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Abstract: An ultrabroadband, omnidirectional, and polarization-insensitive absorber based on
cascaded nanorod arrays (CNAs) is numerically demonstrated, and an average absorptivity of 98.2%
with a relative absorption bandwidth (RAB) of 149.8% can be achieved in the 0.38–2.65 µm wavelength
range. The proposed CNA-based absorber requires only several pairs of multilayers to achieve
excellent absorption performance. More significantly, the physical mechanism for this intriguing
ultrabroadband absorption results from the synergistic effect of localized surface plasmon (LSP)
and plasmonic resonant cavity (PRC) modes, which is fundamentally different from the tapered
metal/dielectric multilayer-based absorbers associated with the slow-light mode. We investigated the
absorption properties of the CNA-based metasurface by using the impedance theory, which indicates
that the impedance of the structure matches well with the impedance of the free space from the
visible to near-infrared wavelength range. In addition, the absorption properties of the CNA-based
metasurface are robust to the variation of the structural parameters and the metal/dielectric materials,
and ultrabroadband absorption performance can be maintained within 0–60◦ for both TM and
TE modes.

Keywords: light absorption; cascaded nanorod arrays; ultrabroadband; omnidirectional;
polarization-insensitive

1. Introduction

Plasmonic absorbers can function as crucial components for various applications such as
sensing [1,2], photodectors [3], thermal emitters [4,5], photovoltaics [6,7], etc. In the past decade,
the metal-insulator-metal (MIM) nanopatterned structures are the main schemes to achieve perfect
light absorption enhancement [8]. In this configuration, strong electromagnetic coupling could be
excited between the metallic pattern and the metallic substrate in a small wavelength range due to
magnetic or electric resonance. By choosing different shapes of metal patterns such as strip [9,10],
square [11,12], hole [13], disk [14] and # [15], perfect absorption can be obtained as impedance matching
is satisfied at a specific wavelength. However, the resonant characteristics of the conventional MIM
absorbers result in narrow bandwidths, which may limit their applications in the fields of IR cloaking,
solar cells, and imaging. To meet the demand of broadband absorption, some broadband absorbers
have been proposed by using the concept of a superlattice. By integrating multi-sized resonators
such as strips [16,17], squares [18–21], disks [22,23], and crosses [24,25] into the unit cell, or using
multi-thickness metasurfaces [26,27], multi-band or broadband absorption can be obtained due to the
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overlapping of multiple resonance frequencies. Unfortunately, the bandwidths of these absorbers are
limited by the possible number of resonators that can be integrated into the subwavelength superlattice.

In recent years, hyperbolic metamaterials (HMMs) have become an active research area due to
exotic hyperbolic dispersion, which originates from one of the principal components of their electric
or magnetic effective tensor having the opposite sign to the other two principal components [28].
It has been shown that HMMs can be used to improve light absorption due to their high-wavevector
propagating modes and enhanced photonic density of states [29,30]. In general, a thin-film multilayer
consisting of alternating metal/dielectric layers will give rise to hyperbolic dispersion because the
layer thicknesses can be ignorable compared with the operating wavelength. By using hyperbolic
metal/dielectric multilayers [31,32], nanostrips [33], or nanopillars [34], light absorption can be efficiently
enhanced in a small wavelength region. To broaden the absorption bandwidth, more complicated HMM
nanostructures with graded metal/dielectric patterns, such as sawtooths [35–40], pyramids [41–43],
and nano-cones [44–47] are required. Similarly, by integrating multi-sized, graded HMM patterns into
the unit cell, the absorption bandwidth of the graded HMM absorbers can be further expanded [48,49].
Generally, the physical basis for the intriguing ultrabroadband absorption of these HMM-based
absorbers is associated with the slow-light effect. As the incident light is coupled into the taped
HMM-based waveguide, the group velocity of the waveguide mode at different wavelengths will be
reduced dramatically at their corresponding critical widths, which enables the collective excitation of
slow-light waveguide modes over a broad wavelength region, also known as the trapped rainbow
phenomenon [50,51]. Although the achieved absorption results of the HMM-based absorbers are
remarkable, their fabrication process is quite challenging due to the graded metal/dielectric patterns
with a large number of film stacks. Furthermore, despite the elaborate study of nanostructured
plasmonic absorbers, absorption performance that combines the advantages of high absorption
efficiency, ultrabroad bandwidth, and omnidirectional characteristics is still highly desired.

Inspired by these earlier works, here we demonstrate a novel ultrabroadband, omnidirectional,
and polarization-insensitive absorber based on cascaded nanorod arrays (CNAs). The CNA-based
absorber requires only several metal/dielectric stacks, and an average absorptivity of 98.2% with a
relative absorption bandwidth (RAB) of 149.8% can be achieved in the 0.38–2.65 µm wavelength range.
The physical mechanism for ultrabroadband light absorption of the CNA-based absorber results from
localized surface plasmon (LSP) mode, plasmonic resonant cavity (PRC) mode, and their hybrid
modes, which is fundamentally different from the tapered metal/dielectric multilayer-based absorbers
associated with the slow-light mode. In addition, the absorption characteristics of the CNA-based
absorber are robust to the variation of the structural parameters and the metal/dielectric materials,
and omnidirectional absorption performance can be realized due to high angular tolerance for both
TM and TE polarizations in the range of 0–60◦.

2. Structure and Design

Figure 1 shows the schematic map of the CNA-based metasurface under the TM (electric field
along x-axis) wave illumination. The unit cell of the CNAs consists of two types of nanorods. One is the
top metal (Ti) nanorod with height h and smaller diameter D1, the other is the bottom metal/dielectric
(Ti/SiO2) multilayer nanorods with larger diameter D2, and these two types of nanorods are separated
by a dielectric (SiO2) buffer layer with thickness tb. The number of the alternating Ti/SiO2 pairs (N) of
the multilayer nanorods is 5; the thickness of each Ti and SiO2 film of the multilayer nanorods are tm

and td, respectively. P is the period in the x and y directions. The background is air. The thickness of
Ti substrate is chosen as 200 nm to block the light transmission. The refractive index of SiO2 is 1.47,
and the dielectric constant of Ti is obtained from Palik [52].

For the CNA-based metasurface at normal incidence, whether a diffraction order propagates or
not in the background can be written as [53]

m2 + n2 < P2/λ2 (1)
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where m and n are the diffracted orders along the x and y directions, respectively. λ is the wavelength
in free space. To ensure ultrabroadband absorption, a subwavelength unit cell with P < λ should be
chosen to avoid the energy transfer via high-order diffraction.

In simulations, we adopted the three-dimensional finite-difference time-domain (FDTD) method
to analyze the absorption performance of the CNA-based metasurface. The absorption of total structure
can be simplified as A = 1 − R due to the optically thick Ti substrate, where R is the reflection of the
structure. Moreover, the absorption of different parts of the structure can be extracted by integrating
power dissipation of every single layer [12,54,55]:

α(λ) =
1
2
ε0ωImε(ω)

∫
V
|E|2dV (2)

where ε0 is the permittivity of vacuum, ω is the angular frequency, ε denotes the relative dielectric
permittivity of each layer, Imε(ω) is the imaginary part of ε, E denotes the amplitude of electric field,
and the integral is over the desired part of a unit.

In addition, the average absorption within the operating wavelength region is used to evaluate
the overall absorption performance of the CNA-based absorber, which can be calculated as

Aav =
1

λL − λS

∫ λL

λS

A(λ)dλ (3)

where λL and λS are the larger and smaller limits of a wavelength region with absorptivity higher
than 90%. Furthermore, to compare the absorption bandwidth of the CNA-based absorber with
that of other types of broadband absorbers, the RAB is introduced, which is generally defined as
RAB = 2(λL − λS)/(λL − λS) [56].
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Figure 1. (a) Sketch map of the CNA-based metasurface for ultrabroadband light absorption. (b) A unit
cell of the CNA-based metasurface.

3. Absorption Performance Analysis

Figure 2 shows the absorption performance of different CNA-based structures. As indicated in
Figure 2a, ultrabroadband absorption enhancement can be obtained for the CNA-based absorber from
the visible to the near-infrared region, and three absorption peaks occurred at the locations of 0.524 µm,
1.001µm, and 1.952µm. An average absorptivity with Aav = 98.2% and RAB = 149.8% can be achieved in
the 0.38–2.65 µm wavelength range. Note the RAB of the CNA-based absorber is larger than many types
of broadband absorbers such as multi-sized MIM absorbers [16–25], multi-thickness absorbers [26,27],
and graded HMM absorbers [35–41,45–47]. The RAB of the CNA-based absorber is also comparable
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with that of multi-sized graded HMM absorbers [48,49]. Specifically, compared with the similar
structure of 3 × 3 cascading metal-dielectric pairs, in which the ultrabroadband absorption results from
the overlapping of the magnetic resonances of three subunit cells [57], the absorption performance (i.e.,
RAB, average absorptivity, polarization and angle independent features) of the CNA-based absorber
is better because it combines the advantages of LSP and PRC within a comparatively simple and
low-cost configuration. However, for the CNA-based structure with D1 = D2, the broadband absorption
performance of the structure is out of function, and the absorption band with absorptivity above 90%
disappears completely in the whole spectral wavelength region. In particular, for the CNA-based
structure without top Ti nanorods, the absorption of the structure is significantly reduced in the shorter
wavelength region. In Figure 2b, we calculate the contributions of the top Ti nanorods and the rest
of the CNA-based metasurface to total light trapping. As shown in Figure 2b, the absorption of the
CNA-based absorber mainly results from the multilayer nanorods and substrate, yet a non-ignorable
amount of absorption originates from the top Ti nanorods in the region of 0.38–1.5 µm. Therefore,
the top Ti nanorods are essential for the absorption enhancement of CNA-based absorbers in the short
wavelength region.
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Figure 2. Absorption performance of different CNA-based structures. The parameters are: P = 300 nm,
N = 5, h = 140 nm, tb = 30 nm, tm = 10 nm, td = 33 nm, D1 = 140 nm, and D2 = 276 nm. (a) Absorption of
total structure, total structure with D1 = D2 = 276 nm, and total structure without Ti rods. (b) Absorption
of CNA-based absorber, and absorption distributions of different parts of the structure.

To better understand the physical mechanism of the ultrabroadband absorption enhancement of
the CNA-based metasurface, the distributions of electric field and energy flows are investigated at
the locations of three absorption peaks. As indicated in Figure 3a, for the short wavelength of 0.524
µm, the electric field is enhanced mainly around the corner of the top Ti nanorods, exhibiting the
features of localized surface plasmon (LSP) mode [58,59]. In addition, the distribution of the Poynting
vector shows that energy of the incident light primarily flows and dissipates around the surface of
the top Ti nanorods, resulting in the absorption enhancement of the short wavelength. As can be
seen in Figure 3c, for the long wavelength of 1.952 µm, the electric field is mainly enhanced and
localized in the narrow cavities formed by the adjacent multilayer nanorods, showing the features of
plasmonic resonant cavity (PRC) mode [60–62]. The energy flow of the incident light propagates along
the −z direction, and the energy of light is mainly confined and consumed by the narrow cavities and
the metallic substrate. As shown in Figure 3b, for the middle wavelength of 1.001 µm, the electric field
is enhanced by the top Ti nanorods and the narrow cavities simultaneously, and the energy flows are
trapped by both of them, indicating the hybrid LSP and PRC modes. Therefore, the ultrabroadband
absorption of the CNA-based metasurface originates from the synergistic effect of the LSP and PRC
modes. It is interesting to note that although several metal/dielectric multilayers are required for
the CNA-based absorber, its physical mechanism for ultrabroadband absorption is fundamentally



Appl. Sci. 2020, 10, 3878 5 of 12

different from the tapered metal/dielectric multilayer-based absorbers associated with the intrinsically
slow-light mode [35–49]. That is, these metal/dielectric multilayer-based absorbers can be equivalent
to the anisotropic metamaterials with tapered width, and each metal/dielectric/metal layer acts as an
independent slow light waveguide to stop and consume the light energy of a particular wavelength.
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Figure 3. Electric field and Poynting vector distributions of CNA-based absorber at three resonance
absorption peaks. (a) λ = 0.524 µm; (b) λ = 1.001 µm; (c) λ = 1.952 µm. The parameters are the same as
those in Figure 2b, the arrows indicate the Poynting vector direction.

In order to figure out the link between the ultrabroadband absorption performance and the related
electromagnetic parameters of the CNA-based metasurface, we also investigate the input impedances
of the structure by using the impedance theory. By using the impedance theory [63,64], the impedance
Z of the CNA-based metasurface can be expressed as

Z = ±

√√√
(1 + S11)

2
− S2

21

(1− S11)
2
− S2

21

(4)

S11 = S22 =
i
2
(

1
Z
−Z) sin(nkd) (5)

S21 = S12 =
1

cos(nkd) − i
2 (Z + 1

2 ) sin(nkd)
(6)

where S11, S21, S12, and S22 are S parameters; and n, k, and d are the effective refractive index, the wave
vector, and thickness of the structure, respectively. Therefore, the relation between the theoretically
calculated reflection of CNA-based structure and the impedance Z can be simplified as R = [(Z − Z0)/
(Z + Z0)]2, where Z0 is the impedance of free space.

Figure 4a shows the reflection response and impedance of the CNA-based metasurface.
The parameters are the same as those in Figure 2b. As shown in Figure 4a, the real part of Z approaches
one and the imaginary part of Z tends to zero in the wavelength range of 0.38–2.5 µm, resulting in the
ultrabroadband antireflection with R ≈ 0 in this wavelength region. Figure 4b shows the FDTD and the
theoretical results of the absorption response of the CNA-based metasurface. Herein, the theoretical
results are calculated by using the retrieved input impedances, which show excellent agreement with
the FDTD results.
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Figure 4. (a) Impedance and reflection curves of the CNA-based metasurface. (b) FDTD result and
theoretical results of absorption spectral of the CNA-based metasurface.

4. Results and Discussions

To further evaluate the robustness of the absorption performance of the CNA-based absorber,
we first investigated the influence of the height and diameter of the top Ti nanorods on absorption
spectra of the CNA-based metasurface. As indicated in Figure 5a, the absorption performance of
the CNA-based metasurface is almost immune to the variation of the height of the top Ti nanorods,
and ultralbroadband absorption can be maintained unless the top Ti nanorods are totally eliminated.
As seen in Figure 5b, the overall absorption of the CNA-based metasurface can be improved with the
increase of the diameter of the top Ti nanorods, and the absorption performance will be saturated as
D1 = 140 nm. Increasing the diameter of the top Ti nanorods will deteriorate the absorption performance
of the structure as D1 > 140 nm, and the ultrabroadband absorption performance will be cancelled as
D1 = D2 = 276 nm. However, excellent absorption performance of the structure can be maintained
around D1 = 100 nm even when the diameter of the top Ti nanorods has been changed dramatically.
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Figure 5. Influence of the top Ti nanorods on absorption performance of the CNA-based metasurface.
Other parameters are the same as those in Figure 2b. (a) Absorption as a function of the height of the
top Ti nanorods. (b) Absorption as a function of the diameter of the top Ti nanorods.

Figure 6 shows the influence of the buffer layer on absorption performance of the CNA-based
metasurface. As shown in Figure 6a, the variation of tb almost does not change the absorption
performance of the structure in the longer wavelength region, but the absorption in the shorter
wavelength region will be slightly altered as tb is varied. Because the absorption enhancement of the
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longer wavelength primarily results from the PRC mode confined between the multilayer nanorods,
the absorption performance is almost independent of tb. However, the variation of tb will affect the
electromagnetic coupling between the top Ti nanorods and the multilayer nanorods, and the LSP
mode confined by the top Ti nanorods will be slightly changed as well. As a result, the corresponding
absorption will be slightly altered as tb is varied. In Figure 6b, it can be seen that the absorption of the
CNA-based metasurface is insensitive to the variation of the refractive index of the buffer layer. Here,
although five arbitrary dielectric materials, such as MgF2 (n = 1.38), SiO2 (n = 1.47), Al2O3 (n = 1.77),
HfO2 (n = 1.97) and TiO2 (n = 2.50), are used as the buffer layer, the ultrabroadband absorption of
the structure can be maintained in the whole wavelength region. As can be seen in Figure 3, because
the electric field related to absorption wavelength is highly confined by the top Ti nanorods and the
cavities of the adjacent multilayer nanorods, the variation of the refractive index of the buffer layer has
little influence on the absorption performance of the CNA-based metasurface. This will facilitate the
selection of materials in application.
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Figure 6. Influence of buffer layer on absorption performance of the CNA-based metasurface.
Other parameters are the same as those in Figure 2b. (a) Absorption as a function of the thickness of
buffer layer. (b) Absorption as a function of the refractive index of buffer layer.

Figure 7 shows the influence of the multilayer nanorods on absorption performance of the
CNA-based metasurface. As indicated in Figure 7a, the absorption of the structure can be enhanced
with the increase of D2 in the longer wavelength region, and its absorption will be saturated as
D2 = 276 nm. In particular, as D2 is increased to 300 nm (D2 = P), the narrow cavities that can support
the PRC mode between the neighboring multilayer nanorods disappear. Thus, the absorption is
reduced in the longer wavelength region. In Figure 7b, it can be seen that there is no obvious absorption
enhancement for the longer wavelength as N = 1; this is because the thickness of the multilayer
nanorods is too small to support the PRC mode. Perfect absorption performance of the structure
can be achieved with N = 5, and further increasing N will cause a decrease of the overall absorption
in the longer wavelength region. Because the increase of N will increase the overall reflection of
the structure, and the absorption of the structure is reduced as well, there is a trade-off between the
absorption performance and the number of the multilayer nanorods. Note the absorption mechanism
of the CNA-based metasurface is different from those of HMM-based absorbers [33,34], in which the
absorption is improved by increasing the number of the metal/dielectric stacks. In fact, the CNA-based
metasurface required only several film stacks to achieve the ultrabroadband absorption. Thus, it is also
an ultracompact absorber with a total thickness of 385 nm as N = 5.
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Figure 7. Influence of multilayer nanorods on absorption performance of the CNA-based metasurface.
Other parameters are the same as those in Figure 2b. (a) Absorption as a function of the diameter of
multilayer nanorods. (b) Absorption as a function of the number of film pairs of multilayer nanorods.

Figure 8 shows the influence of period and material on the absorption performance of the
CNA-based metasurface. As shown in Figure 8a, the absorption performance is robust to the variation
of the period, and ultrabroadband features are retained even when the period is significantly altered.
However, the variation of the period will change the width of the cavity between the neighboring
multilayer nanorods, and the PRC mode confined in the cavity will be affected as well, thus the
absorption in the longer wavelength is slightly altered as P is varied. In Figure 8b, three different
metallic materials (Cr, Ni, Fe) and two different dielectric materials (MgF2, HfO2) are selected to
evaluate the absorption performance of the CNA-based metasurface; the dielectric constants of Cr, Ni,
and Fe were obtained from Palik [52]. As shown in Figure 8b, ultrabroadband absorption performance
can be maintained even if different metal/dielectric materials are chosen with the structural parameters
kept the same. Therefore, the CNA-based metasurface may provide a general architecture to realize
ultrabroadband absorption with high absorption efficiency based on low-cost metallic materials.
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Figure 8. Influence of period and material on absorption performance of the CNA-based metasurface.
Other parameters are the same as those in Figure 2b. (a) Absorption as a function of the period.
(b) Absorption as a function of different metal/dielectric materials.

Finally, we evaluate the angular robustness of the proposed CNA-based absorber. As shown in
Figure 9, the CNA-based absorber exhibits a nearly omnidirectional absorption performance for both
the TM and TE (electric field along y-axis) polarizations. For the TM polarization, ultrabroadband
absorption enhancement can be kept almost the same even if the incident angle is significantly altered,
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and an average absorptivity of 87.6% can be achieved in the range of 0.38–2.65 µm even if the incident
angle is increased to 60◦. In particular, for the TE mode, the average absorptivity can be kept at 90.0%
in the range of 0.38–2.65 µm as the incident angle is increased to 60◦. For the TE-polarized incident
wave, its tangential component of the electric field is always equal to the total electric field for different
incident angles, and it has a stronger contribution to match the tangential fields at the interfaces of the
CNA-based absorber compared with the TM polarization, which may be responsible for the better
angular response. Since any oblique incident waves can be decomposed into TM and TE modes,
the results indicate that the proposed structure can function as an omnidirectional absorber due to its
high angular tolerance for both TM and TE modes in the range of 0–60◦.
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5. Conclusions

An ultrabroadband, omnidirectional, and polarization-insensitive absorber based on CNAs is
numerically demonstrated, which consists of the top Ti nanorods and the bottom Ti/SiO2 multilayer
nanorods separated by a SiO2 buffer layer. The physical mechanism for ultrabroadband absorption of
the proposed absorber results from the synergistic effect of the LSP and PRC modes, which is completely
different from those HMM-based absorbers associated with the slow-light mode. The CNA-based
absorber requires only several film stacks, and an average absorptivity of 98.2% with RAB = 149.8% can
be achieved in the 0.38–2.65 µm wavelength range. According to the impedance theory, the impedance
of the structure matches well with the impedance of the free space from the visible to the near-infrared
spectral range. It is remarkable that the absorption performance of the CNA-based absorber is robust
to the variations of the structural parameters such as thickness and diameter of the top Ti nanorods,
thickness and refractive index of the buffer layer, diameter and number of the Ti/SiO2 stacks, period,
and the metal/dielectric materials. In addition, the CNA-based absorber exhibits omnidirectional
independence for both TM and TE polarizations in the range of 0–60◦. This design strategy and
architecture may provide an alternative scheme towards ultrabroadband absorption and might find
applications in photoelectric detection, optical imaging, and photovoltaic solar energy conversion.
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