on two logic cells configured to the form of 1*LUT_5/1
and 1*LUT_4/2.

Appl. Sci. 2020, 10, 3926 11 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 21

 a.)
 cQ1Q0

ab 000 001 011 010 110 111 101 100

00 0 0 0 1 1 1 0 0

01 1 1 1 0 0 0 1 1

11 0 0 0 1 1 1 0 0

10 0 0 0 0 0 0 0 0

 A A A B B B A A

g0 0 0 0 1 1 1 0 0
 D1

 A A A B B B A A

 000 001 011 010 110 111 101 100

 K K K L M M N N

g0 0 0 0 1 1 1 0 0

g0g1 00 00 00 10 11 11 01 01

ab K K K L M M N N

00 1 1 1 0 0 0 1 1

01 0 0 0 0 1 1 0 0

11 1 1 1 1 0 0 0 0

10 1 1 1 0 0 0 1 1

 000 001 011 010 110 111 101 100

 cQ1Q0

y0

b)

a

b

c

Q1

Q0

L
U

T
_

3
/1

D1

2
*L

U
T

_
3

/1

L
U

T
_

4
/1

y0a

b

g0

g1

3*LUT_3/1 + LUT_4/1

Figure 11. The limitation of the number of inputs in a free block using a common unicoding of the

column patterns: (a) Karnaugh map of separate functions and a graph of columns’ compatibility; (b)

a circuit’s carrying out using LUTs (look-up table).

Therefore, unicoding seems to be a crucial optimization element of the process of

decomposition of multi-output function δ + λ in the method of carrying out FSM automaton in

which the method of sharing logic resources is used. It creates the possibility to limit the number of

inputs in the area of shared FSM blocks. After having used unicoding, the final form of technology

mapping of FSM is gained and presented in Figure 12.

y0

c
g1

g0

3
*L

U
T

_
4

/1

2
*L

U
T

_
3
/1

clk

DFF

Q1

Q0

D1

D0

a

b

c

Q1

Q0

g1

g0

2
*L

U
T

_
3
/1

y1

y2

a

b

L
U

T
_
3
/1

Q1

Q0

L
U

T
_

4
/1

a

b

4*LUT_4/1 + 5*LUT_3/1

Figure 12. Result of technology mapping oriented to LUT_4/1.

6. Results

In order to prove the effectiveness of the presented methods of carrying out FSM, a series of

experiments were conducted. The experiments were conducted on the set of benchmarks [53]

described in the format kiss2. In most cases, FSM states were represented in a symbolic form. In the

Figure 11. The limitation of the number of inputs in a free block using a common unicoding of the
column patterns: (a) Karnaugh map of separate functions and a graph of columns’ compatibility; (b) a
circuit’s carrying out using LUTs (look-up table).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 21

 a.)
 cQ1Q0

ab 000 001 011 010 110 111 101 100

00 0 0 0 1 1 1 0 0

01 1 1 1 0 0 0 1 1

11 0 0 0 1 1 1 0 0

10 0 0 0 0 0 0 0 0

 A A A B B B A A

g0 0 0 0 1 1 1 0 0
 D1

 A A A B B B A A

 000 001 011 010 110 111 101 100

 K K K L M M N N

g0 0 0 0 1 1 1 0 0

g0g1 00 00 00 10 11 11 01 01

ab K K K L M M N N

00 1 1 1 0 0 0 1 1

01 0 0 0 0 1 1 0 0

11 1 1 1 1 0 0 0 0

10 1 1 1 0 0 0 1 1

 000 001 011 010 110 111 101 100

 cQ1Q0

y0

b)

a

b

c

Q1

Q0

L
U

T
_

3
/1

D1

2
*L

U
T

_
3

/1

L
U

T
_

4
/1

y0a

b

g0

g1

3*LUT_3/1 + LUT_4/1

Figure 11. The limitation of the number of inputs in a free block using a common unicoding of the

column patterns: (a) Karnaugh map of separate functions and a graph of columns’ compatibility; (b)

a circuit’s carrying out using LUTs (look-up table).

Therefore, unicoding seems to be a crucial optimization element of the process of

decomposition of multi-output function δ + λ in the method of carrying out FSM automaton in

which the method of sharing logic resources is used. It creates the possibility to limit the number of

inputs in the area of shared FSM blocks. After having used unicoding, the final form of technology

mapping of FSM is gained and presented in Figure 12.

y0

c
g1

g0

3
*L

U
T

_
4

/1

2
*L

U
T

_
3
/1

clk

DFF

Q1

Q0

D1

D0

a

b

c

Q1

Q0

g1

g0

2
*L

U
T

_
3
/1

y1

y2

a

b

L
U

T
_
3
/1

Q1

Q0

L
U

T
_

4
/1

a

b

4*LUT_4/1 + 5*LUT_3/1

Figure 12. Result of technology mapping oriented to LUT_4/1.

6. Results

In order to prove the effectiveness of the presented methods of carrying out FSM, a series of

experiments were conducted. The experiments were conducted on the set of benchmarks [53]

described in the format kiss2. In most cases, FSM states were represented in a symbolic form. In the

Figure 12. Result of technology mapping oriented to LUT_4/1.

Therefore, unicoding seems to be a crucial optimization element of the process of decomposition
of multi-output function δ + λ in the method of carrying out FSM automaton in which the method of
sharing logic resources is used. It creates the possibility to limit the number of inputs in the area of
shared FSM blocks. After having used unicoding, the final form of technology mapping of FSM is
gained and presented in Figure 12.

Appl. Sci. 2020, 10, 3926 12 of 20

6. Results

In order to prove the effectiveness of the presented methods of carrying out FSM, a series of
experiments were conducted. The experiments were conducted on the set of benchmarks [53] described
in the format kiss2. In most cases, FSM states were represented in a symbolic form. In the process of
coding, next words of natural binary code were ascribed to separate states. The most basic way of
state assignment was chosen as the essence of the method, shown in the paper, based on minimization
of the number of LUTs that is possible for each coding of a state. After having ascribed the codes of
states, it was possible to describe combinational blocks FSM in the format pla. It made it possible to
conduct a logic synthesis of FSM using the description of a transition function (δ) and description of an
output function (λ). It was also real to carry out synthesis using the proposed method in which the
description of the whole combinational block FSM was used, i.e., the simultaneous description of a
transition and output function (δ + λ).

The results of technology mapping of the analyzed FSM into FPGA were accurately examined.
The essence of technology mapping is based on appropriately conducting a decomposition process.
In the process of decomposition, an author’s tool DECOMP [49] was used as well as ABC [35], which has
been one of the best academic tools so far and was created at the University of California, Berkeley.

The ABC system is a flexible tool that may carry out many stages of logic synthesis directed
at both combinational logic as well as sequential ones. The essence of its flexibility lies in carrying
out appropriate strategies of a synthesis launching with the usage of scripts. The script (&get; &st;
&synch2; &if -K 4; &ps;) was used in experiments and helped to direct technology mapping at LUTs
that have four inputs. It was decided to conduct experiments for blocks that have low number of
inputs as the number of inputs in the presented benchmarks is also low, very often. Analyzing the
function, which has a low number of variables and too high a number of inputs in a LUT, leads to
the situation in which decomposition may turn out to be unnecessary. It may hinder showing the
efficiency of the ideas presented in the paper.

The results obtained for ABC are presented in Tables 1 and 2. Table 1 includes the results for
benchmarks describing FSMs that have maximum 9 inner states. Table 2 includes the results for
benchmarks describing bigger FSMs.

Table 1. Results of experiments (ABC, number of states <10).

Separate
Implementation

Shared
Implementation

Separate im.-
Shared im.

Benchmarks δ λ δ + λ

Name In Out p States Blocks Levels Blocks Levels Blocks Levels Blocks Levels

Bbtas 2 2 24 6 4 2 2 1 6 2 0 0
Beecount 3 4 28 7 10 3 12 2 22 3 0 0

dk14 3 5 56 7 20 3 20 3 39 3 1 0
dk15 3 5 32 4 6 2 14 2 20 3 0 −1
dk17 2 3 32 8 33 4 22 4 54 4 1 0
dk27 1 2 14 7 3 1 2 1 5 1 0 0
ex5 2 2 32 9 14 3 3 2 18 3 −1 0
ex6 5 8 34 8 24 3 40 4 57 4 7 0

Lion 2 1 11 4 2 1 1 1 3 1 0 0
lion9 2 1 25 9 15 3 5 3 18 3 2 0
Mc 3 5 10 4 3 2 4 2 6 2 1 0
s8 4 1 20 5 21 3 2 2 23 3 0 0

s27 4 1 34 6 5 2 2 2 6 2 1 0
Shiftreg 1 1 16 8 3 1 1 1 4 1 0 0

Tav 4 4 49 4 1 1 7 2 8 2 0 0
train4 2 1 14 4 2 1 1 1 3 1 0 0

166 138 292
Sum: 304 292

Appl. Sci. 2020, 10, 3926 13 of 20

Table 2. Results of experiments (ABC, number of states ≥10).

Separate
Implementation

Shared
Implementation

Separate im.-
Shared im.

Benchmarks δ λ δ + λ

Name In Out p States Blocks Levels Blocks Levels Blocks Levels Blocks Levels

Bbara 4 2 60 10 26 3 5 2 30 3 1 0
Bbsse 7 7 56 16 40 4 23 3 61 4 2 0
dk512 1 3 30 15 11 2 5 2 16 2 0 0

Donfile 2 1 96 24 30 4 1 1 31 4 0 0
ex2 2 2 72 19 45 4 9 3 56 4 −2 0
ex3 2 2 36 10 19 3 7 3 26 3 0 0
ex4 6 9 21 14 16 3 16 2 34 3 −2 0
ex7 2 2 36 10 18 3 5 3 24 3 −1 0

Keyb 7 2 170 19 87 6 13 4 105 5 −5 1
Opus 5 6 22 10 22 4 22 3 38 4 6 0
Sse 7 7 56 16 36 4 28 3 59 4 5 0
Tbk 6 3 1569 32 122 6 22 4 136 6 8 0
Tma 7 6 42 20 62 5 47 4 108 5 1 0

train11 2 1 25 11 14 3 7 3 21 3 0 0
548 210 745

Sum: 758 745

The obtained results are presented in Tables 1 and 2. The first five columns describe separate
benchmarks: name, the number of inputs, the number of outputs, the number of transitions (p), and the
number of states. In the next columns, the number of blocks (Blocks) and the number of levels in
a critical path (levels) were given. The results are shown only for these two cases. In the first case
(separate implementation), the synthesis process was based on separately carrying out a transition
(δ) and an output function (λ). In the second case (shared implementation), the whole combinational
block, described in the form δ + λ, was subjected to synthesis. In the last two rows, appropriately
marked total numbers of blocks were given. Firstly, (last but one row) the table shows total numbers
of LUTs, which were used to carry out a transition and an output block. In addition, below, (the last
row) the table presents the number of all the blocks used and needed to carry out FSM using the
synthesis strategy.

The DECOMP system is the tool in which decomposition algorithms based on the
Ashenhurst–Curtis model were implemented. Synthesis process, based on decomposition, was carried
out for the Spartan 3 [52]. LUTs, included in these FPGAs, may be configured to the forms of either
LUT_5/1 or LUT_4/2, as shown in Figure 13a.

The results for the DECOMP system are included in two tables, depending on the number of
inner states of described automatons. The results obtained for DECOMP are shown in Tables 3 and 4.

Comparing obtained results included in all the four tables, it may be noticed that the total number
of blocks, where block δ and λ are carried out together, is lower than in the case of a separate carrying
out. This reduction, in each of the analyzed cases, is illustrated in the form of a bar graph (Figure 14).
The values of this reduction is presented in the form of percentage as ((LUTSep − LUTsh)/LUTSep) × 100%,
where LUTSep is the total number of LUT blocks for a separate carrying out of the blocks δ and λ,
LUTsh is the total number of blocks to carry out common δ + λ.

On the basis of Figure 14, it can be noticed that substantial limitation of the number of blocks
was gained for the DECOMP system. It proves that decomposition dedicated to logic blocks that have
appropriate configurable abilities (thanks to a triangle table) enables to take advantage from a common
carrying out of a combinational part of FSM. Thus, it turns out that a simultaneous synthesis method
of a transition and output blocks is not enough. It is necessary to develop effective decomposition
algorithms based on combining functions into multi-output functions. Using the methods, described
in the paper, enabled to reduce the number of LUTs in the case of DECOMP at about 9.5%. In the case
of ABC, the reduction gained was at about 4%.

Appl. Sci. 2020, 10, 3926 14 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 21

LUT4

LUT4

LUT5

LUT5

LUT5

LUT3

LUT6

LUT4

LUT5
LUT6

LUT6

a)

b)

c)

Inputs Inputs Inputs

Inputs Inputs Inputs

LUT4

LUT4

Inputs LUT5
Inputs

LUT6Inputs

LUT5

LUT5

Inputs

Figure 13. The ability of the configuration logic blocks in FPGA (field-programmable gate array)

devices: (a) Spartan-3, (b) Artix-7, (c) Cyclone-10.

The results for the DECOMP system are included in two tables, depending on the number of

inner states of described automatons. The results obtained for DECOMP are shown in Tables 3 and

4.

Figure 13. The ability of the configuration logic blocks in FPGA (field-programmable gate array)
devices: (a) Spartan-3, (b) Artix-7, (c) Cyclone-10.

Appl. Sci. 2020, 10, 3926 15 of 20

Table 3. Results of experiments (DECOMP, number of states <10).

Separate
Implementation

Shared
Implementation

Separate im.-
Shared im.

Benchmarks δ λ δ + λ

Name In Out P States Blocks Levels Blocks Levels Blocks Levels Blocks Levels

Bbtas 2 2 24 6 2.5 2 2 1 4 2 0.5 0
Beecount 3 4 28 7 4 2 5 2 11 2 −2 0

dk14 3 5 56 7 7 2 12 2 16 2 3 −1
dk15 3 5 32 4 2 1 5 1 7 1 0 0
dk17 2 3 32 8 18 3 10.5 3 21 4 7.5 −1
dk27 1 2 14 7 1.5 1 1 1 2.5 1 0 0
ex5 2 2 32 9 8 2 2 2 10 2 0 0
ex6 5 8 34 8 8 4 18 4 20 4 6 0
lion 2 1 11 4 1 1 0.5 1 1.5 1 0.5 0
lion9 2 1 25 9 5.5 2 1.5 2 9 2 −2 0
mc 3 5 10 4 1.5 1 3 1 4.5 1 1 0
s8 4 1 20 5 6 2 1 2 7 3 0 −1

s27 4 1 34 6 4 2 1 2 5 2 0 0
shiftreg 1 1 16 8 1.5 1 0.5 1 2 1 0 0

tav 4 4 49 4 1 1 5.5 2 6 2 0.5 0
train4 2 1 14 4 1 1 0.5 1 1.5 1 0 0

72.5 69 128
Sum: 141.5 128

Table 4. Results of experiments (DECOMP, N = number of states ≥10).

Separate
Implementation

Shared
Implementation

Separate im.-
Shared im.

Benchmarks δ λ δ + λ

Name In Out P States Blocks Levels Blocks Levels Blocks Levels Blocks Levels

bbara 4 2 60 10 9 3 3 2 11 3 1 0
bbsse 7 7 56 16 26.5 4 23 5 37 4 2.5 1
dk512 1 3 30 15 4 1 2.5 1 6.5 1 0 0
donfile 2 1 96 24 11 2 0.5 1 11.5 2 0 0

ex2 2 2 72 19 19 3 2 2 21 3 0 0
ex3 2 2 36 10 8 2 1 1 9 2 0 0
ex4 6 9 21 14 7.5 3 7.5 2 21.5 4 −6.5 −1
ex7 2 2 36 10 8 2 3 2 10 2 1 0

keyb 7 2 170 19 57 7 5 3 56 6 6 1
opus 5 6 22 10 12.5 3 12 3 22 4 2.5 −1
Sse 7 7 56 16 25.5 5 23 5 43 5 5.5 0
tbk 6 3 1569 32 44 7 12 4 45 6 11 1
tma 7 6 42 20 37.5 7 25.5 7 61.5 6 1.5 1

train11 2 1 25 11 8 2 2.5 2 9 2 1.5 0
277.5 122.5 364

Sum: 400 364

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 21

Sse 7 7 56 16 25.5 5 23 5 43 5 5.5 0

tbk 6 3 1569 32 44 7 12 4 45 6 11 1

tma 7 6 42 20 37.5 7 25.5 7 61.5 6 1.5 1

train11 2 1 25 11 8 2 2.5 2 9 2 1.5 0

 277.5 122.5 364

 Sum: 400 364

Comparing obtained results included in all the four tables, it may be noticed that the total

number of blocks, where block δ and λ are carried out together, is lower than in the case of a separate

carrying out. This reduction, in each of the analyzed cases, is illustrated in the form of a bar graph

(Figure 14). The values of this reduction is presented in the form of percentage as ((LUTSep

−LUTsh)/LUTSep) × 100%, where LUTSep is the total number of LUT blocks for a separate carrying out of

the blocks δ and λ, LUTsh is the total number of blocks to carry out common δ + λ.

Figure 14. Limitation of the number of LUT blocks.

On the basis of Figure 14, it can be noticed that substantial limitation of the number of blocks

was gained for the DECOMP system. It proves that decomposition dedicated to logic blocks that

have appropriate configurable abilities (thanks to a triangle table) enables to take advantage from a

common carrying out of a combinational part of FSM. Thus, it turns out that a simultaneous

synthesis method of a transition and output blocks is not enough. It is necessary to develop effective

decomposition algorithms based on combining functions into multi-output functions. Using the

methods, described in the paper, enabled to reduce the number of LUTs in the case of DECOMP at

about 9.5%. In the case of ABC, the reduction gained was at about 4%.

While analyzing the results, taking into account the number of inner states, it can be seen that

for FSMs that have a low number of inner states (<10), the obtained reduction of the number of

blocks is higher. It is especially noticeable in the case of ABC that handles better with big FSMs.

Both in the case of ABC and DECOMP systems, you can find cases for which common carrying

out of a combinational part of FSM brings significant profits (ex6, opus, sse, tbk for the ABC system

and dk17, sse, tbk for DECOMP). Unfortunately, in both systems, we can distinguish cases for which

this approach gives much worse results in terms of number of blocks (keyb for ABC and ex4 for

DECOMP). According to the authors, the problem may lie in the minimization of logic functions,

which, associated with inadequately selected coding of internal states of FSM, means that the

implementation of separate blocks δ and λ gives better results.

Comparing the number of logic levels, their number is usually the same, independent of the

method of carrying out a combinational part of FSM.

However, it can be seen that there are single benchmarks for which the joint implementation of

both blocks gives slightly worse results. In the case of the ABC system, there is only one such case

Figure 14. Limitation of the number of LUT blocks.

Appl. Sci. 2020, 10, 3926 16 of 20

While analyzing the results, taking into account the number of inner states, it can be seen that for
FSMs that have a low number of inner states (<10), the obtained reduction of the number of blocks is
higher. It is especially noticeable in the case of ABC that handles better with big FSMs.

Both in the case of ABC and DECOMP systems, you can find cases for which common carrying
out of a combinational part of FSM brings significant profits (ex6, opus, sse, tbk for the ABC system and
dk17, sse, tbk for DECOMP). Unfortunately, in both systems, we can distinguish cases for which this
approach gives much worse results in terms of number of blocks (keyb for ABC and ex4 for DECOMP).
According to the authors, the problem may lie in the minimization of logic functions, which, associated
with inadequately selected coding of internal states of FSM, means that the implementation of separate
blocks δ and λ gives better results.

Comparing the number of logic levels, their number is usually the same, independent of the
method of carrying out a combinational part of FSM.

However, it can be seen that there are single benchmarks for which the joint implementation of
both blocks gives slightly worse results. In the case of the ABC system, there is only one such case
(dk15), while in the case of the DECOMP system, the number of such benchmarks is higher (dk14, dk17,
s8, ex4, opus). It should be emphasized that the synthesis strategy in the DECOMP system is focused
on reducing the number of LUTs, which can sometimes lead to an increase in the number of levels.
It can be assumed that the larger the system is, the more this problem will get worse (the increase in
the number of levels, while limiting the number of blocks). The circuit corresponding to the function δ

+ λ is usually larger than the individual circuits corresponding to the function δ and the function λ.
Therefore, it should be assumed that in some cases, the δ + λ circuit is large enough to be observed.

The ABC system is free of this disadvantage, which results from the way the technology mapping
is implemented (resulting from the division of the AIG network). Unfortunately, in some cases,
this makes it impossible to limit the number of blocks used.

In addition, a series of experiments were conducted using commercial tools such as Vivado (Xilinx)
and Quartus (Intel). In ABC, there were generated appropriate descriptions in Verilog HDL. Next,
the obtained descriptions underwent synthesis in commercial tools. Tables 5 and 6 include the number
of logic blocks used for the analyzed cases.

Table 5. Results of experiments (Vivado and Quartus II, number of states <10).

Vivado
(Artix 7)

Quartus
(Cyclone 10)

Benchmarks Separate
implem.

Shared
implem.

sep.-
sha. Separate implem. Shared

implem. sep.-sha.

Name In Out P States δ Λ δ + λ δ λ δ + λ

bbtas 2 2 24 6 2 1 3 0 2 1 3 0
beecount 3 4 28 7 3 4 7 0 3 3 6 0

dk14 3 5 56 7 3 5 8 0 3 5 14 −6
dk15 3 5 32 4 1 3 4 0 1 3 4 0
dk17 2 3 32 8 14 10 24 0 11 7 18 0
dk27 1 2 14 7 2 1 3 0 2 1 3 0
ex5 2 2 32 9 4 1 5 0 4 1 5 0
ex6 5 8 34 8 8 16 22 2 7 14 20 1
lion 2 1 11 4 1 1 2 0 1 1 2 0

lion9 2 1 25 9 4 1 5 0 4 1 5 0
mc 3 5 10 4 1 2 3 0 1 2 3 0
s8 4 1 20 5 6 2 8 0 7 1 9 −1

s27 4 1 34 6 3 1 4 0 3 1 4 0
shiftreg 1 1 16 8 2 1 2 1 2 1 2 1

tav 4 4 49 4 1 4 5 0 1 2 3 0
train4 2 1 14 4 1 1 2 0 1 1 2 0

56 54 107 53 45 103
Sum: 110 107 98 103

Appl. Sci. 2020, 10, 3926 17 of 20

Table 6. Results of experiments (Vivado and Quartus II, number of states ≥10).

Vivado (Artix 7) Quartus(Cyclone 10)

Benchmarks Separate
implem.

Shared
implem. sep.-sha. Separate

implem.
Shared

implem. sep.-sha.

Name In Out P States δ Λ ∆ + λ δ Λ δ + λ

bbara 4 2 60 10 9 3 13 −1 11 2 15 −2
bbsse 7 7 56 16 14 14 25 3 17 11 24 3
dk512 1 3 30 15 2 2 4 0 2 2 4 0
donfile 2 1 96 24 5 1 6 0 6 1 6 1

ex2 2 2 72 19 10 2 12 0 12 3 14 1
ex3 2 2 36 10 4 2 6 0 4 2 6 0
ex4 6 9 21 14 6 8 17 −3 7 8 13 2
ex7 2 2 36 10 4 1 5 0 4 1 5 0

keyb 7 2 170 19 38 7 43 2 41 5 42 4
opus 5 6 22 10 10 10 17 3 9 9 15 3
sse 7 7 56 16 16 13 27 1 16 11 26 1
tbk 6 3 1569 32 36 9 43 2 27 7 49 −15
tma 7 6 42 20 23 17 44 2 25 16 40 1

train11 2 1 25 11 4 1 5 0 4 1 5 0
181 90 267 185 79 264

Sum: 271 267 264 264

On the basis of the analysis of the results obtained after a synthesis in a Vivado system, it may be
said that a common carrying out of both blocks gives better results than in the case of a separate process.
This feature does not appear in the synthesis carried out using Quartus II. Configurable abilities of
logic blocks included in Artix-7 and Cyclone10 are slightly different (Figure 13b,c) [54,55]. It seems
that it is essential from the point of view of the results. Undoubtedly, the results gained in the process
of searching for shared elements are undone in the process of technology mapping using commercial
tools. In the case of results obtained with the Vivado tool, it can be seen that the shared implementation
approach leads to a slight improvement in terms of the number of necessary blocks. Unfortunately,
the reduction obtained is very small. In the case of the Quartus tool, this improvement is not visible at
all, and in some cases, there is a significant increase in the number of necessary logic blocks (dk14, tbk).
It seems that the reason for the lack of benefits from the presented approach lies in the disruption of
the data flow cycle between individual stages of synthesis in company tools. Probably, after each step
of the synthesis, the tools perform some form of design optimization that will facilitate the next steps.
It is also possible that commercial synthesis algorithms contain limitations enabling this optimization.
The change of description made by us (disruption of data flow) hindered the operation of optimization
algorithms, which could lead to a deterioration of the results obtained.

7. Discussion

The results, shown in the paper, indicate that carrying out FSM using the method, which gives the
chance to share logic blocks, leads to a substantial reduction of the number of logic blocks in FPGAs
in comparison with a classic approach i.e., method based on separate implementation of a transition
and output block of FSM. The essence of this reduction lies in the skillful conducting of the process of
technology mapping directed at LUT-based FPGA. In the process of technology mapping, the process
of decomposition plays an incredibly vital role. While decomposing the whole combinational logic, it is
simultaneously possible to search for more effective solutions than those gained using a classic method.

The presented method is universal as it makes it possible to search for an efficient solution for
any coding of states. The presented results were obtained for the most basic coding method based on
ascribing next words of a natural binary code to the states. It seems that the next stage of the research
will prove the efficiency of the presented optimization of FSM for other coding methods directed at
minimization of the area, power consumption, etc.

Appl. Sci. 2020, 10, 3926 18 of 20

Author Contributions: Conceptualization, M.K. and D.K.; methodology, M.K. and D.K.; software, M.K. and D.K.;
validation, M.K. and D.K.; formal analysis, M.K. and D.K.; investigation, M.K. and D.K.; resources, M.K. and D.K.;
data curation, M.K. and D.K.; writing—original draft preparation, M.K. and D.K.; writing—review and editing,
M.K. and D.K.; visualization, M.K. and D.K.; supervision, M.K. and D.K.; project administration, M.K. and D.K.;
funding acquisition, M.K. and D.K. All authors have read and agreed to the published version of the manuscript.

Funding: The study was partially supported by the Polish Ministry of Science and Higher Education.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barkalov, A.; Titarenko, L.; Chmielewski, S. Reduction in the number of PAL macrocells for Moore FSM
implemented with CPLD. In Proceedings of the 2010 East-West Design & Test Symposium (EWDTS),
St. Petersburg, Russia, 17–20 September 2010; pp. 390–394.

2. Chen, S.L.; Hwang, T.T.; Liu, C.L. A technology mapping algorithm for CPLD architectures. In Proceedings of
the IEEE International Conference on Field Programmable Technology, Hong Kong, China, 16–18 December
2002; pp. 204–210.

3. Chen, D.; Cong, J.; Ercegovac, M.D.; Huang, Z. Performance-driven mapping for CPLD architectures.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2003, 22, 1424–1431. [CrossRef]

4. Baccheta, P.; Daldoss, L.; Sciuto, D.; Silvano, C. Lower-Power State Assignment Techniques for Finite
State Machines. In Proceedings of the IEEE International Symposium on Circuits and Systems, Geneva,
Switzerland, 28–31 May 2000; pp. 641–644.

5. Mengibar, L.; Entrena, L.; Lorenz, M.G.; Millan, E.S. Partitioned state encoding for low power in FPGAs.
Electron. Lett. 2005, 17, 948–949. [CrossRef]

6. Park, S.; Yang, S.; Cho, S. Optimal state assignment technique for partial scan designs. Electron. Lett. 2000,
36, 1527–1529. [CrossRef]

7. Sentovich, E.; Singh, K.; Lavagno, L.; Moon, C.; Murgai, R.; Saldanha, A.; Savoj, H.; Stephan, P.; Brayton, R.;
Sangiovanni-Vincentelli, A. SIS: A System for Sequential Circuit Synthesis; Technical Report UCB/ERL M92/41;
University of California: Berkeley, CA, USA, 1992.

8. Villa, T.; Sangiovanni-Vincentelli, A. NOVA: State assignment for finite state machines for optimal two-level
logic implementation. IEEE Trans. Comput. Aided Des. 1990, 9, 905–924. [CrossRef]

9. Kubica, M.; Kania, D.; Kulisz, J. A technology mapping of FSMs based on a graph of excitations and outputs.
IEEE Access 2019, 7, 16123–16131. [CrossRef]

10. Barkalov, A.; Titarenko, L.; Mazurkiewicz, M.; Krzywicki, K. Encoding of Terms in EMB-Based Mealy FSMs.
Appl. Sci. 2020, 10, 2762. [CrossRef]

11. Barkalov, A.; Titarenko, L.; Chmielewski, S. Reduction in the number of PAL macrocells in the circuit of a
Moore FSM. Int. J. Appl. Math. Comput. Sci. 2007, 17, 565–575. [CrossRef]

12. Barkalov, A.; Titarenko, L.; Bieganowski, J. Designing HFPGA-based FSMs with counters. In Proceedings
of the 2017 MIXDES—24th International Conference Mixed Design of Integrated Circuits and Systems,
Bydgoszcz, Poland, 22–24 June 2017; pp. 254–257.

13. Czerwinski, R.; Kania, D. Finite State Machine Logic Synthesis for CPLDs; Springer: Berlin, Germany, 2013;
Volume 231, p. XVI.

14. Garcia-Vargas, I.; Senhadji-Navarro, R. Finite state machines with input multiplexing: A performance study.
IEEE Trans. CAD 2015, 34, 867–871. [CrossRef]

15. Devadas, S.; Newton, A.R.; Ashar, P. Exact algorithms for output encoding, state assignment and four-level
boolean minimization. IEEE Trans. Comput. Aided Des. 1991, 10, 13–27. [CrossRef]

16. Saldanha, A.; Villa, T.; Brayton, R.; Sangiovanni-Vincentelli, A. Satisfaction of input and output encoding
constraints. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 1994, 13, 589–602. [CrossRef]

17. Jozwiak, L. An efficient heuristic method for state assignment of large sequential machines. J. Circuits
Syst. Comput. 1992, 2, 1–26. [CrossRef]

18. Villa, T.; Saldanha, T.; Brayton, A.; Sangiovanni-Vincentelli, A. Symbolic two-level minimization. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 1997, 16, 692–708. [CrossRef]

19. Benini, L.; De Micheli, G. State Assignment for Lower Power Dissipation. IEEE J. Solid State Circuits 1995,
30, 258–268. [CrossRef]

http://dx.doi.org/10.1109/TCAD.2003.818120
http://dx.doi.org/10.1049/el:20052307
http://dx.doi.org/10.1049/el:20001086
http://dx.doi.org/10.1109/43.59068
http://dx.doi.org/10.1109/ACCESS.2019.2895206
http://dx.doi.org/10.3390/app10082762
http://dx.doi.org/10.2478/v10006-007-0046-8
http://dx.doi.org/10.1109/TCAD.2015.2406859
http://dx.doi.org/10.1109/43.62788
http://dx.doi.org/10.1109/43.277632
http://dx.doi.org/10.1142/S0218126692000027
http://dx.doi.org/10.1109/43.644031
http://dx.doi.org/10.1109/4.364440

Appl. Sci. 2020, 10, 3926 19 of 20

20. Kajstura, K.; Kania, D. Binary Tree-based Low Power State Assignment Algorithm. In Proceedings of the 12th
International Conference of Computational Methods in Science and Engineering (ICCMSE 2016), Athens,
Greece, 17–20 March 2016; pp. 300007_1–300007_4.

21. Salauyou, V.; Grzes, T. FSM state assignment methods for low-power design. In Proceedings of the Sixth
International Conference on Computer Information Systems and Industrial Management Applications, Elk,
Poland, 28–30 June 2007; pp. 345–350.

22. El-Maleh, A.H. Majority-based evolution state assignment algorithm for area and power optimization of
sequential circuits. IET Comput. Digit. Tech. 2016, 10, 30–36. [CrossRef]

23. Venkataraman, G.; Reddy, S.M.; Pomeranz, I. GALLOP: Genetic Algorithm Based Low Power FSM Synthesis
by Simultaneous Partitioning and State Assignment. In Proceedings of the 16th International Conference on
VLSI Design, New Delhi, India, 4–8 January 2003; pp. 533–538.

24. Pedram, M. Power Minimization in IC Design: Principles and Applications. ACM Trans. Des. Autom.
Electron. Syst. 1996, 1, 3–56. [CrossRef]

25. Surti, P.; Chao, L.F. Lower Power FSM Design Using Huffman-Style Encoding. In Proceedings of the IEEE
European Design and Test Conference, Washington, DC, USA, 17–20 March 1997; pp. 521–525.

26. Abdullah, A.C.; Ooi, C.Y.; Ismail, N.B.; Mohammad, N.B. Power aware through-silicon-via minimization by
partitioning finite state machine with datapath. In Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016.

27. Klimovicz, A.S.; Solov’ev, V.V. Structural models of finite-state machines for their implementation on
programmable logic devices and systems on chip. J. Comput. Syst. Sci. Int. 2015, 54, 230–242. [CrossRef]

28. Pendyala, S.; Katkoori, S. State encoding based NBTI optimization in finite state machines. In Proceedings
of the 17th International Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, USA, 14–16
March 2016.

29. Machado, L.; Cortadella, J. Support-Reducing Decomposition for FPGA Mapping. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 2020, 39, 213–224. [CrossRef]

30. Rawski, M.; Selvaraj, H.; Luba, T.; Szotkowski, P. Application of symbolic functional decomposition concept
in FSM implementation targeting FPGA devices. In Proceedings of the Sixth International Conference
on Computational Intelligence and Multimedia Applications, Las Vegas, NV, USA, 16–18 August 2005;
pp. 153–158.

31. Brzozowski, J.A.; Łuba, T. Decomposition of Boolean Functions Specified by Cubes. J. Mult. Valued Log.
Soft Comput. 2003, 9, 377–418.

32. Gosti, W.; Villa, T.; Saldanha, A.; Sangiovanni-Vincentelli, A. FSM encoding for BDD representations. Int. J.
Appl. Math. Comput. Sci. 2007, 17, 113–128. [CrossRef]

33. Opara, A.; Kubica, M.; Kania, D. Strategy of logic synthesis using MTBDD dedicated to FPGA. Integr. VLSI J.
2018, 62, 142–158. [CrossRef]

34. Mishchenko, A.; Chatterjee, S.; Brayton, R. DAG-aware AIG rewriting: A fresh look at combinational logic
synthesis. In Proceedings of the 43rd ACM/IEEE Design Automation Conference, San Francisco, CA, USA,
24–28 July 2006; pp. 532–535.

35. Berkeley Logic Synthesis Group, ABC: A System for Sequential Synthesis and Verification, December 2005.
Available online: http://www.eecs.berkeley.edu/~{}alanmi/abc (accessed on 20 January 2020).

36. Sasao, T. Memory-Based Logic Synthesis; Springer: Berlin, Germany, 2011.
37. Pedroni, V.A. Introducing deglitched-feedback plus convergent encoding for straight hardware

implementation of asynchronous finite state machines. In Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015.

38. Oliveira, D.L.; Bompean, D.; Curtinhas, T.; Faria, L.A. Design of Locally-Clocked Asynchronous Finite State
Machines Using Synchronous CAD Tools. In Proceedings of the 2013 IEEE 4th Latin American Symposium
on Circuits and Systems (LASCAS), Cusco, Peru, 27 February–1 March 2013; pp. 1–4.

39. Kubica, M.; Kania, D. Graph of Outputs in the Process of Synthesis Directed at CPLDs. Mathematics 2019,
7, 1171. [CrossRef]

40. Jozwiak, L. Embedded Computing Technology for Highly-demanding Cyber-physical Systems.
In Proceedings of the PDeS 2015, Cracow, Poland, 6–9 September 2015.

http://dx.doi.org/10.1049/iet-cdt.2015.0038
http://dx.doi.org/10.1145/225871.225877
http://dx.doi.org/10.1134/S1064230715010074
http://dx.doi.org/10.1109/TCAD.2018.2878187
http://dx.doi.org/10.2478/v10006-007-0011-6
http://dx.doi.org/10.1016/j.vlsi.2018.02.009
http://www.eecs.berkeley.edu/~{}alanmi/abc
http://dx.doi.org/10.3390/math7121171

Appl. Sci. 2020, 10, 3926 20 of 20

41. Opara, A.; Kubica, M.; Kania, D. Methods of improving time efficiency of decomposition dedicated at FPGA
structures and using BDD in the process of cyber-physical synthesis. IEEE Access 2019, 7, 20619–20631.
[CrossRef]

42. Ziebinski, A.; Swierc, S. Soft Core Processor Generated Based on the Machine Code of the Application.
J. Circuits Syst. Comput. 2016, 25, 1650029. [CrossRef]

43. Kubica, M.; Kania, D. Area-oriented technology mapping for LUT-based logic blocks. Int. J. Appl. Math.
Comput. Sci. 2017, 27, 207–222. [CrossRef]

44. Vemuri, N.; Kalla, P.; Tessier, R. BDD-based logic synthesis for LUT-based FPGAs. ACM Trans. Des. Autom.
Electron. Syst. 2002, 7, 501–525. [CrossRef]

45. Ashenhurst, R.L. The decomposition of switching functions. In Proceedings of the International Symposium
on the Theory of Switching, Cambridge, MA, USA, 2–5 April 1957.

46. Curtis, H.A. The Design of Switching Circuits; D.van Nostrand Company, Inc.: Princeton, NJ, USA; Toronto,
ON, Canada; New York, NY, USA, 1962.

47. Kubica, M.; Opara, A.; Kania, D. Logic synthesis for FPGAs based on cutting of BDD. Microprocess. Microsyst.
2017, 52, 173–187. [CrossRef]

48. Kubica, M.; Kania, D. Technology mapping oriented to adaptive logic modules. Bull. Pol. Acad. Sci. Tech. Sci.
2019, 67, 947–956.

49. Kubica, M.; Kania, D.; Opara, A. Decomposition time effectiveness for various synthesis strategies dedicated
to FPGA structures. In Proceedings of the 12th International Conference of Computational Methods in
Science and Engineering (ICCMSE 2016), Athens, Greece, 17–20 March 2016; pp. 0300005_1–0300005_4.

50. Kubica, M.; Kania, D. Decomposition of multi-output functions oriented to configurability of logic blocks.
Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 317–331. [CrossRef]

51. Scholl, C. Functional Decomposition with Application to FPGA Synthesis; Kluwer Academic Publisher: Boston,
MA, USA, 2001.

52. Xilinx, Spartan-3 Generation FPGA User Guide (UG331), 2011. Available online: https://www.xilinx.com/

support/documentation/user_guides/ug331 (accessed on 21 February 2020).
53. Collaborative Benchmarking Laboratory, Department of Computer Science at North Carolina State University.

Available online: http://www.cbl.ncsu/edu/ (accessed on 10 March 2020).
54. Xilinx, 7 Series FPGAs Configurable Logic Block—User Guide UG474, 2016. Available online: https:

//www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf (accessed on 5 April 2020).
55. Intel, Cyclone 10 GX Core Fabricand General Purpose I/Os Handbook, 2020. Available online: https://www.

intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-10/c10gx-51003.pdf (accessed
on 16 January 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2898230
http://dx.doi.org/10.1142/S0218126616500298
http://dx.doi.org/10.1515/amcs-2017-0015
http://dx.doi.org/10.1145/605440.605442
http://dx.doi.org/10.1016/j.micpro.2017.06.010
http://dx.doi.org/10.1515/bpasts-2017-0036
https://www.xilinx.com/support/documentation/user_guides/ug331
https://www.xilinx.com/support/documentation/user_guides/ug331
http://www.cbl.ncsu/edu/
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-10/c10gx-51003.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-10/c10gx-51003.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Background
	Indicating the Efficiency of Mapping for a Multi-Output Function
	A Separate Implementation of Transition and Output Block of FSM
	The Method of Carrying out FSM Using Sharing of Logic Resources
	Results
	Discussion
	References

