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Abstract: Oil-and-gas networks are systems of pumps and pipelines that are exposed to heterogeneous
threats. Accordingly, hardening strategies against malicious attacks are needed in today’s geopolitical
climate. In this paper, a tri-level leader–follower–operator game is established for determining
the optimal fortification tactics to protect the critical assets considering the petroleum firm limited
resources. We additionally consider defender options beyond outright fortification including tactics
often adapted in the fog of war, such as deception. These are mathematically modeled under shared
cognition concepts. The proposed model assumes a trial-and-error learning process to gradually
discover effective defense strategies. These strategies may include a network defender projecting false
information in the media or on the front lines to deceive the aggressor. The resulting mixed-integer
nonlinear programming problem is decomposed into a master problem associated with deception
and sub-problem as response strategies. A column-and-constraint generation solution duly takes into
account the defender–operator and attacker–operator interactions. Further, linearization techniques
are applied to reformulate the problem into a mixed-integer linear problem. Our studies performed
on the part of the Iraq oil-and-gas network and computational results verified that the deception
concept is much more effective than fortification, where the cost of attackers damages diminished
significantly without substantial resources commitment on the part of the defender.

Keywords: deception; epistemic utility theory; information value theory

1. Introduction

The opposite of fortifying a network is the network interdiction, which in the security sense, has a
meaning of destroy, cut, or damage by ground or aerial firepower. The attacker activities are modeled in
many studies using a variety of optimization approaches in which the attacker damages the network’s
assets to stop the network’s functionality. For example, in a petroleum network, the most important
assets are the production sources, pipelines, pump stations, and so on [1]. Each of these components
is critical to the petroleum industry and their safety is still a priority for companies, governments,
and host communities. For example, many countries’ petroleum networks are under attack, such as
Nigeria, Saudi Arabia, the USA, and Canada [2]. The greatest necessity is to model and examine
network vulnerability and reliability under terrorist attacks due to network importance, especially
when there is a war to destabilize the whole environment [3]. Many reasons would encourage the
defender for modeling such as limited resources, prioritizing the network’s components based on their
capacity, length of pipelines, and the amount of produced oil or natural gas. In this regard, such a
model was investigated by Snyder and Daskin [4]. The authors studied a reliable supply chain design
to dispatch petroleum products. They developed the network reliability and security plans for a single
source and single commodity network. Maximizing survivability and source–sink reliability using a
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probabilistic solution discovery algorithm (PSDA) was proposed by [5], whereby PSDA can be readily
applied to solve the all-terminal network’s reliability allocation problems.

This research aims to apply the leader–follower game theory and shared cognition concepts in a
real oil-and-gas infrastructure system. It is often implicitly assumed that game players are aware of the
game structure, utility, outcomes, and also aware that other players aware of this. This information is
called common knowledge [6] and is subtly distinct from mutual knowledge, which is known just about
the state of the game, but not about other players’ awareness. Chan [7] suggested a Stackelberg game
where the leader (defender) would minimize the operational cost, and the follower (the aggressor)
would inflict damage to maximize the operational cost and so on. The Max–Min two-person zero-sum
game is one of the classical methods for solving the game theory problems; when playing it out in
real-time, an attacker will move first, and the defender will respond by hardening the relevant attacked
assets [8,9].

According to Cannon-Bowers and Salas [10], the concept of shared cognition helps to explain
the role of information in the team and organizational performance. Many other theories address
this concept and are presented within this paper. The central premise of Truth-Default Theory
(TDT) is that people tend to believe others and that this “truth-default” is adaptive. TDT highlights
contextualized communication content in deception findings over nonverbal performances linked
with reaction, arousal, strategic self-presentation, or cognitive effort [11,12]. Deceptive information
was investigated by Levine et al. [13], where the authors stated that deceptive information would
result in non-availability of precise and comprehensive data at the right time, leading to unproductive
process organization, increased project cost, and distribution delay—just the negative attributes that
one would like to impart upon an intruder. Social media applications have proposed many deception
concepts without formal mathematical modeling [14].

As an oil-and-gas company, the most prominent challenge today is obtaining the most effective
strategies for defending the operation network and validate the model results with real-world operations.
Aside from outright fortification, disseminating false information for protecting the network is a
positive strategy; for example, the company can consider when he is lacking hardening resources,
whereby it can at least deceive the attacker into attacking fewer essential facilities. However, in this
kind of strategy, we have a lot of questions to answer such as how much false information is required
to generate? Which asset appears to be most important? Can we implement an idea of the deception
concept to reduce attacker damages? These questions seem to be hard to answer, and we feel that
existing research answers them partially. We hope that the lack of resources of deception introduced in
this paper could prevent the attacker from the network core facilities. Our research targeted one of the
most critical infrastructure networks in Iraq, where a war is ongoing with terrorists such as ISIS, who are
burning all infrastructure and government resources. We recognize the many dimensions of gaming
beyond outright fortification, including tactics often adapted in the fog of war, such as deception.
This is modeled mathematically under the shared cognition concept. In practice, it could be as easy as
burning crude oil for building huge smoke and to prevent a pilot’s clear vision, where the defender is
considered to project false information to deceive the aggressor. In addition, we considered another
hardship where there is not enough budget to provide real protection. Our model proposed a model
based on the tri-level and bi-level programming concepts, where the defender/attacker/operator and the
attacker/defender have a different objective in mind. The defender can deflect the attacker’s attention
from the significant assets in the network by hardening the oil-and-gas facilities, pump stations,
and pipelines.

In this paper, we applied hardening and deception methods under limited resources to minimize
network damages. The developed optimization problem has the Mixed-Integer Linear Programming
format, in which an efficient solution strategy can be pursed to seek the optimum point. It is
essential to estimate the value of hardening as well as that associated with deception strategy,
representing new findings not reported in the literature. Cost-saving provides the valuation of our
model. By experimenting with the number of hardened facilities and deception, the defender can
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see how many of such resources are required to deviate the attacker from the most critical assets.
The petroleum firm must find her optimal plan including both of the hardening and deception whereby
the attacker will see only one fortification strategy, not separated actions. We also propose measuring
the value of deception mathematically during gameplay, which has not done before in the literature.
Calculating the amount of saving in dollars is of great importance to the government and companies,
who can now adopt judicious, cost-effective steps to prevent malicious attacks based on their valuation.

In summary, the highlights of our contributions are: (1) providing the scientific basis for posturing
and deception in terms of shared cognition and epistemic utility functions; (2) quantifying the value of
deception in a game-theoretic context; (3) modeling an active defender to limit the attackers intrusions;
and (4) implementing them on a real-world petroleum network.

The paper is started with the problem definition. Section 2 will discuss the model formulation
and challenges of the leader–follower game theory or the defender–attacker–operator interactions,
including implementing the deception concept and production and consumption allocations. Section 3
will explore solutions strategies, which will be executed to assess the validity of the model and the
results. Section 4 contains the conclusion which verifies that the model works as intended and that
the modeling results agree with available empirical data, followed by recommendations for future
work. Appendix A summarizes the model variable notations for the reader’s convenience. Appendix B
monitors the linearization methods of nonlinear terms within the model.

2. Model Formulation

Tri-Level Defender-Attacker–Operator Problem

In our tri-level defender-attacker–operator problem, Equations (1)–(13), all parties seek to optimize
the transportation cost of the produced crude oil and natural gas liquids (NGL) from the production
facilities to the demand nodes. The modeled oil/gas network compromises the pump stations for
the crude oil and the direct pipelines for the NGL. Moreover, the limits of production and pipeline
capacities are considered. Figure 1 demonstrates the interaction among the players in the tri-level
game, wherein the first level problem, Equations (2)–(5), the defender plans the hardening and false
information propagation.
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A distinguishing of the feature of our model is the explicit recognition of the importance information
plays in such a competitive game, as shown in our discussions on shared cognition and epistemic
knowledge, where such information is generated at the defender model. Specifically, the defender
would release some false information, do specific actions, and pretend that information/actions are
classified, or are real strategies, by way of posturing or side information. When applied on top of
hardening, this strategy can deflect the attacker from its intended target toward a protected target,
resulting in depleting the adversary’s limited resources without any compromise on the oil/gas network.
In the second-level problem, Equations (6)–(8), while the attacker believes in spending resources to elicit
intelligence from the defender, he makes his strategies based upon the received data, without knowing
that he is buying false information. The model demonstrates the intricate relationship between game
and information within the first and second-level of the tri-level problem, namely the leader and
follower levels. The defender and attacker employ the third-level operator problem, Equations (9)–(13),
for evaluating their strategies, to ensure they optimized their interests, and dispatch their products to
the demand points.

The objective function, Equation (1), optimizes the entire system operating cost (OC), including
transportation in the first part and the shortage cost in the second part of the equation. The defender
and the operator are seeking to minimize the OC with respect to the decision variables in the sets ΓO

and ΓO, respectively, while the attacker maximizes the OC sought by the decision variables in the set
ΓA. Note that Appendix A summarizes the model variable notations for the reader’s convenience.

min
ΓD

max
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min
ΓO
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∑
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0 ≤ Uip ≤ Uip ; ∀i, p :
(
µsh

ip

)
(13)

where
ΓD =

{
ψDF

ij ,ψD
ij ,ψF

ij , φDF
i , φD

i , φF
i

}
, ΓA =

{
ψA

ij ,φ
A
i

}
, ΓO =

{
xi jp, Uip, Sip

}
The deception strategy for the pipelines and nodes is modeled on Constraints (2) and (3)

respectively, which allows the defender to pass the true-false information about the hardening strategy
to the attacker. Utilizing this kind of posturing is to deceive the attacker with uncertainty. In practice,
propagating fake information about the network is reasonable when the defender is suffering from
limited defending resources; for example, burning crude oils and creating clouds of smoke. This strategy
is very helpful when a pilot is trying to attack. We are not going to dive into detail. Table 1 shows
the performance of these equations. For example, in the first two cases, the assets are unprotected
(ψD

ij /φ
D
i = 0). However, when the defender decides to deceive the attacker, the false information

about the protection status of the facilities should equal to (ψF
ij/φ

F
i = 1). On the other hand, when

(ψF
ij/φ

F
i = 0) the attacker will get the true information about the protection plans (ψDF

ij = ψD
ij and

φDF
i = φD

i ). Constraints (2) and (3) have nonlinear terms that need linearization as illustrated in
Appendix B.

Table 1. Deception plan for nodes (i) and pipelines (i, j).

Case No. ψD
ij /φ

D
i ψF

ij/φ
F
i ψDF

ij /φ
DF
i

Case 1 0 0 0
Case 2 0 1 1
Case 3 1 0 1
Case 4 1 1 0

Constraints (4) and (5) are used to control the defender fortification and deception resources,
respectively. Notice that these resources refer to the number of trials in hardening a facility and the
number of trials and posturing gestures in propagating false information to the adversary. We adopt
these parametric resources to model the role of information in games based on Epistemic Utility Theory.

Constraint (6) says that if the pipeline is defended, then it is invulnerable (ψD
ij = 1), otherwise,

the attacker can create damages. Constraint (7) is applicable to nodes. If the node defended (φD
i = 1),

then the attacker cannot interrupt the production or pump station nodes, otherwise, the attacker can
stop those nodes. Constraint (8) limits the total adversary resources.

The operator problem evaluates the operation cost based on the defender and the attacker strategies.
Constraint (9) is the flow conservation, with the right-hand side accounting for the production at each
source Sip, total sink demand Dip, and the shortage Uip. On the left hand side, the network’s adjacency
matrix handles the flow dispatch within the network, where the binary parameter h jip stands for the
existence of the pipeline (i, j) between nodes i and j that passes the product type p, where the model can
handle any type of products and in this study it stands for (crude oil or NGL). Constraint (10) bound
the total flow passing through a node to be less than the node capacity. Constraints (11)–(13) are to
limit the pipeline flow xi jp, source production Sip, and the shortage Uip from each pipeline and source
respectively. The defender and attacker strategies are reflected in Constraints (9)–(12) by multiplying
the defender and attacker decision variables to the flow, node capacity, pipeline flow capacity, and
source production capacity, respectively. The variables in the parenthesis in front of Constraints (9)–(13)
are the dual variables associated with each constraint.

3. Solution Strategy

The decomposition approach, along with the column-and-constraint generation (C&CG)
method [15], is employed here to solve the proposed tri-level defender-attacker–operator problem.
Rahmaniani et al. [16] showed that the Benders Decomposition algorithm has also been applied to
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bi-level optimization problems that cannot be transformed via the Karush–Kuhn–Tucker optimality
conditions into single-level problems. Snydermaria et al. [17] followed such a procedure for a
supply-chain problem and proposed a tri-level model, which is transformed into a bi-level model. To this
end, the next subsection describes the formation of the so-called master problem and the sub-problem.

3.1. Master Problem

In this section, applying the shared cognition concept on top of hardening strategies against
the adversary is considered. In this part, the attacker could spend multiple resources to elicit that
information from the defender to inflict the most damage. Meanwhile, the defender is trying to
distribute false information that can deflect the attacker from his intended target, resulting in depleting
the adversary’s limited resources. At the same time, the defender needs to spend some budget
on his fortification strategy too. The model demonstrates the shared cognition concept within the
first and second-level of the tri-level problem, namely the leader and attacker levels. The model
formulates the distribution of false information about the network, including a posturing attack on
unprotected nodes and pipelines and misleads the adversary into attacking protected components.
This development of the shared cognitions concept in the model is illustrated in the master problem
and by the defender–operator interactions as shown in Constraints (14)–(23) and the attacker–operator
interactions as shown in Constraints (24)–(37).

The master problem’s aim is to generate the fortification plans for defending the network,
minimizing the attacker damages, and help the operator to distribute the network flow wisely.
The objective function in Equation (14) is to minimize the transportation cost and the shortage cost.
The flow variable in the master problem xi jp(v) denotes flow on the arc (i, j) for oil or natural gas
extracted from production facilities Sip, where it is identified as N1 Reservoir and N2 Reservoir,
as shown in Figure 2. As explained before, the defender side has the fortification plans that are
implemented by utilizing Constraints (15)–(18). These iterative strategies will handle the hardening
and posturing for the entire network’s asset in each iteration (v). Constraint (15) demonstrates the
hardening and posturing for each pipeline in iteration (v). Constraint (16) is for creating the defense
and posturing for production facilities in each iteration (v) , accordingly. Constraints (17) and (18) are
to control the leader’s fortification and posturing resources through total defending resources BD and
total deception resources BF. Notice once again, these resource budgets refer to the number of trials in
hardening a facility and the number of trials in posturing. As will be seen later, these budgets will be
studies parametrically. Since the master problem is solved by a number of iterations (v) to diminish
the gap between the master-problem lower bound and the sub-problem upper bound, this translates to
an increase in the number of the master-problem constraints [2]. Sitting at the top level, the master
problem solution from each iteration will be exported to the sub-problem as defense and posturing
parameters respectively, see parameters (φ̂DF

i , ψ̂DF
ij ). On the other hand, the master problem will import

the attacker strategies as parameters as indicated in the master problem, see parameters (φ̂A
i , ψ̂A

ji),
Constraints (19)–(23), associated within the master problem. Constraint (19) is the conservation flow
in each iteration (v) associated with the imported adversary binary parameter on pipelines (ψ̂A

ij)

from the solution of the sub-problem. The same constraint has a right-hand side accounting for the
production at the sources Sip(v), total sink demands Dip(v), and the shortage Uip(v), for each iteration
(v), where this constraint will indicate how active the leader is in preventing damages.

min
ΓM

 ∑
(i, j),p,v

CT
ijpxi jp(v) +

∑
i,p,v

CSh
ijpUip(v)

 (14)
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Constraint (20) illustrates the condition under which flow occurs through the attacked nodes

or pump stations for each iteration (v). Constraint (21) is to control the flow capacity that can pass
through each pipeline xi jp(v) in each iteration (v) associated with pipelines adversary parameter
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(
ψ̂A

ij

)
. This constraint has upper bound xi jp and lower bound of 0. Equation (22) is to bound the

source production Sip(v) in each iteration (v). The upper bound Sip is associated with nodes adversary
parameter (φ̂A

i ). Constraint (23) is to limit the amount of shortage Uip(v) exogenously between its

upper bound Uip and 0 irrespective of the presence or absence of successful attacks.

3.2. Sub-Problem

In this section, the sub-problem or attacker–operator interactions are simulated to generate the
operator’s objective of minimizing and the attacker’s objective of maximizing flow and damage
cost. The operator’s dual problem, and the attacker problem representing the model’s sub-problem.
As explained, the sub-problem consists of two problems, the dual problem that represents the
maximization of the operator problem presented in Equations (24)–(27), and the common attacker
problem constraints presented in Equations (28)–(30), where the attacker seeks to maximize the demand
shortage and the oil/gas delivery cost. The dual problem is sensitive to the cost of transportation,
as shown in Equation (26), and it is growing up to its maximum rate, when there is a shortage in a specific
production facility or any pipeline, as shown in Equation (27). The sub-problem will import the defender
strategies (φ̂DF

i , ψ̂DF
ij ) parameters from the master problem as illustrated in Equation (29); the pipelines

defending parameter ψ̂DF
ij and the production facilities defending parameter φ̂DF

i , respectively.

min
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−

∑
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ipSip
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)
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n
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ip,µsh
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}
Equation (24) applies the Lagrangian formed from the dual variables (λ) and (µ). The method is

utilized to maximize the cost of all oil and gas operations within the network in the dual problem,
where the first summation is to dual representation on the demand associated with the dual variable
λipDip, the production level associated with the dual variable and attacker strategy µs

ipSip
(
1−φA

i

)
,

the maximum lost and dual variable µsh
ip Uip, and the upper limit of the production level, dual variable,

and attacker strategy of production sources µn
ipvip

(
1−φA

i

)
. The second part is the pipeline upper

bound, dual variable and attacker strategy on pipelines µa
ipxi jp

(
1−ψA

ij

)
. Constraint (25), it is used to

calculate the cost of optimal levels of production at the production sources. Constraint (26) is used
to calculate the cost of optimal transportation flow in the pipelines. Equation (27), is to calculate the
cost of the levels of shortage in the dual problem. Constraint (28), represents the beginning of the
attacker problem, which states that if the pipeline is defended (ψ̂DF

ij =1), it is invulnerable, as the attacker

variable
(
ψA

ij = 0
)
. Constraint (29) is to implement the attack and defend plans for the production
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sources, if the source defending strategy parameter (φ̂DF
i = 1), means that this sources is safe and

the attacker’s source variable would be (φA
i = 0). Equation (30) is used to control the total attacker

resources for interruptions.

3.3. Solution Procedure

The details of the solution procedure algorithm are provided in the following steps: Step 1:
Set Lower Bound (LB) and Upper Bound (UB) equal to −∞ and +∞, respectively. Step 2: Set the
iteration counter v = 0. Step 3: Solve Master problem (min

ΓM
) subject to Constraints (14)–(23) to obtain

the optimal solution of the defender–operator decision variables. Step 4: Update the LB by using the
equation at each iteration LB = η∗. Step 5: Solve the Dual of Sub-problem (min

ΓS
) subject to Equations

(25)–(30) and obtain the decision variables for the Attacker–Operator problem by considering the
decision parameters obtained from Step 3. Step 6: Update the UB, respectively. Step 7: If the
term (UB–LB) becomes smaller than a predefined tolerance value ε, the algorithm will terminate.
The optimal solution is obtained from the defender and attacker decision variables. If not, then proceed
to the following steps. Step 8: Update the iteration counter, v← v + 1, and update the subproblem
parameters used in the master problem obtained from Step 5. Step 9: Continue with Step 3.

The above steps mimic the interplay between the aggressor and the defender. The defender
starts by trying different fortification and deception schemes to prevent attacks to the most important
production sources and pipelines. The model helps to select the critical facilities according to their
production rates, capacities, the exposure length of the pipeline, and the demands. On the other side,
the attacker tries to damage the network by targeting selected production facilities. These models
show the interactions between defender and attacker under different circumstances. The model is
based on the related hard and soft sciences on the relationship between game theory and information
value theory. Through the execution of the above algorithm, we will show that proper quantification
of the utility function, the reward structure, is key to operational success. For example, we are able to
quantify the benefit of implementing the deception strategies when the defender decided to utilize it.

4. Results and Discussion

We derived our model to a real operational petroleum network stated in Iraq (Figure 3) and
used the relative data as input to study the behavior of the model. The notation on each node
representing the facility’s capacity in producing (demand) crude oil and NGL if it is a source (sink)
node, respectively, and pump station’s capacity if it is an intermediate node. The notations on the arcs
representing the distance between facilities. The computational results show the objective function,
when the defender experimented with 0 up to 21 hardening trials. Each trial can be considered as a
resource that is expended to protect an additional facility. When the defender utilized few numbers of
hardening resources (BD = 1 or 2) in Equation (17), the model simply select facilities that will deliver
oil and gas that are least expensive way, without considering the cost of shortage at demand facilities,
which translates into ignoring the connectivity between production sources and the demand points.
Starting with utilizing three hardening resource, the model would protect a source and a demand
point and a pipeline that connect this origin and destination pair. This enables the operator to deliver
petroleum from source to sink. If the defender applies more hardening resources, as presented in
Figure 4, the model will seek the next most important facilities to protect, trying to minimize the
operation cost and the shortage cost in the delivery network (see Figure 4).
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The model was successful in selecting the right pipelines and sources (sink) facilities based on
the production rate, capacity, amount of pipeline flow, and the requested demands. It is clear that the
curve drops most sharply with the investment of up to five hardened sources (sinks) and pipelines,
particularly when the additional fifth hardening resource is expended.

From thereon, the objective function starts to level off, until it reaches its minimum of 0 by
implementing a total of 17 hardening pipelines and sources (sinks) facilities, beyond which there are
no additional benefits in expending more resources.

Moreover, a significant contribution of this paper is to implement the deception strategies within
the protection plan on top of the hardening strategies.

From the deception strategy, the aggressor will see one protection plan without distinguishing
between the facilities that are genuinely hardened and those that are faked. A deception strategy
needs realistic posturing that makes the intruder believes that those facilities are truly protected.
This speaks to the role of epistemic knowledge, which is defined as knowledge supporting a belief,
truth, or hypothesis. The epistemic utility is a measure of the value of this knowledge in supporting
a hypothesis, i.e., a measure of the importance of the information about the other game players
relative to the belief that the other players are going to adopt a certain strategy [18]. At the same
time, the empirical model component explores what kind of game information participants seek
and receive and how participants react to such information exchange as they play the participatory
game [18,19]. Among other soft factors, we investigated how epistemic knowledge, or side information,
of the participants is used to support a game participant’s beliefs or hypotheses during the conduct
of the face-to-face game. Unlike operational utility, epistemic utility functions are an emerging
branch of knowledge that is still under development [20,21]. When executed iteratively, the two
model components will address both “hard” and “soft” factors in competition. Most importantly,



Appl. Sci. 2020, 10, 3870 11 of 17

this experiment will help a better understanding and further development of epistemic utility theory
and other emerging science on this subject.

Figure 5 is the best illustration of adopting five deception resources (BF= 5), where the defender
tries to protect three nodes and two pipelines with five deception resources and zero real hardening
resource. This plan allowed the defender to save lots of operational costs and minimize the model’s
objective function.
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Figure 5. Model results verification: defender–attacker strategies with deception.

When the attacker thinks that it sees five protected facilities, it will not risk attacking,
and accordingly, he would target other facilities that appear to be unprotected. When the defender
employed five real hardening resources and five deception resources, the aggressor may see that the
defender has protected 10 facilities, not being able to distinguish between three deception sources
(sinks) facilities, three hardened sources (sinks) facilities, two deception pipelines, and three hardened
pipelines. As a result, the aggressor will focus on the less critical facilities that were left unprotected
due to limited available resources. The reader can see that the objective function would drop faster
than the exclusively hardened case in Figure 4.

The model monitored different scenarios for fortification and deception to face the adversaries.
The deception strategy was able to trick the attacker from targeting the most essential facilities with only
five deception resources. What if the defender increases his deception resources? What if 10 deception
resources are considered in the defender fortification plan? Does the objection function behave better
than adopting five deception plans?

Figure 6 illustrates the judicious use of deception strategy; the fact that a limited amount of
deception is better than excessive use of deception. Figure 6 is to monitor a comparison between
three different scenarios, when no deception is involved, when five resources are utilized, and when
10 resources used in the fortification strategies.
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Figure 6. Objective function cost reduction with and without deception strategy.

From the illustration, the objective function behavior with five deception resources is better than
utilizing 10 deception resources. Compared with the case of no deception, this figure shows a saving
of $214,957.3 per day by applying just five deceptive resources. As observed from the same figure, it is
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interesting to see that the cost reduction with an additional five deception resources (making a total of
10) is less than the cost saving of applying only five deception resources. Implementing the deception
concept judiciously will help the leader to allocate his resources wisely. For example, the defender
will spend only one deception resource for a node that serves both oil-and-gas. Without deception,
the defender needs to spend two hardening resources for that production source as shown in Figure 7.
Identifying the source and sinks in the oil-and-gas network can be considered as another high-level
contribution of this paper.
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Figure 7. The model validated to include the most important facilities in the investment plan.

Figure 8 is an illustration of another case study that verifies the bi-level model works as intended
when the defender used resources to protect the network from hardening and deception strategies
or a combination of the two. By so doing, the attacker has prevented from targeting the critical
facilities that will result in shortages in the demand sites, where the deception resources are BF = 10,
defending resources are BD = 10, and attacker resources are BA = 10. The defender was able to
protect Source No. 3 and the connected pipeline, where the false information was used to posture
the attacker from attacking it. These results based on the last iteration, where the defender tried to
optimize his strategies to find the best solution for the network. From these results, we can see that
the defender and attacker resources can play a major regulation in constructing fortifications and
disruptions strategies. Allocating the limited defense resources were implemented in a good way
to maximize security for the purpose of protecting the network as possible. The model can find the
primary facilities to defend them, and if there is no risk for them, his plan will change and release
false information about them. This strategy can be seen in Source No. 3 and pipelines N3–N7, where,
in some iterations, the defender postured the attacker, then defended them, and finally, the defender
decided to posture them, while the defending resources went to other critical facilities or pipelines
within the network.
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Case number (1) shown in Table 2 is describing the deception, when the defender used five
deception resources (BF = 5), one defending resources (BD = 1), and the attacker used ten attacks
resources (BA = 10). Also, Table 3, shows an example of the upper and lower levels behaviors and the
model run time.

Table 2. Model behavior for different scenarios when the defender tried to use five deception resources
and increases the protection budget.

BF = 5.

BD φD
i φF

i ψD
ij ψF

ij

0 - N6P1, N8, N10 - N6–N8, N8–N10
1 - N6P1, N8, N10 N6–N8 N7–N10, N8–N10
2 N1P1 N6 P1, N8, N10 N1–N8 N6–N8, N8–N10
3 N6, N12 N6 P1, N8, N10 N6–N12 N6–N8, N8–N10
4 N6 P2, N12 N6 P1, N8, N10 N6–N12 N6–N8, N8–N10
5 N8, N10, N12 N11, N6 P1,2 N1–N8, N6–N8 N6–N12, N8–N10

Table 3. Upper bound (UB), lower bound (LB) behavior, and the model run time.

Iteration UB Level LB Level Run Time

1 361,372.000 297,602.392
1.2 (s)2 361,372.000 290,412.284

3 361,372.000 297,602.392

The model was able to solve the problem after a few iterations for all case studies. This can be
claimed to the size of the selected network. The optimality gap is the difference between the upper
bound and lower bound.

5. Conclusions and Recommendations

In this research, a real-world problem was investigated, formulated, and solved for preventing a
petroleum and gas network from malicious attacks. The strategies of the defender, attacker, and operator
were formulated in a tri-level mixed-integer nonlinear program. The strong duality theorem was used
to merge the Attacker and Operator problems into a single-level one, resulting in a mixed-integer
bi-level model. The defender in the master problem is an active defender, meaning that he will take
the first move, to which the attacker will react, and the interaction between the defender and attacker
continues iteratively.

The unique feature of this research is that the players participate in a communications game, well
beyond a regular game. Information value has so far been discussed in terms of the utility derived from
the information being communicated. There is, however, additional information that is deliberately or
inadvertently generated in competitive communication environments, ranging from “blowing smoke”
to “posturing”. This type of information is the game information; it is responsible for the style of play
and the performance of the game being considered. Players’ actions, including deception, will generate
and affect this information. This often leads toward counterintuitive results, perhaps due to such
side information.

In our case study, a combination of defensive hardening of facilities and posturing is proposed.
The model identifies the optimal defense strategies in the defender–operator in the first level and
exports them as parameters to the attacker–operator in the second level; henceforth, an attack response
strategy is formulated between the attacker and operator based on the imported parameters. This is
followed again by the defender–operator actions that respond to the attacker with its best way to keep
the oil-and-gas flowing. Solving this bi-level problem iteratively, the algorithm converges toward the
final optimal solution in a very reasonable execution time of less than one minute. Our extensive
computational experiments show many interesting results. For example, without any posturing,
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the defender cannot take any action till after a minimum of three fortification attempts. Even with a
commensurate amount of fortification, however, using an excessive amount of deception would not
benefit as much as utilizing only a judicious amount.

Another significant finding is from the stockholder’s vision. The network is an oil-and-gas one in
Iraq. This network produced 383,764 barrels (PBD) of petroleum and 230 million standard cubic feet
(MMSFD) of natural gas per day. Since Iraq is a member of (Organization of the Petroleum Exporting
Countries) OPEC, the oil prices are standards for all OPEC members. The average price of a crude
barrel of Iraqi crude oil in 2016 was $40.00. Iraq does not export any natural gas; it is strictly for
internal consumption and whatever is not consumed is burned. In the absence of earning global
reserve currency, gas price is irrelevant and has been evaluated to be around $1 per cubic feet by
default according to [22]. Based on this background, the gross revenue per day, counting only oil
sales to international markets, amounts to: $40.00 × 383,764 = $15,350,560. The net revenue per day is
then $15,350,560 − 12.5 × 383,764 = $10,553,510. As shown in Figure 9, when stockholders decide on
expending two hardening defender resources together with five deception resources, such posturing
resulted in a cost saving of $249,962.70. This represents $249,962.70/10,553,510 = 2.37% of their daily
net revenue.
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posturing attempts and by spending a small amount to harden merely two facilities.

For future extension, we plan on improving the methods for solving bi-level problems, developing
the decomposition algorithm to make it more efficient than what is reported here. The first step is to
place the solution algorithm in the general decomposition framework, following some ideas from [23].
Another promising piece of future work is to broaden the epistemic knowledge concept to include a
larger role for shared cognition. Cooperative and non-cooperative games can be played, where the
defender can spy on the non-cooperative group as well as sharing the obtained information within the
cooperative partners following some of the ideas from [7]. Most critically, until the emerging science of
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Appendix A

Indexes

D Defender
A Attacker
O Operator
i Source nodes
j Destination node
p Produced product (crude oil, natural gas)
v Iterations in master problem

Binary Variables

ψA
ij Attack on pipelines
φA

i Attack on nodes
ψD

ij Defend on pipelines
φD

i Defend on nodes
ψF

ij Posturing on pipelines
φF

i Posturing on nodes
ψDF

ij Defend Strategy on pipelines
φDF

i Defend Strategy on nodes
.
x Binary variable

Variables

xi jp The amount of flow produced in node i and transported to node j for product type p.
Uip The amount of shortage
Sip Production source
λip ΓO dual variables Equation (9)
µn

ip ΓO dual variables Equation (10)
µa

ip ΓO dual variables Equation (11)
µs

ip ΓO dual variables Equation (12)
µsh

ip ΓO dual variables Equation (13)
.

A Linearization variable

Parameters

CT
ijp Cost transportation

CSh
ijp Cost shortage (big number)

BD Total defending resources
BF Total deception resources
BA Total attacker resources
Dip Sinks demands
vip Nodes capacity
xi jp Flow upper bound
Sip Source upper bound
Uip Shortage upper bound
ψ̂DF

ij Defend strategy on pipelines
φ̂DF

i Defend strategy on nodes
ψ̂A

ij Attack strategy on pipelines
φ̂A

i Attack Strategy on nodes
hi jp Network adjacency matrix
M Very big number
A Upper bound for

.
A, a big number

z Linearization parameter
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Appendix B Linearization Methods

Appendix B.1. Linearizing the Product of Two Binary Variables

Presume the constraint has the product =
.
x×

.
y, where (

.
x,

.
y) variables are binary. The easiest way

for linearizing above product is as displayed below:

z ≤
.
x

z ≤
.
y

z ≥
.
x +

.
y− 1

If the
.
x or y are set to 0, then by using the first two inequalities, we make sure that z is equal to

zero. If both
.
x and

.
y are fixed to 1, then the third inequality would make sure to mark z equal to 1.

Appendix B.2. Linearizing the Product of a Binary Variable and a Continuous Variable

This assumption is when the equation z =
.

A×
.
x, where

.
A is a continuous variable and

.
x is set to

be a binary variable. Since
.

A is a continuous variable and if it is bounded by lower bound equal to zero
and upper bound equal to A (or any big M), then the linearization is quite simple:

z ≤ A×
.
x

z ≤
.

A

z ≥
.

A− (1− x)A

z ≥ 0

If the binary variable
.
x is set to zero, then the first inequality ensure that z will be zero. If

.
x is set

to be 1, then the former inequality makes sure that
.
x is less than the Big M, which is more constricted

by the following inequality. The third inequality states that z has to be bigger that or equivalent to
.

A.
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