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Abstract: Perforated cold-formed steel (CFS) beams subjected to different bending scenarios should be
able to deal with different buckling modes. There is almost no simple way to address this significant
concern. This paper investigates the bending capacity and flexural behavior of a novel-designed
system using bolt and nut reinforcing system through both experimental and numerical approaches.
For the experiential program, a total of eighteen specimens of three types were manufactured:
a non-reinforced section, and two sections reinforced along the upright length at 200 mm and 300 mm
pitches. Then, monotonic loading was applied to both the minor and major axes of the specimens.
The finite element models were also generated and proved the accuracy of the test results. Using the
proposed reinforcing system the flexural capacity of the upright sections was improved around either
the major axis or minor axis. The 200 mm reinforcement type provided the best performance of the
three types. The proposed reinforcing pattern enhanced flexural behavior and constrained irregular
buckling and deformation. Thus, the proposed reinforcements can be a very useful and cost-effective
method for strengthening all open CFS sections under flexural loading, considering the trade-off

between flexural performance and the cost of using the method.

Keywords: cold-formed steel; upright; monotonic loading

1. Introduction

Steel pallet racking systems have been widely used around the world since the industrial revolution.
Over the years, steel pallet racking has evolved from hot-rolled profiles to cold-formed steel (CFS)
profiles in order to increase the structural performance in terms of engineering optimization. The benefit
of steel pallet racking is its flexibility in using limited space in warehouses. The increase in popularity
of steel storage racking means more types of applications are now required to meet the demands of
customers [1]. However, the performance of the proposed sections needs to be well understood by
full-scale testing. Generally, perforated CFS components are susceptible to bending forces. Following
the previous study on the flexural behavior of the perforated CFS profiles, these sections have been
subjected to cyclic and monotonic forces where they have experienced different kinds of deformations,
notably different types of buckling [2]. There are three primary types of buckling modes for CFS
sections including local, distortional and global. Therefore, it is vital to find suitable ways to speed up
constraining the buckling process.
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Yu and Schafer [3] and Calderoni et al. [4] performed a series of four-point bending tests to
investigate the distortional and flexural performance of C and Z-shaped section built-up cold-formed
steels. Rogers et al. [5] evaluated the bending moment of existing authentic experimental results
with different code provisions. Hancock et al. [6] proposed a new design approach of distortional
buckling strength for C and Z-shaped cold-formed steel sections. Wang et al. [7] experimentally and
analytically investigated C-shaped cold-formed steel beams with or without edge stiffeners. Using
the stiffeners significantly enhanced the flexural stiffness and buckling resistivity of the beam under
pure and non-pure bending tests. Wang et al. [8] performed a four-point bending test program on
cold-formed steel built-up section beams with web perforations. Local geometric imperfections were
also measured. When the hole diameter to web depth ratio (dh/dw) increased from 0.25 to 0.5, the
moment rotation capacity reduced slightly by 6%. However, increasing the ratio up to 0.7 reduced the
capacity by 16%. The effects of the web–hole ratio on the performance of the perforated cold-formed
steel channel section beams were experimentally and analytically investigated. The greater the increase
in the hole area, the more reduction in the ultimate distortional buckling moment [9–14]. The reported
results also illustrated that the size of the web holes directly affected the distortional buckling moment,
with the bigger the hole, the lower the buckling moment. Zhou et al. [15] examined the authenticity of
the Australia/New Zealand Standard (AS 1391) on the flexural strength design of rectangular tubes
manufactured with cold-rolling steel, where the Australian standard has shown reliable design code
and unreliable design procedure for normal and high strength steel, respectively. Laim et al. [16]
conducted a series of bending tests and also finite element modellings on flexural behaviour of
cold-formed steel beams. The authors reported that the dominant failure mode was distortional
buckling. Folded-flange sections were developed to present the best performance under bending
investigation compared to other typical and industrial sections (the flexural capacity increased by up to
50%), and using partial reinforcing significantly increased the beam strength against the lateral-torsion
buckling [17,18]. Muftah et al. [19] performed a series of four-point flexural tests on bolted built-up
cold-formed steel beams while using bolts and nuts system. According to the reported conclusions,
when the loads were applied on the webs, the flexural behaviour of the beams was dependent just on
bolt distances. Huang et al. [20] proposed a novel solution to the distortional buckling moment for
stiffened CFS beams based on the minimum potential energy rules and using web and flange stiffeners.
The presence of flange stiffeners enhanced the bearing capacity and increased the distortional buckling
moment [21]. The presence of slots affected both the shear rigidity and distortional buckling load and
the web stiffeners improved the flexural behavior [22].

Following the literature, perforated CFS beams subjected to different bending scenarios should
be able to deal with different buckling modes [23]. There is almost no simple way to address this
significant concern. Hence, this study proposed a simple and low-cost reinforcing system for CFS
uprights consisting of a bolt, nut and spacer. A series of four-point bending tests were performed
on the specific stiffened perforated beams to measure the buckling-resistant moment of an upright
section about its major and minor axes and to evaluate its improvement by proposed reinforcement.
A total of eighteen monotonic tests were conducted to determine both the flexural capacity and failure
modes of the reinforced sections, which consisted of uprights with 1.6 mm thickness strengthened
by bolt and spacer systems. Finite element (FE) analysis was also performed by ABAQUS program
and was verified by the experimental results. The comparison of the parametric study and test study
showed both outstanding accuracy for the experimental results, and the proficiency of the proposed
reinforcing system.

2. Reinforcement Method

Three principal buckling modes for upright sections observed during the flexural test are
distortional, flexural and flexural-torsional. However, the distortional buckling is the governing mode
in the design of uprights, where excessive deformation occurs about a weaker principal axis.
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The typical upright frame consists of a regular pattern of perforations which can be placed on
both the web and the lips. Web perforations are used for fast interconnection between beams and
uprights, while lip perforations allow the connection of the brace components to uprights. The location
of perforations which are not in use in the section lip can also be used to partially close off the section.
Therefore, in this study, stiffeners comprised of fasteners, nuts and spacers were used at the location of
perforations to connect the lips of the open sections and to improve the moment capacity of the system.
These stiffeners are commonly used to attach the brace to uprights; hence, no further design is required
for these connectors.

Time-consuming and costly stiffening methods, such as plate stiffeners and partially closing the
sections, are not practical for upright frames already in use. Preliminary numerical analyses were also
performed in order to check the feasibility and capability of the proposed reinforcing method, and it was
found that this approach can increase the load-bearing capacity of standard uprights. The strengthening
method proposed in this study is a handy and cost-effective approach that can be used for all racking
systems, especially those which are currently in use in storage locations. This approach can be
employed for all CFS open sections as well [24,25]. The reinforcement arrangement consisted of a bolt,
nut and double spacer, where the spacer was the transverse element made up of the plastic material
commonly used for bracing of racking by attaching to the lips of the section. The reinforcing details
are demonstrated in Figure 1.
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Figure 1. Reinforcement by bolts and spacers: (A) Schematic view; (B) Along the upright.

3. Experimental Campaign

The experimental investigation was performed at the structural laboratory of Western Sydney
University in order to determine the moment capacity of an upright section about its major and minor
axes of bending and its improvement by different patterns of reinforcement by adding bolts, spacers
and partially closing the sections. The experimental test details are discussed in the next section.

3.1. Test Specimens

Eighteen specimens consisting of nine single-upright and nine bending frames were prepared
for testing. The bending frames including two upright columns attached by diagonal bracing were
constructed from commercially available rack sections, and the ends of the frame were constrained by
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back-to-back bracing to avoid twisting. Specimens were produced in two groups, with or without
reinforcements. The specimen specifications are tabulated in Table 1. Figure 2 indicates the section and
the perforation details as well as the frame configurations.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 32 

 

(A) 

 

(B) 

Figure 2. Configuration of the details: (A) Upright configuration; (B) Frame configuration. 

  

Figure 2. Configuration of the details: (A) Upright configuration; (B) Frame configuration.

The convention used to designate the specimens is explained in Figure 3. The SMIM and SMJM
specimens were manufactured without reinforcements, and their flexural behaviour was investigated
during the monotonic test. Their loading direction was carried out on the minor and major axes,
respectively. The 200RMIM and 200RMJM specimens were produced with reinforcements placed at
200 mm spacing along the upright length and were investigated about their minor and major axes
respectively. The 300RMIM and 300RMJM specimens were developed according to the previous
patterns except that their reinforcement spaces were 300 mm.
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Table 1. Specimen configurations.

Specimen Type Geometry (mm)
Reinforcement

Loading Direction

* Length ** Thickness *** Width **** Sp Major Axis Minor Axis

SMIM

2400 1.6 600

- No •

SMIM - No •

SMIM - No •

SMJM - No •

SMJM - No •

SMJM - No •

200RMIM 200 Yes •

200RMIM 200 Yes •

200RMIM 200 Yes •

200RMJM 200 Yes •

200RMJM 200 Yes •

200RMJM 200 Yes •

300RMIM 300 Yes •

300RMIM 300 Yes •

300RMIM 300 Yes •

300RMJM 300 Yes •

300RMJM 300 Yes •

300RMJM 300 Yes •

* Length = upright length. ** Thickness = upright thickness. *** Width = frame width (distance between two
upright). **** Sp = distance between reinforcement bolts (reinforcement space).
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Figure 3. Designation of specimens.

3.2. Material Properties

The tensile coupon test is essential to identify the actual material properties of the test specimen.
Three coupons from the upright flanges with no perforations were prepared for the coupon test. The
CFS channel section was cleaned, cleared and cut into coupon-shaped flexural specimens. The tensile
test was conducted according to AS4600 procedures [26].

The tensile test results were used for developing finite element models that are presented later in
this paper. An MTS Sintech testing machine (TestResources Inc., Shakopee, MN, USA) with 300 kN
capacity and a rate of 0.01 mm/s was used for the coupon tests. Figure 4 shows the stress-strain curves
for 1.6 mm thickness sections. The mean values of the ultimate tensile strength (σu), and yield stress
(σy) and elongation are presented in Table 2.

3.3. Test Set-Up

The purpose of the four-point bending test is to determine the flexural moment capacity of an
upright section about its major and minor axes of bending and its improvement by different patterns
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of reinforcement by adding bolts, spacers and partially closing its sections. The flexural test was
carried out to simulate the pure bending using a four-point bending test according to AS 4084:2012 [27]
Section 7.3.4: Bending tests on upright sections (Figure 5).
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Table 2. Material properties of the upright section.

Section Type Yield Stress, σy (MPa) Ultimate Stress, σu (MPa) Elongation (%)

Upright with 1.6 mm thickness (Test 1) 561 578 10.3
Upright with 1.6 mm thickness (Test 2) 557 585 9.6
Upright with 1.6 mm thickness (Test 3) 571 610 10.1

Average 563 591 10

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 32 

curves for 1.6 mm thickness sections. The mean values of the ultimate tensile strength (σu), and yield 
stress (σy) and elongation are presented in Table 2. 

 
Figure 4. Stress-strain diagram for 1.6 mm thickness specimen. 

Table 2. Material properties of the upright section. 

Section Type Yield Stress, σy 
(MPa) 

Ultimate Stress, σu 
(MPa) 

Elongation 
(%) 

Upright with 1.6 mm thickness (Test 
1) 

561 578 10.3 

Upright with 1.6 mm thickness (Test 
2) 

557 585 9.6 

Upright with 1.6 mm thickness (Test 
3) 

571 610 10.1 

Average 563 591 10 

3.3. Test Set-up 

The purpose of the four-point bending test is to determine the flexural moment capacity of an 
upright section about its major and minor axes of bending and its improvement by different patterns 
of reinforcement by adding bolts, spacers and partially closing its sections. The flexural test was 
carried out to simulate the pure bending using a four-point bending test according to AS 4084:2012 
[27] Section 7.3.4: Bending tests on upright sections (Figure 5). 

 
Figure 5. Typical schematic four-point bending test. 

In the test section, the actuator was placed on two steel I-beams, and the I-beams were settled 
on the steel girders to transmit the applied force on spherical rollers. The steel spherical rollers were 
placed on the test specimen to facilitate the movement of the specimen not only to show the potential 
deformations but to simulate the real condition for pure bending. The rollers were placed on two 

Figure 5. Typical schematic four-point bending test.

In the test section, the actuator was placed on two steel I-beams, and the I-beams were settled on the
steel girders to transmit the applied force on spherical rollers. The steel spherical rollers were placed on
the test specimen to facilitate the movement of the specimen not only to show the potential deformations
but to simulate the real condition for pure bending. The rollers were placed on two perforated steel plates.
The details and the schematic views of the minor axis test set-up are shown in Figure 6.

The major axis test was designed to measure both the bending strength of the upright about the
major axis and the buckling modes. Because of the potential distortion and torsional displacement
of the section, as shown in Figure 7 the designed major axis test specimens contained two studs as
a single frame so that the specimens would demonstrate appropriate flexural behaviour during the
monotonic loading. Also, the actuator was placed on two steel I-beams, and the I-beams were settled
on two steel girders which transmitted the force onto the roller supports. Put et al. [28] performed a
series of eccentrically and concentrically loading on the channel steel upright connections. The more
eccentricity increases, the more beam strength decreases. Therefore, for the major axis tests, the rollers
settled on four perforated steel angles attached to the web of the channel by four fasteners designed to
exert the load to the shear center of the profile section. That being the case, the spherical rollers and
loading angles were designed to let any possible displacement, especially the distortional buckling,
happen. Also, the specimen was free to twist on the frictionless supports. By this means, this test
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arrangement permits buckling modes to occur similar to the real modes developed by the upright
in its normal usage. Three tests for each type of the specimens and about each axis were carried out
including unreinforced profiles and reinforced ones.
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side view.

Although the roller supports were designed to be at the shear centre of the uprights and act
delicately in case of load transfer, the preliminary tests faced the problem of local crushing and crippling
in the vicinity of the loading angles and rollers. This issue was addressed by using reinforcement just
underneath the supports, as shown in Figure 8.
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In total, 18 monotonic tests (single directional force) were conducted during the investigation
based on AS 4084: 2012, Section 7.3.4: Bending tests on upright sections [27] to determine the failure
moment and mode of the pallet racking’s uprights (Figure 9).
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3.4. Data Acquisition and Instrumentation

The experiments were conducted using a Universal Testing Machine, Instron 8506 (Instron,
Norwood, MA, USA) with 3000 kN capacity. The loading rate of 0.5 mm/min was applied to the
specimens. The reading of the forces was measured by the load cell, whereas the deflection of the
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uprights was measured by linear variable differential transformers (LVDTs). The data was collected
via data logger and sent to the computer then processed with Microsoft Excel. The data was measured
at a frequency of 2 Hz, which means every 0.5 s.

4. Test Results and Discussion

Eighteen specimens with 2400 mm length and 1.6 mm thickness were tested in three reinforcement
compositions: without reinforcement, and with reinforcements at 200 mm and 300 mm. The tests
aimed to investigate the reinforcement effect on flexural performance. The tests were designed to
acquire both the flexural capacity and the failure modes during the loading process.

The flexural moment capacity for each specimen was recorded and due to confidentiality matters,
it was normalised with respect to the normalization factor (Nf = Z. σy), where Z was the shape factor
of the section, and σy was the yield-stress extracted by the coupon tests. On the other hand, the
deflection value represents the displacement of the mid-point in each specimen recorded by LVDTs.
For each specimen type, three tests were conducted to ensure the accuracy of the results for the upright
flexural behaviour.

4.1. Major Axis Test

Figure 10 demonstrates the normalised bending moment versus deflection for unreinforced, 200
mm and 300 mm reinforcement types under monotonic flexural tests. The 200 mm reinforcement type
provided the highest flexural strength compared to the other two types. The normalized bending
moment capacity for each specimen is tabulated in Table 3. Factors responsible for some differences in the
results for the same specimen types could be either typical shortcomings during the set-up adjustment
or probable various initial geometric imperfections associated with the manufacturing processes.
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Figure 10. Normalized bending moment–deflection about major axis curves: (A) SMJM; (B) 200RMJM;
(C) 300RMJM.

Table 3. The ultimate normalized bending capacity of specimens in the major axis test.

Test Specimen Normalised Ultimate Bending Moment ( M
σy×Z )

SMJM-Test1 0.330997561

SMJM-Test2 0.342394439

SMJM-Test3 0.325000724

Average 0.332797575

Standard deviation 0.008835461

200RMJM-Test1 0.379727867

200RMJM-Test2 0.391261742

200RMJM-Test3 0.388300744

Average 0.386430118

Standard deviation 0.005990158

300RMJM-Test1 0.354944611

300RMJM-Test2 0.361971684

300RMJM-Test3 0.356490403

Average 0.357802233

Standard deviation 0.003692643

Both the distortional and local buckling were observed during major axis testing of the unreinforced
frames (Figure 11). According to the observations, some notches were observed along with the failure
mechanism at the local buckling zones.
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crippling signs in some areas (Figure 12). 

Figure 11. The observed failure mode for unreinforced specimens during the major axis test:
(A) SMJM-test1; (B) SMJM-test2; (C) SMJM-test3.

When the reinforced specimens with 200 mm reinforcing pitch were subjected to the monotonic
displacement control test on the major axis, local buckling, as well as a combination of both local and
distortional buckling, occurred during the experiments. The yielding notches were also observed as
crippling signs in some areas (Figure 12).
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Figure 12. The observed failure mode for reinforced specimens with 200 mm reinforcing pitch during
the major axis test: (A) 200RMJM-test1; (B) 200RMJM-test2; (C) 200RMJM-test3.

Following the experimental investigation, the reinforced specimens with 300 mm reinforcing
pitch were subjected to the major axis displacement control monotonic test (Figure 13). The governing
failure mode at these tests was also the distortional and local buckling.
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Figure 13. The observed failure modes for reinforced specimens with 300 mm reinforcing space during
the major axis test: (A) 300RMJM-test1; (B) 300RMJM-test2; (C) 300RMJM-test3.

To compare the flexural behaviour of the uprights, the mean curves shown in Figure 14 presented
the effect of reinforcements with respect to the average normalized bending. According to Figure 14,
it is clear that using reinforcements improves both the ultimate capacity and deflection of the specimens;
however, this improvement has been enhanced by using the 200 mm reinforcement type. Figure 14
shows the 200 mm pitch improved the flexural behaviour of the uprights and also increased the
bending capacity.

The reported experimental results show the effectiveness of the presence of reinforcements.
Figure 15 compares the different reinforcement types used. In Figure 15, the 200 mm reinforcement type
showed 13.8% and 7.35% enhanced capacity compared to the non-reinforced and 300 mm reinforcement



Appl. Sci. 2020, 10, 3855 15 of 31

type, respectively. The 300 mm type showed 6.97% improvement in bending capacity compared
to the unreinforced specimen. Typically, the failure modes which were observed in the major axis
experimental tests were local and distortional bucklings.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 32 
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4.2. Minor Axis Test

Figure 16 presents the normalized bending moment–deflection curves for unreinforced, 200 mm
and 300 mm reinforcement types where the flexural behaviour of the specimens under minor axis tests
has been reported.

The 200 mm reinforcement type captured the best flexural performance compared to the other
two types. The normalized bending capacity for each specimen is also tabulated in Table 4.
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Figure 16. Normalized bending moment–deflection about minor axis test curves: (A) SMIM;
(B) 200RMIM; (C) 300RMIM.

Table 4. The ultimate normalized bending capacity of specimens in the minor axis tests.

Test Specimen Normalized Ultimate Bending Moment ( M
σy×Z )

SMIM-Test1 0.193595703

SMIM-Test2 0.203694478

SMIM-Test3 0.195419898

Average 0.197570026

Standard deviation 0.005381785

200RMIM-Test1 0.232982073

200RMIM-Test2 0.239285101

200RMIM-Test3 0.242392113

Average 0.238219762

Standard deviation 0.004794624

300RMIM-Test1 0.211013767
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Table 4. Cont.

Test Specimen Normalized Ultimate Bending Moment ( M
σy×Z )

300RMIM-Test2 0.21581945

300RMIM-Test3 0.202362802

Average 0.209732006

Standard deviation 0.006819276

Figure 17 represents the minor axis test for the single unreinforced uprights, showing the uprights’
distortional buckling in the tests.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 32 

Standard deviation 0.004794624 
300RMIM-Test1 0.211013767 
300RMIM-Test2 0.21581945 
300RMIM-Test3 0.202362802 

Average 0.209732006 
Standard deviation 0.006819276 

Figure 17 represents the minor axis test for the single unreinforced uprights, showing the 
uprights’ distortional buckling in the tests. 

 
(A) 

 

 
(B) 

 

 
(C) 

Figure 17. The observed failure mode for unreinforced specimens during the minor axis test: (A) 
SMIM-test1; (B) SMIM-test2; (C) SMIM-test3. 

Figure 17. The observed failure mode for unreinforced specimens during the minor axis test:
(A) SMIM-test1; (B) SMIM-test2; (C) SMIM-test3.



Appl. Sci. 2020, 10, 3855 18 of 31

The reinforced specimens with 200 mm reinforcing space were subjected to the minor axis tests as
shown in Figure 18. Based on the test observations, the mid-span deflections were much higher than
the unreinforced specimens. The reinforced specimens exhibited no sudden torsion or twisting, but
the bending capacity was enhanced significantly in the 200 mm reinforcing type.
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The minor axis test was performed on 300 mm reinforced specimens. Observations proved
that increasing the reinforcing space decreases the section flexural capacity compared to the 200 mm
specimens as well as the ultimate deflection of the sections at the time of failure (Figure 19).Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 32 
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Figure 19. The observed failure mode for reinforced specimens with 300 mm reinforcing pitch during 
the minor axis test: (A) 300RMIM-test1; (B) 300RMIM-test2; (C) 300RMIM-test3. 
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presented improved behaviour, especially in the ultimate capacity and deflection. 

Figure 19. The observed failure mode for reinforced specimens with 300 mm reinforcing pitch during
the minor axis test: (A) 300RMIM-test1; (B) 300RMIM-test2; (C) 300RMIM-test3.

The normalized mean bending moment versus deflection curves demonstrated in Figure 20
represent the effects of the reinforcements in the minor axis tests. According to Figure 20, non-reinforced
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specimens had lower bending capacity. However, 200 and 300 mm reinforcement types presented
improved behaviour, especially in the ultimate capacity and deflection.Appl. Sci. 2020, 10, x FOR PEER REVIEW 21 of 32 
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failure mechanisms were located near the weakest zone of the beam, which was typically the mid-
span of the specimens. Local bucklings were mostly observed in 200 mm type reinforced specimens, 

Figure 20. The normalized minor axis average curves.

Figure 21 presents the influence of performed reinforcement types. The 200 mm reinforcement
type resulted in 12% and 17% improvement in ultimate bending capacity compared to the 300 mm
reinforcement and non-reinforced types, respectively. The 300 mm type showed a 5.5% improvement
in ultimate bending capacity compared to the non-reinforced specimen.
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4.3. Remarks on the Results

Based on the results of both experimental and numerical investigations, the governing failure
mechanisms can be categorized into two main types: buckling or crippling. First of all, local and
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distortional bucklings happened in almost every unreinforced specimen’s major axis test. These failure
mechanisms were located near the weakest zone of the beam, which was typically the mid-span of
the specimens. Local bucklings were mostly observed in 200 mm type reinforced specimens, but the
presence of condense reinforcing was acting as the constraining factor. As the reinforcing pitch was
enlarged, the distortional buckling became the dominant failure mode as observed in the 300 mm
reinforcing types. The change in the section’s half-wavelength resulted in the change of buckling mode
and failure load. Reducing the half-wavelength by decreasing the reinforcement pitch increases the
distortional buckling capacity as well as changing the mode from distortional to local–distortional in
some cases.

Secondly, in the case of crippling as another factor of failure, the unreinforced specimens failed
due to this factor, especially in the major axis tests. The 200 mm and 300 mm reinforcing types also
failed through the crippling mechanism; however, the ultimate load of crippling was different from the
unreinforced specimens. The crippling failure mechanism was initiated by a yielding notch which was
exhibited on the flange. Then, due to the represented notch, the section became weak at that specific
zone. Finally, this shortcoming led to the crippling and the frame collapsed.

Regarding the presented results, the reinforced frames and single-uprights showed a much better
flexural performance in both the major and minor axes monotonic tests, especially the ones with 200
mm reinforcements. Furthermore, the specific reinforcements increased the section stiffness, and
strengthened the uprights, especially where the uprights tend to deform or initiate buckling failure.
For a better understanding, the observed buckling failure modes are demonstrated in the following
sections using FE models.

5. Finite Element Models Arrangement

Different techniques are available for data validations and predictions such as artificial neural
networks [29–34], FE method [1,35,36], and finite strip method [37,38]. The FE method, which is
generally carried out by FE programs such as ABAQUS and ANSYS, was performed in the current
study as a reliable technique for empirical data validation and response prediction. Two different FE
models were used in order to simulate the experimental results of reinforcement spacing, including
200 mm, 300 mm, and without reinforcement, on the flexural strength of the upright frames about
either major or minor axes. Two different arrangements were considered:

• Bending frame: The frame was modelled to simulate the major axis test, and other parts of the
set-up were simulated throughout boundary condition and interaction descriptions.

• Single beam: The beam was modelled to simulate the minor axis test, and the other components
of the test were simulated using appropriate stiffeners and boundary conditions.

Figure 22A shows the overall arrangement for the bending frame model and Figure 22B shows
the same arrangement for single-uprights. The software ABAQUS/CAE v.12.1 was used to model the
presented test specimens. The FE models were adjusted to replicate the tests.

5.1. Element Type, Mesh Size and Material Model

Both models were simulated using four-node shell element S4R available in ABAQUS [1].
This element is a thin, shear flexible, isometric quadrilateral shell with four nodes and five degrees of
freedom per node, using reduced integration and bilinear interpolation scheme (Figure 23).
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The stress-strain results from the tensile tests were used to model the material properties.
To consider the necking phenomena in the tensile tests, the true stress-strain relationship was used for
the models [39,40] with the following equations:
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σtrue = σ(1 + ε) (1)

εtrue = ln(1 + ε) −
σtrue

E
(2)

where σ and ε are the stresses and strains from the tensile tests. The von Mises yield criteria with
isotropic hardening were also taken into account for the modelling. The modulus of elasticity was
considered equal to 200 GPa and the Poisson ratio as 0.3 [1].

5.2. Connections and Interactions

For a decisive simulation, two types of interactions were defined for the FE models of the uprights
subjected to loading either about the major axis or the minor axis: (a) the existing interaction of
flange edges and bracing, and (b) the interaction of bracing webs at bolt connections. The surface to
surface interaction with hard contact for normal behaviour, as well as the penalty method with the
friction coefficient of 0.3 for the tangential behaviour, were adopted for the model interactions [41–44].
The coupling method and beam connectors were also used to model the bolts. At each bolt location,
a reference point was created at the centre of the hole where the upright flange (at the hole region)
was restrained to this reference point using the coupling method [45]. The end beam restraints have
also been considered as a beam using the contact pairs between the elements at two opposite sides
of the sections. This type of connector constrains the axial translational degree of freedom between
connecting nodes, simulating the actual bolt behaviour in the upright frame. Figure 24 indicates the
existing interactions between frame elements as well as the modelling of the bolt in the upright frame.
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5.3. Boundary Conditions and Loading

Similar to the experimental test, all boundary conditions in the FE model were also adopted in a
way to represent the testing situation. The concentrated load with displacement method was applied at
the shear centre of the uprights on loading support plates in the vertical direction while the translation
and rotation in every direction were allowed to simulate the real testing conditions. At frictionless
supports, the vertical translation was restrained to illustrate the actual support behaviour.

5.4. Validation of the Finite Element Results

According to the details in the previous sections, the FE models were generated, and the
experimental simulations were carried out. The numerical results were extracted and were compared
with the existing test results and failure modes to be verified. Linear regression is a powerful tool to
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develop predicting models for estimating the engineering properties of different materials. In this
section, linear regression analyses were performed on the FE model results to help validate the results
obtained from the numerical models.

5.4.1. Minor Axis

The single-upright configuration for FE modelling has been used in this section. Figure 25
compares the normalized bending moment–deflection curves of the FE model and experimental results.
Figure 26 also illustrates the linear regression of the FE model mean curve with the experimental mean
curve. Table 5 presents the evaluation criteria of the accuracy of the FE model predictions.Appl. Sci. 2020, 10, x FOR PEER REVIEW 25 of 32 
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Figure 25. Finite element model and experimental curves for minor axis test set-up: (A) non-reinforced
types; (B) 200 mm reinforced types; (C) 300 mm reinforced types.
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Table 5. Finite element model vs experimental results accuracy details in terms of evaluation criteria.

Non-reinforced model

Evaluation criteria

Standard deviation 0.0618701

Pearson (r) 0.998139545

R2 0.9963

200 mm reinforced model

Evaluation criteria

Standard deviation 0.08034494

Pearson (r) 0.993668695

R2 0.998

300 mm reinforced model

Evaluation criteria

Standard deviation 0.069798432

Pearson (r) 0.998023512

R2 0.9961
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According to Figure 26 and Table 5, the FE model results achieved outstanding accuracy and
compatibility with the test results. In addition, Figure 27 compares the FE model failure modes of the
uprights to the experimental failure modes where the developed FE model has well predicted the
overall deformed shape. These uprights failed in distortional and local buckling mode.
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5.4.2. Major Axis

A bending frame arrangement was used for the numerical assessment of the upright major axis
test. Figure 28 compares the normalized bending moment–deflection curves between the FE model
and experimental results. Figure 29 illustrates the linear regression of the FE model mean curve
with the experimental mean curve. Table 6 presents the evaluation criteria for the accuracy of the FE
model predictions.
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Figure 29. Comparison of finite element model against major axis test results along with the linear
regression: (A) and (B) non-reinforced model; (C) and (D) 200 mm reinforced model; (E) and (F) 300
mm reinforced model.

Table 6. Finite element model vs experimental results accuracy details in terms of evaluation criteria.

Non-reinforced model

Evaluation criteria

Standard deviation 0.124180809

Pearson (r) 0.998891538

R2 0.9978

200 mm reinforced model

Evaluation criteria

Standard deviation 0.135695798

Pearson (r) 0.995707933

R2 0.9914

300 mm reinforced model

Evaluation criteria

Standard deviation 0.122399695

Pearson (r) 0.999038872

R2 0.9981

According to Figure 29 and Table 6, the FE results had high accuracy and compatibility with the
test results. Figure 30 compares the FE failure modes of the frame with the experimental failure modes
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where the developed FE model has well predicted the overall deformed shape. These upright frames
failed by distortional and local buckling mode.
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6. Conclusions

This study proposed a specific reinforcement system to enhance the flexural strength of CFS
upright/beam sections. Eighteen specimens were fabricated and standard monotonic four-point
bending displacement control experimental tests were performed to evaluate their bending capacity.
All the specimens were made of perforated CFS uprights with 2400 mm length and 1.6 mm thickness.
Specimens without reinforcement and specimens with reinforcement at 200 mm and 300 mm pitches
were tested about their minor and major axes, respectively. The specimens for the minor axis test
consisted of single uprights, while the tested specimens for the major axis tests were produced by
combining two uprights as a frame employing conventional diagonal bracing to keep the set-up stable
for accurate estimation of the flexural strength of reinforced and unreinforced uprights.

Based on the reported observations, the governing failure modes were local, distortional and
a combination of these modes of buckling both in the minor axis and major axis tests. Using the
proposed reinforcements increases the bending moment capacity of the specimens by changing the half
wavelength of the sections. Reinforcement at 200 mm pitches improves the ultimate flexural capacity
compared to the unreinforced specimens by around 13.8% and 17% in major axis and minor axis tests,
respectively. Using reinforcement at 300 mm pitches increases the bending moment capacity compared
to the unreinforced specimens by 6.97% and 5.5% for the major axis and minor axis tests, respectively.
The study emphasized that the proposed reinforcements can be a very useful and cost-effective method
for strengthening all open CFS sections under flexural loading, considering the trade-off between
flexural performance and the cost of using the method.
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