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Abstract: Endoscopic imaging is an indispensable tool for visual inspection of surfaces in
hard-to-access places. The conventional optical endoscope only enables imaging the regions that lie
close to the focal plane, and therefore improving the depth of field (DOF) of an endoscopic system
has recently attracted much attention. Here, we propose and demonstrate a simple, cost-effective,
and easily available industrial endoscopic system, which is composed of a rigid tube and group
of optical lenses. The outer diameter of the designed endoscopic modality presented in this article
is 3 mm. By employing the wavefront coding technique, the DOF of newly-designed endoscope
was extended to 2.7 mm in the proof-of-concept experiment, which is an increase of almost 10 times
compared to the initial counterpart.
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1. Introduction

Endoscopic systems are commonly employed to observe inside of the body’s cavities,
thereby providing a wealth of information about the inner structure. It is an elongated optical device used
to observe otherwise inaccessible areas in either a non-invasive or minimally invasive manner. In general,
endoscopes can be grouped into three main categories; namely, rigid endoscopes, flexible endoscopes
and capsule endoscopes, which have the versatility to meet the most challenging applications [1]. For the
rigid scope, a rod lens system is positioned in the distal end of the endoscope, and optical properties still
surpass those of the fiber optics or digital images created by flexible scopes [2].

Depth of field (DOF), referring to the range of distance over which a subject appears in-focus,
is a key design criteria for endoscopic system [3]. It varies mainly relying on aperture and focusing
distance, and viewing distance can also influence the DOF [4,5]. Although a large DOF demands an
objective lens with a small aperture, a limited value of objective distance inevitably confines the DOF
in a small range, especially for group of endoscopes that aim at inspecting inner wall of component.
For a small DOF, such an endoscope is incapable of providing high axial resolution and high optical
sectioning ability [6,7]. In addition, feature of extended DOF is particularly useful for diagnosing
the series of industrial components with various dimensions. Therefore, development of extended
DOF and small-diameter endoscopic modality, with the capabilities of simultaneously capturing
information from multiple planes in a single picture, is extremely desirable in modern industrial and
scientific areas.
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DOF can be enlarged by recording a rapid sequence of images with different focal length settings
of the objective; however, such light field technique suffers from an acquisition speed limitation and a
remarkable drop-off in resolution [8]. Adding electrically tunable-focus lenses with liquid crystal is an
alternative to extend the DOF of an endoscopic imaging system; however, a number of drawbacks,
such as slow response time and only working for polarized light, still exist in the current system [9,10].
The intrinsic contradiction between small objective distance and limited DOF is able to be avoided in
wave-front coding approach, which establishes on the manipulation of point spread function (PSF)
engineering in combination with post-digital processing procedure [11,12]. This proposal employs a
separable phase mask placed in the aperture of an imaging system that makes the image relatively
insensitive to the defocus or axial depth [13,14].

In this article, we discuss the principle of extending DOF through wavefront coding and its
implementation as a new optical endoscopic modality with a narrow tube and high-order phase mask.
The remainder of this paper is structured as follows. Section 2 illustrates the conceptual theory and
design principles of our proposal in detail. Section 3 describes an optical endoscopic model and its
simulation results, which significantly verify the validity of the proposed system. Restoring the raw
images acquired from the system to increase the spatial resolution in large DOF is carried out and
presented in Section 4. In Section 5, simulated results of imaging from original system and proposed
system with extended DOF are presented. Finally, we summarize and conclude our work in Section 6.

2. Principle and Concept

In this section, we show the fundamental theory of wavefront coding that enables the DOFs
of incoherent optical imaging systems to be extended [11,15]. This approach involves a phase plate
to create blurred images that are almost invariant to defocus. On the basis of Fourier optics theory,
wavefront coding technology combines the ambiguity function, from the radar field to optical transfer
functions, and the method of stationary phase, normally used to estimate oscillatory integrals.

The generalized pupil function takes the form

P(x, y, ϕ) = p(x, y)ej[ f (x,y)+ϕ(x2+y2)] (1)

where

p(x, y) =

{
1 x, y in the pupil

0 others
(2)

In Equation (1), ϕ represents defocus aberration, and f (x, y) denotes the modulation factor.
Being the impulse response of a focused optical system, the point spread function (PSF) of the

optical imaging system can be calculated by a 2D Fourier transform of the pupil, which is in the form

h(x′, y′, ϕ) = cF[P(x, y, ϕ)]F∗[P(x, y, ϕ)] (3)

where c is the constant. As a complex-valued function of spatial frequency, the optical transfer function
(OTF) is defined as the Fourier transform of the point spread function

H(u, v, ϕ) = F[h(x′, y′, ϕ)] (4)

In addition, the OTF can be seen as a combination of two real-valued functions—modulation
transfer function (MTF) and phase transfer function (PTF), which can be defined as

H(u, v, ϕ) = M(u, v, ϕ) exp(−jΦ(u, v, ϕ)) (5)

where M(u, v, ϕ) and Φ(u, v, ϕ) are the modulus and phase of the OTF, respectively.
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According to the theory of Hopkins, the defocus aberration ϕ of an standard optical system is
represented by the

ϕ =
πD2

4λ
(

1
f
− 1

do
− 1

di
) = kW20 (6)

where D, λ, f , do, di represent the diameter of the lens aperture, focus length, object distance and
image distance, respectively. k and W20 stand for the wave number and traditional defocus aberration
constant, respectively.

The OTF of an optical imaging system can be written as a properly scaled autocorrelation of the
pupil function

H(v, ϕ) =
∫

Q(u +
v
2
)Q ∗ (u− v

2
)du

=
∫
[P(u +

v
2
)ej(x+ v

2 )
2 ϕ] · [P∗(u− v

2
)e−j(x− v

2 )
2 ϕ]du

(7)

where u, v represent the normalized spatial frequency, respectively.
For the sake of clarity, our following discussion is 1-D. The 1D OTF with defocus aberration ϕ can

be rewritten as

H(u, W20) =


sin(2kW20u · (1− |u|2 ))

2kW20u
u 6= 0

1 u = 0

(8)

Meanwhile, the normalized MTF is in the form

|H(u, W20)| = |
sin(2kW20u · (1− |u|2 ))

2kW20u
| u 6= 0 (9)

3. Design and Simulation

3.1. Initial Optical Endoscope

Schematic diagram of our designed optical endoscopic model is shown in Figure 1. The proposed
system mainly consists of a front-side objective lens group, a rod lens group, a back-end objective lens
group, a piece of protective glass and an image sensor. An objective lens system having a first and a
second lens element that are separated by a gap where a ray bundle is reflected by 90◦. The rod lenses
are used to connect to the independent sensor for imaging and extend the optical tube with sufficient
length. The purpose of the objective lens is to cause light to converge on a single point and transmit
light back to the image sensor. The protective glass keeps the image sensor safe and enables the
sensor to operate at peak performance. The 1/3” image sensor, being composed of 1280 × 960 pixels
with 3.75 µm pitch, is employed to register the incident light. The entire endoscopic lens system has
a relatively small number of lens elements, and the aberrations of spherical, chromatic, coma and
distortion are favorably corrected. Detailed information of the presented optical endoscope is listed
in Table 1.

The DOF of this system can be approximated to be [16]

∆l =
2Dp f ′d2

o Z′

D2
p f ′2 − d2

o Z′2
(10)

where the effective focal length is f ′ = 3.23 mm, the diameter of entrance pupil is Dp = 0.35 mm and
the objective distance is do = 2 mm. Z′ denotes the maximum diameter of spot on the image senor,
which is fixed at 7.5 µm in the current situation. Therefore, the calculated value of original DOF is
about 53 µm.
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MTF, measuring the ability of the endoscopic system to transfer various levels of detail from
object to image, is firstly calculated by the productive mathematical software Matlab. Figure 2 shows
the MTF curves in different objective distance that are computed by Equation (8). The MTF curve has
the best performance when the objective distance value satisfies the designed focus value. In addition,
MTF curve seriously declines when the objective distance deviating from the best value, and also
decreases to zero at certain frequencies. The MTF value going to zero at some special spatial frequencies
implies this system completely loses the imaging information.

Table 1. Detailed information of the optical endoscope.

Parameter Data Parameter Data

Number of surfaces 32 Diameter of entrance pupil (mm) 0.350

Number of apertures 8 Position of entrance pupil (mm) 3.181

Effective focus distance (mm) 3.212 Diameter of exit pupil (mm) 0.899

Back focus distance (mm) 1.474 Position of exit pupil (mm) 13.727

F number of image space 9.178 Maximum of radial field of view (◦) 31.113

F number of work 15.435 Paraxial imaging height (mm) 3.194

Diameter of aperture stop (mm) 0.836 Paraxial magnification −1.664

Main wavelength (µm) 0.586 Angle magnification −0.389

Figure 1. Designed model of optical endoscope. The length and diameter of optical endoscope are
90 mm and 3 mm, respectively. The effective focal length ( f ′), the diameter of entrance pupil (Dp),
the diameter of aperture stop (Da) and objective distance (do) are 3.21 mm, 0.35 mm, 0.836 mm and
2 mm, respectively. The phase mask will be placed at the aperture stop when aiming at extending
the depth of field (DOF).

Simulations were then performed using a commercial simulation tool Zemax to characterize
the designed system. The simulated MTF curves in tangential and sagittal directions were drawn
with various objective distances, which are shown in Figure 3a,b, respectively. The cut-off spatial
frequency obviously decreases when the objective distance is away from the designed value, which is
in accordance with the results shown in Figure 2. Furthermore, the larger objective distance and the
more zero points will appear. The light ray distributions on an observation surface, referred to as
spot diagrams, are depicted in the situations of different objective distances and FOVs (see Figure 4).
The minimum radius of the spot appears at the objective distance of 2.1 mm, being closed to the best
focus value. The greater spot is acquired with larger objective distance, which means the system has a
large amount of defocus. Taking into account all of these results, we may reach the conclusion that the
performance of the initial optical endoscope is sensitive to the objective distance.
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Figure 2. Calculated modulation transfer function (MTF) curves of initial optical endoscope (from
Equation (9)) varied with object distances. The blue dotted-dashed line, green dashed line, red thin
line, blue dotted line and purple thick line represent the object distances of 2 mm, 2.5 mm, 3.2 mm,
3.9 mm and 4.6 mm. The normalization factor, also referred as maximum spatial frequency, depends
on the diameter of Airy disk of the optical system, which can be defined as Da

4×1.22×do×λ . According
to the parameters of diameter of entrance pupil Da = 0.836 mm, objective distance do = 2 mm and
λ = 0.586 µm, the calculated normalization factor is 146 lp/mm.

Figure 3. Simulated MTF curves of initial optical endoscope varied with object distances. (a) Tangential
direction. (b) Sagittal direction. The blue line, green line, orange line, yellow line, mazarine line,
purple line, cyan line, aquamarine line and gray line represent the object distances of 1.8 mm, 2.1 mm,
2.4 mm, 2.7 mm, 3 mm, 3.4 mm, 3.8 mm, 4.2 mm and 4.5 mm, respectively.
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Figure 4. Spot diagrams of initial optical endoscope, varied by different object distances and FOVs.
Each column stands for the same object distance (e.g., 1.8 mm), and each line stands for the same FOV
(e.g., 0◦). The blue cross, green square and red triangle represent the 0.486 µm, 0.586 µm and 0.656 µm
incident light.

3.2. Optical Endoscope with Phase Mask

Wavefront coding is normally used to enhance the DOF of the optical endoscope by making
the imaging the system insensitive to defocus aberrations. A wavefront coding optical element is a
phase mask, placed at the plane of aperture stop, that introduces a spatially varying optical path
length [17,18]. The phase mask is ordinarily fabricated by exposure of a photoresist over-coated mask
plate to an electron beam to form a specific pattern. The manufacture accuracy of mask plate height is
approximately 1 nm.

The equation for the surface of used phase mask can be written as

f (x, y) = A[(
x
R
)2 + (

y
R
)2] + B[(

x
R
)3 + (

y
R
)3] + C[(

x
R
)5 + (

y
R
)5] (11)

where A, B and C represent the structural parameters, and R stands for the radius of the phase mask.
An effective way to optimize the structure of phase mask follows the principle that preserves

consistency of MTFs with various defocus distances. Considering the multi-configuration method,
the evaluation function can be given by

MF2 = ∑
i

∑
j

∑
k
[MTF(ui, vj, ϕk)−MTF(ui, vj, 0)]2 (12)

where MTF(ui, vj, ϕk) represents the MTF with defocus value ϕk at different horizontal spatial
frequency ui and vertical spatial frequency vj, and MTF(ui, vj, 0) represents the MTF with different
horizontal spatial frequency ui and vertical spatial frequency vj at the focal plane. After selecting
100 different defocus values ϕk between ϕ = 0 and maximum defocus value, each difference between
MTF(ui, vj, ϕk) and MTF(ui, vj, 0) is calculated and recorded. After the optimization by above
criteria in Zemax, the parameters of R = 0.418 mm, A = −0.00579, B = 0.033274 and C = 0.13038
are obtained. The structure of the proposed phase mask is depicted in Figure 5.
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Figure 5. Structure of the proposed phase mask. (a) 2D map. (b) 3D map.

Under the manipulation of phase mask, the light ray, propagating between the optical lenses,
has been modified from focusing state at a special point (Figure 6a) to defocusing state in a certain
range (Figure 6b). The phase mask is constructed to avoid the presence of zeros in the corresponding
MTF curves and calculus errors in the recovery procedure. Figure 7 exhibits the MTF curves calculated
by Equation (9) in Matlab software, and the curves almost overlap when varying the objective distances.
Most importantly, the zero points appearing in the initial system vanished with the help of the phase
mask, which indicates all the spatial information is reserved in the wavefront coding system.

The simulated results of MTF curves acquired by Zemax both in tangential and sagittal directions
are shown in Figure 8a,b, respectively. All the curves stay invariant with objective distance ranging
from 1.8 to 4.5 mm. The spot diagrams with wavefront coding technique in various objective distances
and FOVs are described in Figure 9, which reflects a comprehensive view of how an image forms on
the image sensor. We find that all the spots on the image sensor keep same style and size. The features
of MTFs and spot diagrams in the new system bring a lot of benefits to acquiring and restoring the
high-quality images with extended DOF.

Figure 6. Light ray propagated in the initial optical endoscope (a) and optical endoscope with phase
mask (b).
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Figure 7. Calculated MTF curves of optical endoscope with phase mask (from Equations (9) and (11)),
varied with object distances. The blue dotted-dashed line, green dashed line, red thin line, blue dotted
line and purple thick line represent the object distances of 2 mm, 2.5 mm, 3.2 mm, 3.9 mm and 4.6 mm.
The normalization factor, also referred as maximum spatial frequency, depends on the diameter of
Airy disk of the optical system, which can be defined as Da

4× 1.22× do × λ . According to the parameters
of diameter of entrance pupil Da = 0.836 mm, objective distance do = 2 mm and λ = 0.586 µm,
the calculated normalization factor is 146 lp/mm.

Figure 8. Simulated MTF curves of optical endoscope with phase mask, varied with object distances.
(a) Tangential direction. (b) Sagittal direction. The blue line, green line, orange line, yellow line,
mazarine line, purple line, cyan line, aquamarine line and gray line represent the object distances of
1.8 mm, 2.1 mm, 2.4 mm, 2.7 mm, 3 mm, 3.4 mm, 3.8 mm, 4.2 mm and 4.5 mm, respectively.
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Figure 9. Spot diagrams of the optical endoscope with phase mask, varied by different object distances
and FOVs. Each column stands for the same object distance (e.g., 1.8 mm), and each line stands for the
same FOV (e.g., 0◦). The blue cross, green square and red triangle represent the 0.486 µm, 0.586 µm
and 0.656 µm incident light.

4. Restoration Algorithm with Tikhonov Regularization

The proposed optical endoscopic modality is a hybrid imaging system, and therefore, optics and
processing should be considered jointly and designed together. In this section, our basic assumption
is wavefront coding being a linear blurring process. Problems like that require the determination of
the unknown input to a linear system from the known output. For instance, image reconstruction
from projections is a linear inverse problem. Our work is using one of the most popular regularization
methods—Tikhonov regularization—to restore the encoded image [19,20].

The discretization of a linear inverse problem typically gives rise to a linear system of equations

Ax = b (13)

where b represents the blurred image and x is the unknown true image to be estimated. A is a very
ill-conditioned matrix.

Tikhonov regularization replaces the linear system by the regularized system

(ATA + µI)x = ATb (14)

where AT is the transpose of the matrix A. µ is a positive constant that determines the amount of
regulation; namely, regularization parameter. I is the identity operator.

Assuming the value of µ is fixed, Equation (14) will have a unique solution, which is given by

xµ = (ATA + µI)−1ATb (15)

where AT is the transpose of the matrix A.
We note that the solution xµ satisfies the minimization problem

min
x
{‖b−Ax‖2 + µ‖P(x− x0)‖2

2} (16)

In the Tikhonov regularization equation, we normally choose x0 as zero and P as an identity
matrix, which provides a standard Tikhonov regulation form as

min
x
{‖b−Ax‖2 + µ‖x‖2

2} (17)
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With the purpose of solving Equation (14), the matrix A can be decomposed by singular value
decomposition (SVD) as follows

D = UΣVT = ΣN
i=1uiσivT

i (18)

Σ is a diagonal matrix with the singular values, which satisfies:

Σ = diag(σ1...σn), σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0 (19)

In addition, the matrices U and V are comprised of left and right singular vectors U = (u1...un)

and V = (v1...vn), respectively.
On the basis of SVD method, we can solve the Equation (15) as

xµ =
N

∑
i=1

fi
uT

i b
σi

vi (20)

fi represents the Tikhonov filter factor, which is in the form

fi =
σ2

i
σ2

i + µ
, i = 1, ..., N (21)

More importantly, obtaining the appropriate value of the regularization parameter µ plays a
crucial role in Tikhonov algorithm. In this calculation, we utilize the L-curve method to determine
the suitable regularization parameter µ. The L-curve is a log–log plot of the norm of the regularized
solution versus the corresponding residual norm for each of a set of regularization parameter values.
The best regularization parameter should lie a the corner of the L.

It is useful to have formulas for the norm of the filter solution

‖x f ilt‖2
2 =

N

∑
i=1

( fi
uT

i b
σi

)2 (22)

and the norm of the residual

‖b− Ax f ilt‖2
2 = ΣN

i=1((1− fi)uT
i b)2 (23)

In the Tikhonov method, the norm of the solution x f ilter = xµ is a monotonically non-increasing
function of µ while the residual norm is monotonically nondecreasing. With Tikhonov regularization,
a suitable, accurate and fast algorithm is used to obtain the restored sharp image in a relative long
objective distance.

5. Results

As a proof of concept, we perform optical endoscopic imaging at various objective distances,
and further compare the acquired pictures without and with phase mask. A 1951 USAF resolution test
chart is used as the target to verify the performance of optical endoscope. We compare the imaging
results without and with phase mask, and record the spatial resolutions in the range of objective
distance from 1.8 to 4.5 mm. It should be emphasized that the procedure of testing the quality of image
is repeatable.

In Figure 10, the image captured by designed objective distance is clear, and the images with larger
objective distances appear lower resolution and suffer from severe blurs. On the contrary, the images
are always clear and the spatial resolution stays invariant in different objective distances (see Figure 11),
with the assistance of the phase mask and an appropriate recovery algorithm. From what has been
shown above, it is not difficult to draw the conclusion that the DOF of optical endoscopic modality
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with phase mask has been enlarged to at least 2.7 mm, which has been largely improved compared to
the theoretical value of DOF.

Figure 10. Imaging results of initial optical endoscope in different objective distances. (a) 1.8 mm.
(b) 2.1 mm. (c) 2.4 mm. (d) 2.7 mm. (e) 3 mm. (f) 3.4 mm. (g) 3.8 mm. (h) 4.2 mm. (i) 4.5 mm.

Figure 11. Imaging results of wavefront-coded optical endoscope in different objective distances.
(a) 1.8 mm. (b) 2.1 mm. (c) 2.4 mm. (d) 2.7 mm. (e) 3 mm. (f) 3.4 mm. (g) 3.8 mm. (h) 4.2 mm.
(i) 4.5 mm.

In addition, the Imatest software, focused on image quality, is used to test the accurate spatial
resolutions of captured pictures in our imaging system. It ensured that we could acquire consistent
testing results throughout the whole experiment. As shown in Figure 12, the spatial resolution of
pictures collected by original optical model drops rapidly to 3.58 lp/mm, when the objective distance
is away from the designed value. Meanwhile, the resolution of pictures from optical model with phase
mask stays at 14.3 lp/mm, in which objective distance ranges from 1.8 to 4.5 mm. Therefore, we may
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reasonably reach the conclusion that the DOF has been extended from to 0.3 mm to 2.7 mm with the
usage of wavefront coding technique.

Figure 12. Compared resolution of captured pictures between the optical endoscope without and with
phase mask.

6. Conclusions and Outlook

Nowadays, the optical endoscope is a widespread and versatile diagnostics and inspection
tool in massive industrial fields. In particular, the small-diameter endoscope for performing visual
examinations of the interiors of cavities or tubes is highly attractive, which possibly provides more
information regarding the small components. However, the common optical endoscopic modality
always operates with a small DOF, thereby being unable to capture sharp long range images and limited
in usefulness in practical applications. Here we describe such a miniature endoscope only 3 mm in
diameter that integrates group lens, a phase mask and an image sensor, which is expected to enlarge
the DOF from 3 mm to 2.7 mm without sacrificing the spatial resolution.

Moving forward, by coding a stream of light with a phase mask and then decoding it with a
special algorithm, wavefront coding produces perfectly focused images with an astounding DOF in
optical system. The distinct advantages of enhancing the DOF of an optical endoscope using wavefront
coding include high-resolution, low-cost and light weight, although it always induces a small reduction
in signal-to-noise ratio at the best focus value. Beyond that, the wavefront coding technology also
holds great potential for correcting the intrinsic optical aberrations that typically occur in standard
endoscopes [21].
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