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Abstract: This article reviews the applications of artificial neural networks (ANNs) in greenhouse 
technology, and also presents how this type of model can be developed in the coming years by 
adapting to new technologies such as the internet of things (IoT) and machine learning (ML). 
Almost all the analyzed works use the feedforward architecture, while the recurrent and hybrid 
networks are little exploited in the various tasks of the greenhouses. Throughout the document, 
different network training techniques are presented, where the feasibility of using optimization 
models for the learning process is exposed. The advantages and disadvantages of neural networks 
(NNs) are observed in the different applications in greenhouses, from microclimate prediction, 
energy expenditure, to more specific tasks such as the control of carbon dioxide. The most 
important findings in this work can be used as guidelines for developers of smart protected 
agriculture technology, in which systems involve technologies 4.0. 

Keywords: artificial neural network; greenhouse; deep learning; optimization algorithms; hybrid 
neural networks; microclimate  

 

1. Introduction 

Greenhouses are systems that protect crops from factors that can cause them damage. They 
consist of a closed structure with a cover of translucent material. The objective of these is to maintain 
an independent climate inside, improving the growth conditions for increasing quality and quantity 
of products. These systems can produce in a certain place without any restriction of agroclimatic 
conditions. However, they must be designed according to the environmental conditions of the place 
where they will be installed. Control of the microclimate is necessary for optimal development of the 
plant since it represents 90% of the yield of crop production, where the equipment, shape, and 
elements of the greenhouse will depend on how different the outdoor climate is from requirements 
of the plant [1–4]. 

When speaking of the greenhouse climate, reference is made to the environmental conditions 
that the plants require to be in good condition [5]. The greenhouse microclimate is complex, 
multiparametric, non-linear and depends on a set of external and internal factors. External factors 
include meteorological factors such as ambient temperature and humidity, the intensity of solar 
radiation, wind direction, and speed among others. Internal factors are crops, greenhouse 
dimensions, greenhouse components and elements such as heating, fogging and ventilation systems, 
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soil types, etc. [6]. There are two different approaches to describe the greenhouse climate: one is 
based on energy and mass flow equations that describe the process [7–13] and the other consists of 
the analysis of input and output data of the process using a system identification approach [2,14–18]. 
However, even with these approaches, it is difficult to fully account for all of these factors. In this 
sense, it is desirable to solve the microclimate problem based on modern methods of non-linear and 
adaptive systems [19]. 

It is important to describe the greenhouse climate to design a good control system since it is a 
way of manipulating the variables that affect its behavior [20]. The greenhouse climate control 
provides a favorable environment for cultivation and this achieves predetermined and optimal 
results. Nowadays, several control techniques and strategies, such as predictive control [16,21–23], 
adaptive control [24–27], non-linear feedback control [28,29], fuzzy logic (FL) control [30,31], robust 
control [15,32–34] and optimal control [35–37] have been proposed for the control of the greenhouse 
environment. However, for the environmental control of greenhouses, conventional proportional, 
integral and derivative controllers (PID) are mainly developed due to their flexibility, architecture 
and good performance [38]. 

Another topic of interest derived from the production of greenhouse crops is energetic 
consumption, in which solar energy is presented as a viable substitute for traditional sources (fuel 
and electricity). Solar energy is better than traditional sources because fuels are not renewable and 
represent high cost [39]. Traditional energy sources can be replaced with other sustainable energies, 
such as solar energy, wind energy [40], biomass [41–43], geothermal energy [44–46], cogeneration 
systems [47,48], among others. However, use of solar photovoltaic cells or solar thermal energy in 
greenhouses are more widely used and can commonly be combined with other sustainable energy 
systems [49]. Solar greenhouses provide a controlled system cultivation, the most focus is to reduce 
heating energy requirements, i.e., the heating requirement is largely derived from the sun [39]. 
Furthermore, solar energy represents a primary element in the heating of greenhouses and makes it 
possible to minimize production costs [50]. Several studies have been carried out in which energy 
savings are sought, where methods such as genetic algorithms (GA) have been applied to optimize 
energy collection [51], also physical models [52–54], as well as computational fluid dynamics (CFD) 
techniques to predict the microclimate of solar greenhouses [55–57]. 

Prediction methods can be divided into two groups: physical methods based on mathematical 
theory, which requires a large number of parameters to be determined, as well as the difficulty of 
measuring those parameters; and black box methods based on modern computational technology 
(particle swarm optimization algorithm, least squares support vector machine model), which do not 
always guarantee convergence to an optimal solution and easily undergo partial optimization [58]. 
On the other hand, instead of being programmed, neural networks (NNs) learn to recognize 
patterns. These systems are highly appropriate to reflect knowledge that cannot be programmed or 
justified, as well as to represent non-linear phenomena [59]. Figure 1 presents the interest topics in 
greenhouses and the classification of the models used. 

Within the latter, as presented, several studies have been developed for different applications in 
greenhouse crop production. However, since greenhouses are non-linear, invariant over time and 
with a strong coupling [15], several investigations have opted to use artificial neural networks 
(ANNs) for the simulation, prediction, optimization, and control of these processes. Mathematical 
analysis methods have been developed for the optimization of the ANNs database. These models 
present a variables relationship, make the variables less trivial, and simplify the structure of the 
network. In this way improve greenhouse total yield [60].  

This review explores different ANNs investigations and applications in greenhouse technology. 
Presents trends for future research in the development of this type of model will improve its 
application and integration with the 4.0 technologies that are currently applied in smart agriculture 
(SA) but are little used in greenhouse production such as the internet of things (IoT), machine 
learning (ML), image analysis, big data, among others. The structure of this document is: Section 2 
gives an explanation of ANNs, different activation functions, types and different knowledge about 
ANNs. Section 3 presents the NNs application for the prediction of microclimates in greenhouses. 
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Section 4 shows neural network applications in greenhouse energy optimization. Section 5 indicates 
other studies and ANNs in greenhouse applications. Finally, Section 6 addresses the challenges in 
the development of NNs in greenhouse agriculture. 

 
Figure 1. Interest topics in greenhouses and models classification. Genetic algorithms: GA; Particle 
swarm optimization: PSO; Artificial neural networks: ANNs 

2. Artificial Neural Networks  

An ANN is a ML algorithm based on the concept of a human neuron [13]. It is a biologically 
inspired computational model, consisting of processing elements (neurons) and connections 
between them with coefficients (weights) attached to the connections [61]. ANNs are inspired by the 
brain structure and for this reason it is important to define the main components under which a 
neuron, dendrites, cell body, and axon works. Dendrites are a network that carries electrical signals 
to the cell body. The cell body adds and collects the signals. The axon carries the signal from the cell 
body to other neurons using a long fiber. When the axon of a cell comes in to contact with a dendrite 
of another cell it is known as a synapse. Therefore, the functions of neuronal networks are 
established through the arrangement of neurons and individual synaptic forces [62]. Figure 2 
presents a general schematic of a biological neuron with each element that makes it up. 

Neural structures develop through learning; however, they constantly change, strengthening or 
weakening the synaptic junctions. Although ANNs are inspired by the brain, they are not that 
complex. However, the greatest similarities are primarily that both networks are interconnected and 
the functions of the networks are determined by the connections between neurons [63]. 

 
Figure 2. Structure of a biological neuron. 
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Neurons receive inputs such as impulses. The peak rate generated over time and the average 
peak generation rate in several runs, are some measures used to describe neuron activity. In ANNs, 
a neuron is identified by the speed at which it generates these peaks. A neuron connects to other 
neurons in the previous layer through adaptive synaptic weights. Knowledge is generally stored as a 
set of connection weights. When these connection weights are modified in an orderly manner and 
with a suitable learning method, a training process is carried out. The learning method consists of 
presenting the input to the network and the desired output, adjusting the weights so that the 
network can produce the desired output. After training the weights will have relevant information, 
whereas before training it is redundant and meaningless [64].  

Figure 3 presents the simple neuron structure. The processing of the information in a neuron 
begins with the inputs Xn, they are weighted and added up before going through some activation 
function to generate its output, this process is represented as ξ = ΣXi·Wi. For each of the outgoing 
connections, this activation value is multiplied by the specific weight Wn and transferred to the next 
node. If it considers a linear activation, the output would be given by y=α(wx+b) [65]. 

 

Figure 3. The basic scheme of a neuron. 

2.1. The Activation Function of an Artificial Neural Network 

The activation function is a function that receives an input signal and produces an output signal 
after the input exceeds a certain threshold. That is, neurons receive signals and generate other 
signals [66]. The neuron start is only performed when the sum of the total inputs is greater than the 
neuron threshold limit, then the output will be transmitted to another neuron or environment. This 
threshold limit determines whether the neuron is activated or not, the most common activation or 
transfer functions are the linear, binary step, piecewise linear, sigmoid, Gaussian and hyperbolic 
tangent functions [67]. 

Table 1 shows the activation functions commonly used in NNs . The behavior of neurons is 
defined by these functions. If it transfers a function that is linear and the network is multi-layered, it 
can be represented as a single-layer network, since it is product of weight matrices of each layer and 
will only produce positive numbers over the entire range of real numbers. On the other hand, 
non-linear transfer functions (sigmoid function) between layers allow multiple layers to provide 
new capabilities, adjusting the weights to obtain a minimum error in each set of connections 
between layers [68,69]. Linear functions are generally used in the input and output layers, while 
non-linear activation functions can be used for the hidden and output layers [70]. 

The most used non-linear activation functions are sigmoid and hyperbolic tangents. Hyperbolic 
and sigmoid tangents are mainly used because they are differentiable and make them compatible 
with the back-propagation algorithm. Both activation functions have an “S” curve, while their 
output range is different [71]. The sigmoid function is the most used activation function in ANNs. 
This function varies from 0 to +1, although the activation function sometimes seeks to oscillate 
between −1 and +1, in which case the activation function assumes an antisymmetric form with 
respect to the origin, defining it as the hyperbolic tangent function [72–74]. 
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Direct implementation of sigmoid and hyperbolic tangent functions in hardware is impractical 
due to its exponential nature. There are several different approaches to the hardware approximation 
of activation functions, such as the piecewise linear approximation. Linear part approximations are 
slow, but they are the most common way of implementing activation functions [75]. In addition, this 
uses a series of linear segments to approximate the trigger function. The number and location of 
these segments are chosen so that errors and processing time are minimized [76]. 

The Gaussian activation function can be used when finer control over the activation range is 
needed [69]. Furthermore, it can uniformly perform continuous function approximations of various 
variables [77]. 

Table 1. Activation functions for layers in artificial neural networks. 

Name Graphic Function 

Linear 

 

𝑓ሺ𝜉ሻ ൌ 𝑎 ∙ 𝜉 ൅ 𝑏 

Binary step 

 

if 𝜉 ൒ 0, 
if 𝜉 ൏ 0, 

then 𝑓ሺ𝜉ሻ ൌ 1, 
then 𝑓ሺ𝜉ሻ ൌ 0, 

Piecewise 
linear 

 

if 𝜉 ൒ 𝜉௠௔௫, 
if 𝜉௠௜௡ ൐ 𝜉 ൐ 𝜉௠௔௫, 

if 𝜉 ൑ 𝜉௠௜௡, 

then 𝑓ሺ𝜉ሻ ൌ 1, 
then 𝑓ሺ𝜉ሻ ൌ 𝑎 ∙ 𝜉 ൅ 𝑏, 

then 𝑓ሺ𝜉ሻ ൌ 0, 

Sigmoid 

 

𝑓ሺ𝜉ሻ ൌ 1
1 ൅ 𝑒ି௕∙క, interval (0,1) 

Gaussian 

 

𝑓ሺ𝜉ሻ ൌ 𝑒ିక2 , interval (0,1] 

Hyperbolic 
tangent 

 

𝑓ሺ𝜉ሻ ൌ 2
1 ൅ 𝑒ି2∙క െ 1, interval [-1,1] 

2.2. Types of Artificial Neural Network 
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The ANNs are classified according to different criteria, we can establish that there are two types 
[78]:  

 Feedforward neural networks (FFNNs); 
 Recurrent neural networks (in discrete time) or differential (in continuous time); 

2.2.1. Feedforward Neural Networks  

The neuron is the basic component of NNs. Neurons are connected to each other through 
synaptic weight [62]. Considering a neural network with three layers such as in Figure 4: an input 
layer, a hidden layer and an output layer the intermediate layer is considered self-organized 
Kohonen map, which consists of two layers of processing units (input and output), depending on the 
complexity of the network (there may be several hidden layers in each network) [79]. In FFNNs, 
information progresses, from the input nodes to the hidden nodes and from the hidden nodes to the 
output nodes. When an input pattern is fed into the network, the units in the output layer compete 
with each other, and the winning output unit is the one whose input connection weights are closest 
to the input pattern, the number of neurons in the input and output layers is the same as the number 
of inputs and outputs of the problem [80]. The learning method can be divided into two stages, the 
first stage is to determine the neuron of the hidden layer whose weight vector is the first input vector 
and the second refers to the training process. Initially, the Euclidean distance between the input and 
the weight vector of the first neuron will be calculated. If the distance is greater than a 
predetermined distance threshold value, a new hidden-layer neuron is created by assigning the 
input as the weight vector. Otherwise, the input pattern belongs to this neuron. During training, 
each pattern presented to the network selects the closest neuron on a Euclidean distance measure, 
modifying the winner's weight vector, and topological neighbors draws them in the direction of the 
input, the weights leaving the winning neuron and its neighbors are adjusted by the gradient 
descent method [81]. Forward NNs fall into two categories based on the number of layers, either 
single layer or multiple layers [82]. 

Back-propagation (BP) is a type of ANN training, used to implement supervised learning, tasks 
for which a representative number of sample inputs and correct outputs are known. BP is derived 
from the difference in desired and predicted, output; this is calculated and propagated backward 
[83]. First, network weights to a small random weight are initialized, the vector set of input data to 
the network are presented, the input propagated to generate the output, which is called the input 
advance phase, and the error comparing the estimated net output with the desired output calculated 
[84]. The weight will be corrected from the output to the input layer that is, in the backward 
direction in which the signals propagate when objects are introduced into the network. This is 
repeated until the error no longer improves [85]. 
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Figure 4. Feedforward neural network structure. 

2.2.2. Recurrent Neural Networks  

In recurrent neural networks (RNNs) the information goes back and forth as can be seen in 
Figure 5a, for this reason, they are also called feedback networks. In these networks, the connections 
between nodes form a directed cycle, where at least one path leads back to the initial neuron. In this 
type of network there are different types of structure [86]: 

 Hopfield network: each neuron is completely symmetrically connected with all other neurons 
in the network. If the connections are trained using Hebbian learning, then the Hopfield 
network can function as a solid memory and resistant to the alteration of the connection. 
Hebbian learning involves synapses between neurons and their strengthening when neurons 
on both sides of the synapse (input and output) have highly correlated outputs [87] as shown in 
Figure 5b. There is a guarantee in terms of convergence for this network [88]. 

 Elman network: this is a horizontal network where a set of “context” neurons is added. In 
Figure 5c the context units are connected to the hidden network layer fixed with a weight. The 
subsequent fixed connections result in the context units always keeping a copy of the previous 
values of the hidden units, maintaining a state, which allows sequence prediction tasks [89]. 

 Jordan network: these are very similar to Elman’s networks. However, context units feed on the 
output layer instead of the hidden layer. 
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Figure 5. Recurrent neural networks structure: (a) Simple structure of a recurrent network, (b) 
Hopfield network structure, (c) Elman network structure. 

RNN is distinguished from a FFNN by the presence of at least one feedback connection. FFNNs 
do not have the intrinsic ability to process temporary information. There are two important 
considerations about why recurrent networks are viable tools for modeling: inference and prediction 
in noisy environments. In a typical recurrent network architecture, the activation functions of the 
hidden unit are fed back each time step to provide additional input. That is, the recurrent networks 
are built in such a way that the outputs of some neurons feed back to the same neurons or to the 
neurons in the previous layers [86]. Feedback from hidden units allows filtered data from the 
previous period to be used as additional input in the current period. This causes the network to 
work not only with the new data, but also with the past history of all entries, as well as their leaked 
equivalents. This additional filtered input history information acts as an additional guide to assess 
the current noisy input and its signal component. By contrast, filtered history never enters a FFNN. 
This is where recurring networks differ from a FFNN. Second, since recurrent networks have the 
ability to maintain the past history of filtered entries as additional information in memory, a 
recurrent network has the ability to filter noise even when the noise distribution can vary over time. 
In a FFNN a completely new training must be carried out with a new data set containing the new 
type of noise structure [78]. 

2.3. Learning of Artificial Neural Networks 

Learning is an essential part of NNs; this process defines the input-output relationship by 
looking for the most accurate prediction calculation. The learning process can be classified into two 
categories: supervised and unsupervised. Supervised learning knows the expected results and uses 
known or labeled data, while in unsupervised learning it is not necessary to have known data, and 
the learning is done through the discovery of internal structures and data representation [88,90]. 

Supervised learning consists of minimizing a cost function that accumulates the errors between 
the actual outputs of the system and the desired outputs, for the given inputs. To minimize this cost 
function, several methods are used, and the gradient descent as the error BP algorithm is the most 
used for its acceptable results in one layer and multilayer networks. [91]. 
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In unsupervised learning, it is based only on input data and the update of the weights is carried 
out internally in the network, the algorithms are designed for the self-organization of the ANNs and 
can be derived by Hebbian law, or the use of algorithms such as algebraic reconstruction technique 
[68]. 

The exposed be learning techniques have allowed the development of advanced algorithms 
such as SOM (self-organizing maps) and SOTA (self-organizing tree algorithm), which are times 
series clustering algorithms based on unsupervised NNs [92]. SOM is a known data analysis tool for 
tasks like data visualization and clustering. One disadvantages of this tool is that the user must 
select the map size. This may lead to many experiments with different sized maps, trying to obtain 
the optimal result. Training and using these large maps may be quite slow [93]. While the SOTA 
permits classification in the initial levels of groups of patterns that are more separated from other 
and to classify patterns in final layers in a more accurate way [94]. These techniques open up the 
possibility of not only learning connection weights from examples, but also learning a neural 
network structure from examples. This is thanks to the fact that a neural network can be built 
automatically from the training data by SOTA methods [95].  

3. Application of Artificial Neural Networks for the Prediction of the Greenhouse Microclimate  

The application of methods and tools that simplify the treatment of the variables related to the 
climate of the greenhouses is a very important subject since the calculation speed, the precision in 
the prediction of the behavior and control of the variables of the different elements remain a 
significant challenge. ANNs are used to attend to these tasks largely by non-linear systems models 
[74]. Among the main studies that evaluated the viability of NNs in modeling the state of the 
greenhouse climate is [96], which focused specifically on the input-output relationships and the 
most efficient election process of inputs, although the training of the network was not an important 
part of their studies, proved that the ANNs obtain better results than the physical models of mass 
and energy transfer, and also emphasized their potential application for the environmental control 
of greenhouses. 

3.1. Greenhouse Microclimate 

Greenhouses are complex and non-linear systems, and a means to achieve a controlled 
agricultural production [7]. Greenhouse production systems have a complex dynamic impulse by 
external factors (meteorological), control mechanisms (ventilation openings, exhaust fans, heaters, 
evaporative cooling systems, etc.) and internal factors (crops and internal components) [6]. 

Concerning the greenhouse microclimate and its control, the crop represents the central 
element, but also the most complex part of the system. Due to this complexity and the great diversity 
of crops in greenhouses, it is common to consider only certain general issues that are more relevant 
to the response of crops in relation to greenhouse microclimate [97].  

Greenhouse climates refer to the set of environmental variables in this system that affect the 
growth of crops and their development [98]. Greenhouse microclimate control has received 
considerable attention in recent years due to its great contribution to the improvement of crop yield 
[13,29,99]. The different factors such as temperature [100,101], relative humidity [102], amount of 
CO2 [103,104] are analyzed to predict different events implementing artificial intelligence, statistics 
and engineering [49,105–108]. 

Numerous greenhouses use a conventional control, but this control strategy may not be suitable 
to guarantee the desired performance [15,26]. In this scenario, various strategies and control 
techniques have been proposed like generalized predictive control [109], optimal control [110], 
model predictive control [16,111], NNs control [112], fuzzy control [113–115], robust control [15,116] 
and linear-quadratic adaptive control [117]. The vast majority of these proposals are simulations of 
the behavior of the variables and possible control against these changes and are also focused on a 
specific crop [118]. 

The application of NNs in the control of microclimates is a topic that has currently gained 
interest. NNs provide reliable models that can reflect the non-linear characteristics of the greenhouse 
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that are difficult to solve using traditional techniques, do not require any prior knowledge of the 
system. and are very suitable for modeling dynamic systems in real time [119,120].  

Temperature and humidity are of the most relevant parameters in the greenhouse microclimate, 
since they have complex exchanges and interactions of heat and mass between the inner air, other 
elements of the greenhouse and the outside. Building a model is a difficult assignment with simple 
mathematical formulas or transformation functions. However, the method of building models with 
ANNs has a great capacity for mapping non-linear functions, which is applied to many production 
process systems [121].  

For the network design, air temperature and humidity of the greenhouse air are generally 
considered outputs, this due to the aforementioned factors. However, setting the inputs is more 
complicated and required an understanding of the system. It is not convenient to consider a large 
number of inputs, as this could cause uncontrolled extrapolations instead of increasing the 
estimation power. Three elements can be considered in order to consider an input variable: (1) 
correlation of selected input with other inputs, (2) physical dependence nature of the output and the 
input (3) input variable range. The third point, solar radiation and greenhouse temperature, can be 
considered an example [96]. 

3.2. Feedforward Neural Networks Models for Prediction of Microclimate in Greenhouse 

Ferreira et al. [112] modeled the indoor temperature of a hydroponic greenhouse based on 
indoor relative humidity, outdoor air temperature, and solar radiation. They discuss different 
training methods for a neural network of radial base function (RBF) that are structurally simpler 
than multilayer perceptron (MLP), which are a type of FFNNs. The objective of using a radial base 
function artificial neural network (RBFANN) is that the design and training process is a simpler task. 
The training methods compared are the off-line and on-line, mainly differentiated in that the use of 
the learning algorithm adjusts the free network parameters as the output or input data are 
determined, respectively. In the study, they concluded that for both off-line and on-line training, 
better results are obtained by applying the Levenberg–Marquardt (LM) method, which is the best 
online. Other works applied the RBFANNs, as is the case of Hu et al. [99] who presented an adaptive 
proportional and derivative control (PD) scheme based on the RBF neural network. The RBF 
network used it to adjust the parameters of the PD controller using the Jacobian information for the 
greenhouse climate control problem. The results showed that the proposed adaptive controller 
obtained a more satisfactory performance than a conventional PD scheme and was even considered 
for application in non-linear dynamic systems such as the climate system of a greenhouse. 
Furthermore, Zeng et al. [38] presented a control strategy that combines RBF with PID, for 
greenhouse climate control. They compared the proposed adaptive online adjustment method with 
the offline adjustment scheme that uses GA to find the optimal gain parameters based on the error 
criteria. Offline learning consists on adjusting weight vectors and network thresholds after the entire 
training set is presented (requires at least one training data stage), while in online learning network 
weights and threshold adjustments are made after each training sample is submitted (after executing 
the adjustment step, the sample can be discarded) [122]. Interesting results were obtained such as 
better set point monitoring performance, a smoother control process characterized by smaller 
oscillatory amplitudes that the control can be applied in real time online and that the control scheme 
adapts well to fluctuations in external climate. 

Regarding the MLP networks, which are a type of FFNNs, Dariouchy et al. [123] used them 
with training based on a gradient BP algorithm to predict the internal temperature and internal 
humidity within a tomato greenhouse from external climatic data (external humidity, total radiation, 
wind direction, wind speed, and external temperature). When comparing the results obtained from 
the network with a multiple linear regression method (MLR), the prediction of the MLP network 
proved to be significantly better. Also, He et al. [60] proposed a BP network based on principal 
component analysis (PCA) to predict the indoor humidity in a greenhouse. The PCA values were 
taken as inputs from the back propagation neural network (BPNN), the objective of the PCA was to 
simplify the data samples and make the model have a faster learning speed. The predicted humidity 
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coincided well with the measurement, which showed that the model had high accuracy. 
Furthermore, they compared the PCA-based BPNN method with a stepwise regression method and 
observed that the PCA-based BPNN performed better. Likewise, Taki et al. [124] used four MLP 
architectures with learning algorithms based on gradient descent momentum (GDM) and LM to 
predict roof temperature, indoor air humidity, soil temperature and soil moisture of a greenhouse. 
The results obtained showed that the prediction error is low and when compared with predictions 
obtained through regression models, the error used to predict the four parameters were 
approximately two times greater than the MLP method. 

The structure of the network depends on the type of task to be described, the complexity of the 
system and the learning process. Table 2 shows various works in which FFNNs have been used, 
details the input and output variables that were used, the architecture of the network, the activation 
functions that were used by the network or each layer of the network, and the algorithm used in the 
training process. 
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Table 2. Applications of feedforward neural network models for prediction of microclimate in greenhouses. 

Author Inputs Variables Outputs 
Variables 

Artificial neural network 
(ANN) Architecture 

Activation 
Functions 

Training Method Comments 

Zeng et al. 
[38]; Hu et 
al. [99] 

• Outside 
temperatur
e 

• Outside 
humidity 

• Wind speed 
• Solar 

radiation 
• Carbon 

dioxide 
concentrati
on 

• Heating 
• Ventilation 
• Carbon 

dioxide 
injection 

• Inside 
temperatur
e 

• Inside 
humidity 

• Feedforward neural 
network (FFNN) 
specifically radial base 
function (RBF). 

The model had three layers: 
• Input layer 
• Hidden layer 
• Hidden layer  
• Output layer 

• Gaussian 
transfer 
function for 
the hidden 
layer 

Gradient descent back-propagation (BP) 

Results show that the model 
proposed has better 
adaptability, and more 
satisfactory real-time control 
performance compared with 
the offline tuning scheme 
using genetic algorithm (GA) 
optimization and 
proportional, and derivative 
control (PD) method. 

He et al. 
[60] 

• Outside air 
temperatur
e  

• Outside 
humidity 

• Wind speed  
• Solar 

radiation  
• Inside air 

temperatur
e 

• Open angle 
of top vent 
and side 

• Inside 
humidity 

FFNN. 
The model had three layers: 
• Input layer 
• Hidden layer 
• Hidden layer  
• Output layer 

• The 
sigmoid 
transfer 
function for 
the hidden 
layer 

• The logistic 
sigmoid 
transfer 
function for 
the output 
layer 

BP 

The principal component 
analysis (PCA) simplified the 
data samples and made the 
model had faster learning 
speed. 
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vent 
• Open ration 

of sunshade 
curtain 

Ferreira et 
al. [112] 

• Outside air 
temperatur
e 

• Solar 
radiation 
Inside 
humidity 

• Inside 
temperatur
e 

FFNN specifically RBF.  

Off-line methodology: 
• In method 1 they used the linear 

least squares (LS) 
• In method 2 they used the 

orthogonal least squares (OLS) 
• In method 3 they used the 

Levenberg – Marquardt (LM) 
On-line methodology: 
• In method 1 they used the extended 

Kalman filter (EKF) 
• In method 2 they based on the 

interpolation problem with 
generalized radial basis functions 
(GRBFs) with regularization 

• In method 3 they used the LM 

In this paper off-line training 
methods and on-line learning 
algorithms are analyzed. 
Whether off-line or on-line, 
the LM method achieves the 
best results. 

Dariouchy 
et al. [123] 

• External 
humidity 

• Total 
radiation  

• Wind 
Direction 

• Wind 
Velocity 

• External 
Temperatur
e 

• Internal 
temperatur
e 

• Internal 
humidity 

• Internal 
temperatur
e 

• Internal 
humidity 

FFNN. 
Logistic sigmoid 
transfer function 
for all layers 

BP 

Different architectures were 
tested. Initially, networks with 
a single hidden layer were 
built by successively adding 
two additional neurons to it. 
Networks with two hidden 
layers were also tested, 
triangular structures were 
considered, for which the 
number of neurons in one 
layer is greater than the next. 
The optimal model was 
composed of a hidden layer 
with six neurons. 

Taki et al. They used four They used four FFNN. • Sigmoid Basic BP Demonstrated that multilayer 
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[124] ANNs models: 
First model: 
• Inside air 

temperatur
e  

• Solar 
radiation on 
the roof 

• Wind speed 
• Outside air 

temperatur
e  

Second model: 
• Inside soil 

temperatur
e  

• Inside air 
humidity 

• Solar 
radiation on 
the roof 

• Inside air 
temperatur
e 

Third model: 
• Inside air 

temperatur
e  

• Solar 
radiation on 
the roof 

• Inside roof 
temperatur
e  

• Inside air 
humidity 

ANNs models: 
First model: 
• Roof 

temperatur
e 

Second model: 
• Soil 

humidity 
Third model: 
• Soil 

temperatur
e 

Fourth model: 
• Inside air 

humidity 

transfer 
function for 
the hidden 
layer 

• Linear 
transfer 
function for 
the output 
layer 

perceptron (MLP) network 
with 4 inputs in first layer, 6 
neurons in hidden layer and 
one output, and MLP network 
with 4 inputs in the first layer, 
9 neurons in hidden layer and 
one output had the best 
performance to predict inside 
soil, inside air humidity, 
inside roof and soil 
temperature with a low error. 
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Fourth model: 
• Inside air 

temperatur
e  

• Inside roof 
temperatur
e 

• Outside air 
temperatur
e 

• Solar 
radiation on 
the roof 

Seginer et 
al. [125] 

Weather 
variables: 
• Outside 

temperatur
e 

• Outside 
humidity 

• Outside 
solar 
radiation 

• Wind speed 
Control 
variables: 
 Heater heat 

flux 
 Vent 

opening 
angle 

 Misting 
time 
fraction 

State variables: 
 Leaf area 

 Inside 
temperatur
e 

 Soil 
temperatur
e 

 Inside 
humidity 

 Inside 
radiation 

FFNN. 
For the model of the neural 
network (NN) used a 
commercial program 
(NeuroShell™, Ward 
System Group, Inc) 
The model had three layers: 
 Input layer 
 Hidden layer (The 

number of the nodes 
was determined by 
the program) 

 Output layer 

Sigmoid function 
(S-shape logistic 
function) for the 
three layers 

BP 

They found that leaf area 
index (LAI) did not have a 
significant influence on the 
internal conditions of the 
greenhouse. Also, they 
determined that the wind 
direction has minimal effects 
on the results. 
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index (LAI) 
Time variables: 
 Julian day 
 Hour of day 

Laribi et al. 
[126] 

 Outside 
temperatur
e 

 Outside 
humidity 

 Wind speed 
 Solar 

radiation 

 Internal 
temperatur
e 

 Internal 
humidity 

FFNN. 
The networks had three 
layers: 
 Input layer 
 Hidden layer with 7 

neurons 
 Output layer with 2 

neurons 

 The sigmoid 
transfer 
function for 
the hidden 
layer 

 The linear 
transfer 
function for 
the output 
layer 

BP 

Two approaches were used to 
predict the climate of the 
greenhouse, multimode 
modeling and neural 
networks. They point out that 
the neural network model is 
easier to obtain and specify 
that it can be used to simulate 
different output variables at 
the same time. 

Bussab et 
al. [127] 

 External 
temperatur
e 

 External 
global 
radiation 

 External 
relative 
humidity 

 Wind speed 

 Internal 
Temperatu
re 

 Internal 
 Relative 

Humidity 

FFNN. 
A multilayer NN with two 
hidden layers: 
 First hidden layer with 

40 neurons 
 Second hidden layer 
 with 20 neurons 

 The 
hyperbolic 
tangent 
function for 
input layer 
and for the 
first hidden 
layer 

 The linear 
function for 
second 
hidden 
layer 

BP 

The NN obtained better 
results in the prediction of the 
internal temperature than of 
the internal relative humidity 

Salazar et 
al. [128] 

 Outside 
average 
temperatur
e 

 Outside 
relative 
humidity 

 Wind 
velocity 

Three different 
network 
architectures 
were tested, 
where the 
number of 
outputs was 
varied: 
• 1st inside 

FFNN. 
The networks had three 
layers: 
 Input layer 
 Hidden layer 
 Output layer 

Hyperbolic 
tangent function 
for all layers 

BP 

They report that the third 
network obtained better 
results in the prediction of 
temperature and relative 
humidity, which explains the 
interactions between these 
two variables. Also, they 
emphasize the relevance of 
the input variables in the 
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 Solar 
radiation 

temperatur
e 

• 2nd inside 
relative 
humidity 

• 3rd inside 
temperatur
e and 
relative 
humidity 

predicted variables, in this 
study the solar radiation was 
the most important. 

Alipour et 
al. [129] 

 Wind speed 
and 
direction 

 Relative 
humidity 

 Infra-red 
light 

 Visible light 
 Air 

temperatur
e 

 Carbon 
dioxide 
concentrati
on 

 Inside 
temperatur
e 

 Light 
 Inside 

Relative 
humidity 

 Carbon 
dioxide 

FFNN. 
Three different 
configurations were tested: 
 The feedforward 

neural network with 
several delays in input 

 Two layers with one 
feedback from the 
hidden layer and 
delay in input 

 Three layers neural 
network with two 
feedbacks from 
hidden layer and 
delay in input 

Not specified 

The three-layer neural 
network with two 
hidden-layer feedbacks and 
delayed entry showed better 
relative humidity and light 
index results. 
The FFNN with multiple 
entries delays better predicted 
the temperature and infrared 
index. 

Outanoute 
et al. [130] 

Values and the 
previous value 
of: 
 External 

temperatur
e 

 External 
relative 
humidity 

 Command 
of heater 

 Internal 
Temperatu
re 

 Internal 
relative 
humidity 

FFNN. 
The networks had three 
layers: 
 Input layer 
 Hidden layer (the 

number of nodes 
depending on the type 
of network training) 

 Output layer 

 The logistic 
sigmoid 
transfer 
function for 
the hidden 
layer 

 The linear 
transfer 
function for 
the output 
layer 

 Gradient descent with momentum 
and adaptive learning rate 
algorithm (GDX) for seven nodes on 
the hidden layer 

 Broyden-Fletcher-Golfarb-Shanno 
(BFGS) quasi-newton BP for five 
nodes on the hidden layer 

 Resilient Back-propagation algorithm 
(RPROP) for twelve nodes on the 
hidden layer 

Three NNs were tested with 
different training algorithms. 
BFGS is better than the GDX 
and the RPROP. 
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and 
ventilator 

Previous values 
of: 
 Internal 

temperatur
e 

 Internal 
relative 
humidity 

Taki et al. 
[131] 

 Outside air 
temperatur
e 

 Wind speed 
 Outside 

solar 
radiation 

 Inside air 
temperatur
e 

 Soil 
temperatur
e 

 Plant 
temperatur
es 

FFNN. 
 Feedforward networks, 

specifically MLP and 
RBF, were used in this 
investigation. Also, 
different algorithms 
for network training 
were applied and 
compared with each 
other and with the 
support vector 
machine (SVM) 
method 

For MLP: 
 No transfer 

function for 
the first 
layer was 
used 

 Sigmoid 
functions 
for the 
hidden 
layers 

 The linear 
transfer 
function for 
the output 
layer 

For radial base 
function artificial 
neural networks 
(RBFANNs): 
Used radial basis 
functions as 
activation 
functions 

 LM back- propagation 
 Bayesian regularization 
 Scaled conjugate gradient BP 
 RPROPVariable learning rate BP 
 Gradient descent with momentum BP 
 Gradient descent with adaptive 

learning rate BP 
 Gradient descent BP 
 BFGS quasi-Newton back- 

propagation 
 Powell–Beale conjugate gradient BP 
 Fletcher–Powell conjugate gradient 

BP 
 Polak–Ribiere conjugate gradient BP 
 One step secant BP 

Thirteen different training 
algorithms were used for 
ANNs models. Comparison of 
the models showed that 
RBFANNs has lowest error 
between the other models 
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3.3. Recurrent Neural Networks Models for Prediction of Microclimate in Greenhouses 

Compared to FFNN, RNN application is a less studied field as can be seen in table Table 3, 
however, the results obtained show a good performance because they have a faster calculation due 
to the lower number of units in the input layer and a recovery structure similar to the structure of 
FFNNs training [132]. Fourati et al. [133] used an Elman-type RNN to simulate the dynamics of a 
greenhouse. In addition, for the control of the greenhouse, they developed an FFNN with a reverse 
learning process. In the operation and control of the greenhouse, they connected both NNs in 
cascaded obtaining a lower criterion error (Ec = 344.12) in comparison of a neural network simple (Ec 
= 533.31). Later, Fourati et al. [134] reapplied the same structure of the Elman-type RNN. However, 
they focused on developing a neuronal control strategy based on online training, adjusting the 
parameters of the controller (connection weights) with a generalized and specialized learning. That 
is to say, after offline learning, they applied the neuronal controller trained to provide control 
actions to the greenhouse through online learning. As a result, they obtained that the neuronal 
control took into account the new situations in the greenhouse environment by adjusting the 
aforementioned neuronal weights through online learning. On the other hand, Hongkang et al. [135] 
used an RNN model as a deep learning (DL) algorithm for predicting the temperature and humidity 
of a greenhouse. For the learning process, they applied the Elman type, they also applied the 
dynamic BP algorithm to modify the connection weights to reduce the prediction error and improve 
the learning capacity. When comparing this method with a BP network and an untrained RNN, they 
concluded that the Elman-type network based on the BP dynamic algorithm can predict temperature 
and humidity accurately and in the short term in the next step based on the data of the interior 
environment due to recursive online training. They also mention that the use of an RNN for the 
prediction and control of climate in greenhouses is very effective since the online model can adapt to 
changes and guarantee its evolution. 
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Table 3. Applications of recurrent neural network models for prediction of microclimate in greenhouses. 

Author(s) Inputs Variables Outputs Variables 
Artificial neural 
network (ANN) 

Architecture 
Activation Functions Training Method Comments 

Fourati et al. [133] 

 External 
temperature 

 External 
hygrometry 

 Global radiant  
 Wind speed 

 Internal 
temperature  

 Internal 
hygrometry 

Recurrent neural 
networks (RNN). 
 Elman neural 

network 

Sigmoid function for 
the hidden layer  

Back-propagation 
(BP) 

Elman neural network 
was used to emulate the 
direct dynamics of the 
greenhouse. Based on 
this model, a multilayer 
feedforward neural 
network (FFNN) was 
trained to learn the 
inverse dynamics of the 
process to be controlled. 

Fourati et al. [134] 

 External 
temperature 

 External 
hygrometry 

 Global radiant 
Wind speed 

 Internal 
temperature 

 Internal 
humidity 

RNN. 
 Elman neural 

network 
Sigmoid function for 
the hidden layer  

Neural control 
using with Online 
training: 
 Generalized 

learning 
 Specialized 

learning 

In order to evaluate the 
different control 
strategies (offline and 
online training), they 
defined an error 
criterion. When they 
compared the error 
between training 
methods, obtained that 
online methods are 
better than offline 
method (FFNN based on 
Elman neural network). 

Hongkang et al. 
[135]  

 Internal 
temperature 

 Internal 
humidity 

RNN. 
 Elman neural 

network 
Sigmoid function for 
the hidden layer  Dynamic BP 

Different from the 
traditional batch trained 
neural network, the 
dynamic BP method in 
the training process uses 
the output of the 
previous step together 
with the next input to 
the network, and the 
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calculator outputs the 
weights. They compared 
a dynamic BP RNN whit 
untrained RNN, the 
Elman network based on 
dynamic BP algorithm 
can accurately predict 
the temperature and 
humidity in the 
greenhouse better than 
the untrained RNN 

Dahmani et al. 
[136] 

 External 
temperature 

 External Humidity 
 Global radiation 
 Wind speed 
 Heating input 
 Opening of the 

shutter 
 Misting input 
 Curtain entrance 

 Internal 
temperature 

 Internal 
humidity 

 

RNN. 
 Elman neural 

network 

Sigmoid function for 
the hidden layer  BP 

The control law is based 
on a multilayer 
perceptron (MLP) 
network type trained to 
imitate the inverse 
dynamics of a 
greenhouse. The direct 
dynamics of the 
greenhouse were 
described by a RNN of 
the Elman type 

Salah et al. [137] 

 External 
temperature 

 External 
hygrometry 

 Heating 
 Sliding shutter in 

degrees 
 Sprayer 
 Curtain 

 Internal 
temperature 

 Internal 
hygrometry 

RNN. 
Three Elman neural 
network are 
considered: 
 One hidden and 

context layers  
 Two hidden and 

context layers  
 Three hidden 

and context 
layers 

Sigmoid function for 
the hidden and output 
layers 

Deep learning 
(DL) where BP 
algorithm was 
used  

Concluded that the 
network with two 
hidden layers and two 
context layers were the 
most efficient to describe 
the system 
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3.4. Other Artificial Neural Networks Models for Prediction of Microclimate in Greenhouses 

Other models using ANNs have also been developed as shown in Table 4. Rodríguez et al. [138] 
built a neural network model in a non-linear autoregressive configuration (NNARX). The model was 
carried out through NNs s using the lagged values of the measurable signals as input vector. The 
structure of the network consisted of an MLP, concluding that the network for long-range prediction 
purposes does not guarantee optimal results, with one step or two step prediction being more 
convenient, but to make a long-range prediction they recommend decreasing the number of 
autoregressive entries and increasing the number of non-regressive entries. Similarly, Manonmani et 
al. [139] developed intelligent control schemes based on a NNARX to control the internal 
temperature and humidity of a greenhouse. In their work, they propose two intelligent control 
schemes, a neural predictive controller (NPC) and a non-linear autoregressive mobile average 
controller (NARMA-L2). 

The results of the temperature and humidity simulation indicated that the NARMA-L2 
controller provides good monitoring of the setpoint and disturbance rejection capabilities. The 
performance indices showed that the setup time is shorter for the NARMA-L2 controller than for the 
NPC. They also found that unlike other ANN control schemes, the NARMA-L2 controller uses only 
a neural network for modeling and control. Models have been made to predict the internal 
temperature of the greenhouse using an auto-regressive model with external input and neural 
networks (NNARX) as proposed by Frausto et al. [5], the network structure consisted of an MLP 
where the entrance to this structure was using a vector containing the regressors of an auto 
regressive with exogenous input (ARX) model and the training was using the BP algorithm. The 
models showed good performance (daily average absolute simulation error smaller than 1 °C) for 
long periods without the need to readjust the parameters frequently, they also indicate that the 
number of neurons in the hidden layer of the NNARX system plays an important role in obtaining a 
good performance. 
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Table 4. Other types of neural network models for prediction of microclimate in greenhouses. 

Author(s) Inputs variables Outputs variables 
Artificial neural 
network (ANN) 

Architecture 
Activation functions Training method Comments 

Lu et al. [140] 

 External 
temperature  

 External humidity  
 Internal 

temperature 
 Internal humidity 

 Internal 
temperature 

 Internal 
humidity 

Nonlinear 
autoregressive 
with external input 
neural network 
(NNARX) 

The fundamental 
structure was 
three-layer 
feedforward 
neural network 
(FFNN): 
 Input layer 

with 2 nodes 
 Hidden layer 

with 2 neurons 
 Output layer 

with 1 neuron 

 Hyperbolic tangent 
function for hidden 
layer 

 Linear transfer function 
for the output layer 

Levenberg–
Marquardt (LM) 

Compared the 
NNARX with the 
genetic algorithm 
(GA) model, the 
prediction obtained 
by the neural 
network (NN) 
method was better 

Zhang et al. [141] 
 Temperature 
 Humidity 

 Skylight 
 Sun-shade 

net 
Circulation 
fan  

 Side 
windows  

 Fuel heater  
 Micro-mist 

humidifier 

Fuzzy Neural 
Network 

The structure was 
four-layers: 
 Input layer 
 Second layer 

were 
represented a 
linguistic 
variable 

 Third layer 
where the 

The inputs and outputs are 
fuzzified 

Gaussian function 
as the 
membership 
function for the 
layers 

Compared the 
fuzzy neural 
network 
controller with the  
conventional 
proportional, 
integral and 
derivative controller  
(PID)  to verify the 
performance. The 
fuzzy neural 
network had small 
overshoot, fast 
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function was 
to complete 
the fuzzy logic 
inference, and 
calculate the 
fitness of each 
rule 

 Output layer 

response, good 
stability, and small 
steady-state error 

Patil et al. [142] 

 Outside air 
temperature 

 Outside air 
relative humidity  

 Global solar 
radiation flux density 
 Cloud cover 

 Inside air 
temperature 

 NNARX. 

The fundamental 
structure was 
three-layer 
feedforward 
neural network: 
 Input layer 

with 4 inputs  
 Hidden layer 

with 24 
neurons  

 Output layer 
with one 
output 

 Hyperbolic tangent 
function for hidden layer 
 Linear transfer function 
for the output layer 

LM 

Eighteen different 
models were tested. 
auto regressive with 
exogenous input 
(ARX), 
autoregressive 
moving average 
with exogenous 
input variables 
(ARMAX) and 
NNARX models 
were compared to 
each other and 
concluded that 
NNARX 
performed better. 
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4. Artificial Neural Networks in Energy Optimization of Greenhouses 

Another problem of interest in greenhouses is the optimization of energy consumption derived 
mainly from heating and, ventilation systems, among other control elements [143]. Optimal control 
strategies, for the most part, are based on mathematical models for calculating greenhouse energy 
consumption and mathematical methods to minimize total energy consumption. An example is the 
state energy balance model’s use. The use of this model is not new [144], nor is its use for real-time 
energy optimization [9]. However, the implementation of these techniques with sustainable 
technologies such as photovoltaic (PV) collectors have allowed predicting performance and 
establishing better systems for energy consumption [145]. Furthermore, greenhouses with systems 
that optimize energy consumption must assess heating needs before being implemented, and one of 
the ways to do this is through mass flow and energy transfer models [146]. Currently these models 
are still being developed to predict heating requirements. They make it possible to resolve different 
issues related to this topic, such as the forecast of the hourly energy requirements based on the entry 
of the parameters of environmental control inside the greenhouse, the physical and thermal 
properties of the crops and the construction materials [147]. In addition, CFD-based energy saving 
and system performance models have been proposed [148]. 

The use of other types of models such as based optimization techniques such as particle swarm 
optimization (PSO)and GA have also shown good results [149], as well as with NNs [10]. Energy 
consumption is largely derived from two factors that influence the aforementioned control elements, 
temperature, and humidity. Trejo-Perea et al. [150] developed a predictor of energy consumption for 
greenhouses from an MLP, also compared the ANN model with a non-linear regression model. The 
results obtained show that the prediction power of the network is superior to the regression model 
with a significant accuracy level (95%). Regarding the structure of the network, a cascade 
architecture was carried out where the input variables were temperature, relative humidity, time 
and electrical consumption, on the other hand, the output variable considered was the electrical 
consumption. Several MLP models were tested, where the hidden layer was the only variant with 
five, four, three and two neurons. While the Levenberg–Marquardt reverse propagation algorithm 
was used for the learning procedure. The MLP model with the best results was the model with three 
nodes in the hidden layer, also compared to the regression model. 

The use of elements that help the energetic production in greenhouses is also a topic of interest, 
in the same way, its energy management and optimization. Photovoltaic modules are a viable option 
for this task, Pérez-Alonso et al. [151] developed a photovoltaic greenhouse, where the use of ANNs 
focused on the prediction of instantaneous production of the system. The network used was 
feedforward trained using an LM algorithm. The input variables considered were ambient 
temperature, relative humidity, wind speed, wind direction, and radiation. As output variables, only 
photovoltaic energy production was considered. The hidden layer of the network consisted of 140 
neurons, the tests were obtained in 1 second and prediction errors for the instantaneous production 
of electricity below 20 Watts. 

Other studies have used ANNs to predict greenhouse production using the amount of energy 
use as a basis. Such is the case of Taki et al. [152] who, through an MLP network, predicted 
greenhouse tomato production. They used as inputs the energy equivalences of chemical products, 
human energy, machinery, chemical fertilizers, diesel fuel, electricity, and irrigation water. The 
architecture used consisted of 7 inputs, 10 neurons for each of the two hidden layers and one output 
(tomato production). No transfer function was used for the input layer, for the hidden layers a 
hyperbolic tangent transfer function was used, and for the output layer a linear transfer function was 
chosen. The results revealed that diesel fuel (40%), chemical fertilizers (30%), electricity (12%) and 
human energy (10%) consumed most of the energy. The comparison between the ANN model and 
the multiple linear regression model (MLR) showed that the ANN model predicts the output 
performance significantly better than the multiple MLR model. 

Development of new control strategies influence energy costs by reducing the energy 
consumption of greenhouses. However, the potential for energy saving control seems to be 
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over-estimated. Climate control strategies for energy saving have been developed [153], from the 
analysis of greenhouse roofing materials and how these affect energy consumption [154] to the use 
of thermal screens and how they can reduce consumption of energy at night [155]. Likewise, the 
response of the crop has been investigated when applying techniques for energy saving [156], 
however, it is necessary to explore more methods beyond those exposed and the NNs application as 
a viable tool. 

5. Other Applications of Artificial Neural Networks in Greenhouses 

The ability of ANNs to model complex and non-linear systems allows their application in 
different tasks in greenhouses, not only in predicting the microclimate where the great majority of 
studies focus. As indicated, the internal temperature and humidity are among the variables that 
generate the most interest to predict their behavior. However, other elements such as CO2 
enrichment in hot climates exert considerable weight for the proper functioning of the greenhouses, 
since a balance is required between the need to ventilate and enrich as explained by Linker et al. 
[157]. They developed NNs for the prediction of temperature and CO2 concentration separately, the 
training algorithm used was the BP. The activation function chosen for the hidden layer was 
sigmoidal, while the linear activation function was used for the output layer. In this case, it was 
decided to reduce the size of the NN instead of a more complex NN with multiple inputs and 
multiple outputs (MIMO). 

The models fit the data well, and also generated reliable optimization results. In addition, they 
demonstrated the effect of evaporation cooling by extending the duration of CO2 enrichment. 
Another aspect that is related to the concentration of CO2 is photosynthetic efficiency and crop 
growth, and Moon et al. [158] performed an ANN to predict the concentration of CO2 in greenhouses 
considered environmental factors. The network consisted of a feedforward, with an architecture of 
an input layer (10 neurons), two hidden layers (the number of neurons of 32, 64, 128, 256, 512, 1024, 
and 2048 were being changed with the aim of finding the optimal ANN, both layers had the same 
number of neurons) and one output layer (one neuron). The variables considered as inputs were 
internal temperature, internal relative humidity, internal atmospheric pressure, photosynthetic 
photon flow density (PPFD), external temperature, external relative humidity, external atmospheric 
pressure, wind speed, and wind direction while the CO2 concentration was the output variable. The 
transfer function that was used throughout the layers was the rectified linear unit (ReLU) and the 
training algorithm was the AdamOptimizer. The results obtained show that the prediction of CO2 
concentration is possible through ANNs with a coefficient of determination of 0.97. However, the 
estimates made in the study were limited to data obtained from each greenhouse and the authors 
indicate that it is necessary that ANNs should be trained with data from several measurement sites 
to generalize all possible situations. 

The networks potential for the growth improvement of greenhouse crops by means the forecast 
and description of the microclimate has been exposed, these studies are based on the fact of having 
the ideal conditions of the plant controlling through predictions one, two or several environmental 
factors. However, other research has evaluated the close relationship between crop yield, growth 
and water use in response to changes in the greenhouse climate. An ANN was developed by [159] to 
predict the yield, growth and amount of water used in tomato crops under the greenhouse. The 
input variables were radiated, relative humidity, growth, CO2 concentration, and temperature. The 
network was a feedforward, they used software (Predict®, v3.21) for the construction of the network 
which was responsible for defining the structure and the training process. The yield, growth, and 
use of water responded similarly to the climatic variables. Radiation and temperature remain the 
most influential variables, however, the CO2 concentration has a significant weight in the positive 
change of the output variables. On the other hand, Juan et al. [160] modeled the tomato growth 
process. The factors considered influential and input elements were solar radiation, temperature, 
humidity, and CO2. A modified Elman network was used to model the dynamics of the system. They 
made arbitrary connections from the hidden layer to the context layer, they also used the hyperbolic 
tangent function as an activation function in the hidden layer, while in the other layers they used 
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linear activation functions. A fuzzy GA, was used for the learning process, which deals with a 
modification to the traditional method of GA through a crossover with fuzzy logic. The simulation 
results showed that the modified Elman network and the fuzzy genetic algorithm are better for the 
description of the system compared to an Elman network trained using a BP algorithm. 

The transpiration of plants in greenhouses is an element that represents a challenge in matters 
of modeling since the elements that intervene with this phenomenon remain a challenge for their 
mathematical representation [161]. The application of ANNs for modeling the transpiration of 
greenhouse crops is a way of presenting reliable results, as presented by [162]. The exposed model 
consisted of a modified BP network, since the randomness of the conventional BP algorithm in the 
weights and the threshold in each training represented a disadvantage for the prediction of 
transpiration. The modified algorithm was a genetic algorithm that, through an optimization 
adjustment function selected the best weights and thresholds, used a network called genetic 
algorithms-back propagation neural network (GA-BPNN). Also, using a NNARX model, the error 
accumulated by the long training time was only recorded. 

Wireless sensor networks (WSN) are a new form of distributed computing and are 
encompassing a wide variety of applications that can be implemented with them [163]. In 
greenhouses it is primarily concerned with collecting environmental information and sending it to 
the grouping nodes via wireless data link. WSN is a type of self-organizing wireless network that 
takes data as its core [164]. The role of this technology and ANNs is that they are a good combination 
for controlling greenhouses. WSN can be used to monitor CO2 concentration [165]. Zhang et al. [166] 
carried out a greenhouse control system using a WSN to collect data on temperature, humidity and 
CO2 concentration. They related the internal environmental factors and the actuators of the system 
for the implementation of a fuzzy rule and combined with a neural network. The fuzzy neural 
network consisted of three inputs and six outputs to improve control precision. Moreover, Ting et al. 
[167] measured and collected real-time data on air temperature, humidity, CO2 concentration, soil 
temperature, soil moisture, and light intensity using WSN. The measurement of these parameters 
was to predict the photosynthetic rate of plants and in turn to quantitatively regulate CO2. The 
prediction model was established based on a BP neural network. The environmental parameters 
were used as input neurons after being processed by PCA, and the photosynthetic rate was taken as 
the output neuron. 

There are many important areas where WSN can improve. One of the aspects to consider is to 
give the sensor networks the ability to reprogram themselves wirelessly, allowing users not to 
physically interact with the sensor nodes. This wireless reprogramming can be based on the concept 
of NNs as proposed by Cañete et al. [163], and thus be able to implement it in greenhouses. 

6. Perspectives: Greenhouse Artificial Neural Networks Application 

6.1. Agriculture 4.0 and the ANNs 

Farmers today need to adapt to new technologies and apply them in agriculture. Agriculture 
has gone through different stages, starting with agriculture 1.0 characterized by the use of animal 
force; then came agriculture 2.0 that used combustion engine machinery; moving to agriculture 3.0 
where guide systems (such as geographic positioning (GPS) systems) and precision agriculture (PA) 
would be used; and finally agriculture 4.0, which is based on the principle that activities are 
connected to the cloud [168]. 

Agriculture 4.0 is the integration of technologies (IoT, PA, artificial intelligence (AI), cloud 
computing (CC), among others) through the cloud to automate cyber-physical tasks and systems, 
allowing the planning and control of production [169]. This new era arose when telematics and data 
management were combined with the concept of PA and largely driven by the use of the IoT [170]. 
PA is the management of spatial and temporal variation in fields with respect to soil, atmosphere, 
and plants using information and communication technologies. Its concept was born from the need 
for the development of site-specific techniques. In other words, it applies treatments to areas within 
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a field that requires different management than the field average, allowing fine-tuning of crop 
management systems [171]. 

IoT in the agricultural context refers to the use of sensors and other devices to convert every 
element and action involved in agriculture into data. IoT technologies are one of the reasons why 
agriculture 4.0 can generate such a valuable amount of information [172]. 

Agriculture based on agricultural data is known by different names apart from agriculture 4.0: 
Digital agriculture or SA. However, SA emerges as a main concept of agriculture 4.0. The SA 
addresses important agricultural objectives such as saving water, conserving the soil, limiting 
carbon emissions and increasing productivity by doing more without stopping [173]. 

6.1.1. Precision Agriculture and Internet of Things 

The PA integrates the new technologies derived from the information age with the agricultural 
industry. It consists of a crop management system that tries to optimize the type and quantity of 
inputs with the real needs of crops for small areas within an agricultural field. PA uses crop inputs 
more effectively, including fertilizers, pesticides, tillage, and irrigation water [174]. 

As a management tool, PA consists of five elements: geographic positioning (GPS), information 
gathering, decision support, variable-rate treatment, and performance mapping. Yield mapping 
allows the farmer to monitor the actual result of the different inputs, being a tool for collecting 
information on previous years. For this reason, large data set (big data) are required to interpret 
specific variables. In this area, new technologies are still under development [175]. Mapping many 
different factors of soil, crops, and the environment produces large amounts of data. Farmer data 
overload must be overcome by integrating expert systems and decision support systems [176], 
which in turn must be based on models such as those that have been exposed throughout this paper. 

PAhas been applied and developed in greenhouses [177–179], as well as the use of NNs as a 
support tool [180]. Being the real-time monitoring systems for the management of the greenhouse to 
control environmental parameters, this is the area in which it is necessary to go deeper [181]. 
Likewise, SA broadens the concept of PA, since the tasks for decision management are reinforced by 
knowledge of the situation. This in turn causes real-time assistance resources to be required to 
perform agile actions such as the IoT [182]. 

IoT is the interaction between a variety of physical things or objects that use specific addressing 
schemes to connect to the internet, and this type of technology allows the inherent reduction of 
environmental impact by real-time reaction to alert events such as detections of weeds, pests or 
diseases, climate or soil monitoring warnings, which allow a reduction and the adequate use of 
inputs such as agrochemicals or water [183,184]. 

One of the advantages of IoT is its ability to control other devices remotely transversely based 
on the existing system, which makes a good interrelation between the physical world and different 
computer-based frameworks and creates possibilities for greater financial effectiveness advantages 
and precision. In the near future, IoT will be trusted with numerous administrative functions [185]. 
Currently, IoT has been implemented in crop care. Kitpo et al. [186] applied IoT to determine the 
date of tomato harvest, for this they carried out a monitoring of the 6 different stages of tomato 
cultivation, using as parameter the visible wavelength as a characteristic in the classification of 
support vector machines (SVM). Climatic data such as temperature, humidity, illuminance, among 
others, were recorded daily during tomato cultivation, these data and the data obtained from the 
SVM classification were used for the training of a NN, the results applied to the elaboration of an 
automated system by using IoT to support greenhouse growers in the future. 

Tervonen [187] studied the effectiveness of IoT in quality control during vegetable storage. 
During the storage of potatoes, it determined that for the proper control of temperature and other 
parameters, multiple measurement points are required in different locations to guarantee the 
desired behaviors for the entire volume. Wang et al. [188] verified that the data loss rate between the 
data acquisition unit and the gateway was 1.52%, and the data loss rate was 0.4% between the 
gateway and the server, making the IoT system feasible for monitoring greenhouses. IoT has 
emerged as an alternative for optimizing the agricultural sector since it allows farmers to monitor 
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their agricultural fields in real time and receive recommendations to produce good quality crops 
while maximizing their overall profits on the products sold [189]. Linked to the IoT, there is the CC. 
CC is a model that allows convenient access to the network request to share configurable calculation 
resource groups [190], it is a model to allow ubiquitous, convenient network access and on demand 
to a shared pool of computing resources that can be quickly provisioned and released with minimal 
effort from management or service provider interaction [191]. 

6.1.2. Smart Agriculture 

SA and PA are booming, but they could take advantage of technology in the agricultural world. 
SA is an agricultural management concept that uses modern technology to increase the quantity and 
quality of products, access to GPS, soil scanning, data management, and IoT technologies. In the case 
of smart greenhouses, evaluation of production, energy loss and increased labor costs is essential as 
a result of manual intervention against environmental impact. In addition, to control the climate, 
monitoring must be intelligent so that there is no need for manual intervention. The parameters 
necessary for efficient product production are determined by various sensors and the data are 
transferred to a cloud-based environment for evaluation [192]. 

One of the main disadvantages of the current agricultural greenhouses is the efficient and 
intelligent information management. That is, what is needed for the efficient implementation of 
technologies such as IoT is the design and implementation of the general system as shown in Figure 
6. The design of these systems where internet or local area network (LAN) technology is used will 
allow sensors, controllers and computers to be combined to connect people and “things”, thus 
obtaining data, and remote control and intelligent network management [193]. 

In traditional agriculture, pesticides, fertilization and irrigation depend on the experiencing of 
farmers; however, it does not guarantee the accuracy of parameters such as temperature, humidity, 
lighting and other indicators that are difficult to determine and adjust only by experience. In a smart 
greenhouse, by having a large number of sensors, the collected data can be communicated via the 
Internet and, therefore, to an operator. The operator might also have an Internet interface to control 
fertilization, irrigation, heating, lighting and other parameters [194]. 

The amount of information generated can be used to develop more robust models that predict 
the behavior of greenhouse parameters, and thus speak of an adaptable AI with more complex 
learning capacity. The challenge is that these models coexist with technologies such as CC and IoT. 
The ANNs, specifically deep NNs, which are powerful tools for prediction and optimization are an 
option for various applications in agriculture [137] and greenhouse agriculture. CNNs, RNNs and 
long short-term memory neural network can consider various types of information and handle a 
large amount of data, the potential of having information stored in the cloud and access to it from 
anywhere would allow training and use of networks to be more efficient, since any unit with 
computing capacity could use this information simultaneously and not only depend on each neural 
network, NNs could operate in parallel. 
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Figure 6. Agriculture 4.0 applied in a greenhouse. 

6.2. Artificial Neural Networks and Greenhouses 

The main topic involved in the development of the research is the efficient production of crops 
with the help of greenhouses to meet the growing needs and demands. That is, greenhouse 
cultivation can be an option to overcome such problems, problems that go hand in hand with 
economic development, ecology, and climatic conditions. Traditional greenhouses have changed in 
such a way that they can now be equipped with temperature, light, carbon dioxide, and relative 
humidity control systems. The optimization and adaptability to the changes that the system 
undergoes are vital to achieve an improved plant growth. These changes are in parameters such as 
temperature, water vapor, air pressure, air velocity, radiation rate, etc. In addition to this, 
greenhouses require a continuous supply of energy from renewable or non-renewable sources to 
maintain the internal microclimate with the aforementioned parameters [195]. 

The use of mathematical models that allow the prediction of changes and adaptability of the 
greenhouse has been thoroughly studied. The complexity of these models is given by the complexity 
of the greenhouse itself, the choice of which type of model (physical or those that analyze the inputs 
and outputs of the system) is the most convenient depending largely on time, resources, type of crop 
and type of greenhouse you have to implement it. The use of ANNs as an option to satisfy these 
demands has been developed for approximately 40 years. After analyzing 35 works, 74% focus on 
the description and prediction of the microclimate, 9% on energy optimization and 17% on other 
applications of greenhouse networks. The most used type of NN is feedforward with 46% of the 
investigations, while RNNs represent 20% and other types of NNs 32%. Figure 7 presents the topic 
in which NNs are used, as well as the most used architectures and the predominant training method. 
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Figure 7. Artificial neural networks on greenhouse microclimate prediction. ANNs: Artificial neural 
networks; MLP: Multilayer perceptron; RBF: Radial basis function 

Although the vast majority of the works present favorable results in the use of these types of 
models, there are several issues that need to be pointed out. The results are simulations performed 
for the validation generating models [38,60,99,135], where the implementation of the model in 
conjunction with the greenhouse control systems and the yield obtained compared to conventional 
systems are not presented. The construction of the networks in greenhouses has been carried out 
with cultivation [123,128,159,162] or without cultivation [129–131,134], however, the results obtained 
are not tested in the opposite situation is obtained with a greenhouse without cultivation is not 
tested with cultivation and vice versa. In addition, the models obtained can hardly be used in 
another type of greenhouse, so the generalization of the models should be a more relevant issue 
[125]. 

The importance of addressing the points described above is being able to apply ANNs daily in 
greenhouse production and integrate them to emerging technologies and make the change to 
agriculture 4.0 and SA as well. Ensuring that connectivity and data transmission are more efficient 
and economical. Work with the automation of knowledge work through models such as ANNs to 
manage assets and optimize the performance of the greenhouse production process by having 
improved sensors and remote monitoring; to implement CC where the integration of the 
measurement systems of greenhouses is done through the Internet; and, in addition, to improve 
artificial intelligence to automate precise tasks in this type of system [196]. Similarly, it can be used 
with the IoT for the design of new methods to solve problems in market demand, precision in 
operation and supervision [197]. In addition, the use of learning algorithms and activation functions 
to open the landscape in ML and provide powerful analytical tools will help establish more efficient 
control and automation systems in greenhouses. Of the papers presented, only [137] presented the 
option of deep learning, while Wang et al. [162] they explored the feasibility of using GA as an 
optimization resource to work together with NNs (the development of the GA-BPNN model). DL 
and hybrid NNs are rarely used in greenhouse agriculture; however, they are concepts that are 
currently being developed in different areas and can be the way for the development of networks 
that match the new technology and challenges faces agriculture in greenhouses. 

6.3. Classic Models versus ANNs  

Greenhouse climate models can be classified into two categories [125]: models for the design of 
new greenhouses and models for climate control of existing structures. The latter are also known as 
classic models, and they are based on steady state energy balances. The number of parameters in this 
type of model is small compared to MIMO (multiple input multiple output) black box models, this 
being one of its main advantages. 
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On the other hand, mechanistic models provide a clear physical explanation of the greenhouse 
environment such as static [198,199] and dynamic models [100]. Static models are based on the static 
energy balance of the greenhouse components and usually their heat storage capacities are not 
considered [200]. The relevance of physics-based models in greenhouses is that they take the 
physical parameters that describe the system, they can include the location of the greenhouse, local 
weather conditions, geometry, construction materials, hours of operation, systems of air 
conditioning and settings. That is, they allow its use for the design phase and help to evaluate the 
energy performance of the greenhouse [201,125]. However, the current state of climate control still 
leaves much room for improvement [202] and optimal control of greenhouse environments can be 
improved by combined models to allow selection of greenhouse designs and control algorithms to 
maximize the room for improvement benefit such as models based multi-objective optimization 
[203,204]. 

From the studies presented in Table 2, Bussab et al. [127] found that the efficiency of the FFNNs 
in models based on mass flow and energy equations is better when forecasting the relative humidity 
and internal temperature of a greenhouse. The ANN was more accurate in 81% of the cases than the 
classic method in forecasting the internal relative humidity and 62% more efficient in forecasting the 
internal temperature. These results comply with what was mentioned in Seginer et al. [125]. Among 
the reasons why ANNs are more efficient than classic models is that mentioned above, the ability to 
consider more parameters, that is, with a sufficient number of adjustable parameters, is capable of 
making accurate predictions, provided that it presents all the factors that have a significant influence 
on the outputs (in this case, the internal relative humidity and the internal temperature). In addition, 
in the case of ANNs, you can always choose to increase the number of neurons in the hidden layers 
to increase the predictive power of the network. However, there is a point at which the network will 
not show significant improvement no matter how many neurons it has in the hidden layer. For 
Bussab et al. [127], a configuration with two hidden layers was optimal, where the first hidden layer 
consisted of 40 neurons and the second of 20. Studies comparing the effectiveness of ANNs with 
classic models are few, however, Seginer et al. [125], Seginer [96] and Linker and Seginer [205] 
expose several factors that make networks have greater predictive power, the importance of 
reducing the number of inputs on a neural network and how it can help the network with classic 
models. 

Supporting the ANNs with classic models for predicting the microclimate in greenhouses 
brings great benefits. Linker and Seginer [205] were among the first to develop such a model. The 
reason for using physical models in black box models, specifically in NNs is due to its main 
disadvantage. The poor extrapolation property, in other words, lacks prior knowledge, and the most 
evident in sigmoidal black box models. Linker and Seginer [205] demonstrated that hybrid models 
of this type produce efficient predictions, especially in the operational domain, decreasing their 
precision in the training domain. The proposal is to use the classical model to generate “synthetic” 
training data. In this way, prior knowledge of NNs can be included, solving the problem previously 
exposed. The configuration of the physical model can be done in two ways: serial and parallel. The 
one proposed in his work was in parallel, where synthetic data was generated for the training period 
for all the inputs during a two-year period. Experimental data from the training period was added to 
the synthetic database, and all synthetic points associated with the nodes for which at least one 
experimental data point was already available were removed. In this way, the synthetic data was 
only used in regions where no experimental data was available. The main problem with this 
technique is that the database can be very large and there is a risk that the experimental data may be 
lost among the synthetic data. 

The use of physical models in conjunction with the FFANNs was also presented in other works, 
but with a totally different approach to that of Linker and Seginer. Hu et al. [99] proposed an RBF 
network to adjust the parameters of a conventional PD controller, they used the model based on 
energy equations and mass fluxes to address the humidity and temperature of the indoor air of a 
greenhouse. They compared this model against a model based on conventional RBF networks. When 
calculating the mean errors, they found that the proposed model had smaller values, also the control 
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signals were smoother. Likewise, in comparison with the previous models, the operation of the 
model was tested in conjunction with a control scheme, obtaining the decrease of the serious 
oscillation in the greenhouse actuators. Later, Zeng et al. [38] compared this same model with a 
method that uses GA. They found results that would be interesting to see in future studies with 
other models than GA. The main disadvantage of GA is that being an offline model it could not 
adjust to the external climate fluctuation of the greenhouse. Changes in solar radiation, external 
temperature, and external humidity caused a decrease in control performance, in addition, it is time 
consuming and depends on the GA optimization calculation time, and in practice its application in a 
real-time control system is not very convenient. By establishing the following advantages of a 
physical model-based RBF network over offline models such as GAs: they have better setpoint 
tracking performance, they have a smoother control process characterized by smaller oscillatory 
amplitudes, it can apply to real-time monitoring and, most importantly, it is well adapted to external 
weather fluctuations. 

6.4. The Input Variables in the ANNs and in the Prediction of Greenhouse Microclimate 

One of the important issues in a neural network is to reduce the number of inputs. He et al. [60] 
used PCA as the base in a BP neural network. In the proposed network, the input layer consisted of 4 
inputs, which were the main components and the output layer was 1, the internal humidity of the 
greenhouse. To determine the behavior of the PCA-based BP network, it was compared to a 
conventional BPNN network, where the training times of these methods were 42 and 130, 
respectively. The PCA allows network training to be faster. However, although the PCA-based 
network achieved 85% accuracy it is still less than the conventional BPNN network, and this is 
because there is a loss of original data information. With these results they also compared the 
PCA-based BPNN network with a stepwise regression model, when calculating the mean squared 
error (MSE), the PCA-based BP network performed better with a value of 1.6745 while with the 
stepwise regression method they obtained a value of 4.5437. The use of techniques such as the PCA 
to determine and simplify the entries of the ANNs is a very viable option, although this may affect 
its effectiveness, it is still better than other methods and is rarely used. 

Another way to delimit their number is to apply the sensitivity analysis to the different input 
variables to determine which ones are more relevant to the variables whose behavior is to be 
determined, just as did Seginer et al. [125], who found that solar radiation and outdoor air 
temperature are the factors that have the greatest impact on the temperature and internal humidity 
of the greenhouse. Similarly, Salazar et al. [128], using a sensitivity analysis, determined that the 
most important variables for predicting temperature are outdoor temperature and solar radiation. 
Both Seginer et al. [125] and Salazar et al. [128] analyzed the effect of considering separate models for 
each of the outputs, that is, a model to predict humidity, one more to predict internal temperature 
and finally a model in which consider two outputs, the humidity and the internal temperature of the 
greenhouse. They concluded that the separate models present poorer predictions, this due to noise 
from unnecessary inputs. For their part, Salazar et al. [128] obtained very similar results in the three 
models, when calculating the coefficients for the three cases, in the first model which predicted the 
internal temperature they obtained a value of 0.976, while the model that predicted the internal 
humidity obtained a value of 0.982 and the third model for the internal temperature and internal 
humidity obtained values of 0.975. Salazar et al. results show that the third model is less efficient in 
predicting the output variables, however it is not significant and has the advantage of predicting the 
output variables at the same time. 

One way in which you can “feedback” to a FFNN is through delays in the input variables, this 
process consists of considering certain outputs also as inputs; these outputs, when considered 
inputs, have a certain delay to be able to feed the network with new information on the variable of 
interest. Alipour et al. [129] tested three network configurations with this type of delay to forecast 
the relative humidity, the infrared index, the light index and the internal temperature of the 
greenhouse. For example, to predict internal temperature, Alipour et al. [129] found that the optimal 
structure should use a direct feeding neural network with 7 input delays and 5 neurons in the 
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hidden layer. In this way, a way to build FFNNs that have been exploited very little is presented, 
and of the studies analyzed only Alipour et al. [129] and Outanoute et al. [130] explore this path. 

6.5. The Hidden Layer of ANNs and Their Importance in Prediction of Greenhouse Microclimate 

In the documents presented, Taki et al. [124,131] emphasize the importance of the hidden layer 
in prediction of the greenhouse microclimate, that is, the number of optimal layers and neurons. 
Although the method for determining the number of neurons and layers is more of a trial and error 
process, Taki et al. [124] mention three circumstances to consider when building a neural network 
for microclimate in greenhouses: the first is that the performance of the network can improve as the 
number of hidden neurons increases; the second is that too many neurons in the hidden layer can 
cause overfitting problems, which influences learning and memory of data, but impairs the ability to 
generalize; and finally the third, if the number of neurons is too low it is possible that the neural 
network loses the ability to learn. Taki et al. [131] through an RBF network determined that the 
optimal hidden layer is built by three layers with 21, 9 and 9 neurons, respectively, for the prediction 
of internal air temperature, plant temperature, and greenhouse soil temperature. They indicate that 
adding more neurons than those established in your specific case does not significantly increase the 
predictive power. Furthermore, in the case of the RBF network, the process of increasing the 
coefficient R2 also depends on the values in the propagation parameters. 

6.6. Learning Algorithms in the ANNs 

Training algorithms have a great influence on the efficiency of NN sand choosing which the 
best will depend on various factors. Outanoute et al. [130] tested three training algorithms, the 
momentum gradient descent (GDM), the quasi-Newton BP Broyden–Fletcher–Golfarb–Shano 
(BFGS), and the resilient BP algorithm (RProp). For each network, the number of nodes in the hidden 
layer was also varied, since the efficiency of the network varies for each case and the number of 
optimal neurons was searched for each network. The results in the training stage showed that the 
BFGS network has better performance, the mean square errors (MSE) were for the internal 
temperature of 0.0022 and for the internal humidity of 0.0034, while for the GDM they were 0.1877 
and 0.1143 and, for the RProp they were 0.0349 and 0.0433. Ferreira et al. [112], when testing online 
or offline methods, determined that the LM algorithm has an advantage over techniques such as 
resource allocating network (RAN), orthogonal least squares (OLS) algorithms, among others. The 
smallest root means square error (RMSE) off-line was 0.0108 with a network of 8 neurons in the 
hidden layer, and an online network obtained a value of 0.0072 with a similar structure. That is, 
better results were achieved either online or offline with the LM methods compared to other hybrid 
and adaptive. 

6.7. Database for ANNs and Prediction of Greenhouse Microclimate 

The database is highly relevant for the proper functioning of the neural network. Throughout 
this document, different works have been presented where the ANNs are applied for the prediction 
of the greenhouse microclimate, and it can be seen that the optimization of the network is linked to 
its type and structure. However, the elaboration and collation of data takes equal importance, since 
the effectiveness of training and building the network depends on it. At least three stages can be 
mentioned in which the database becomes the pillar of a neural network: training, validation and the 
testing phase. These stages, in the same way, can be considered as the stages through which a neural 
network must pass. 

The amount of data that a black box model requires specifically if we are talking about an ANN, 
must be from a relatively large sample. Delimiting the optimal amount is a process of trial and error, 
as is the choice of hidden layers and the number of neurons. Having a sample with a really large 
data set benefits the prediction power, however, the training and prediction process of the network 
will be affected by less-efficient processes. Applying techniques such as proposed by Seginer et al. 
[125] and He et al. [60] can simplify excessively large databases and optimize training processes of 
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the NNs. Taki et al. [124] mention that a 12-month database is ideal for an ANN that predicts the 
greenhouse microclimate, although the vast majority of the studies presented do not consider this 
period. Dariouchy et al. [123] only consider a database of 29 days; in the training phase it used most 
of the data (22 days) and for the test phase, used the rest (7 days). Outanoute et al. [130] only 
considered a three-day period, although the amount of collated data consisted of 25,750 values, 
which divided them into 70% for network training, 15% for validation and 15% for the phase test. 
Alipour et al. [129], also used a three-day database, the difference being these days were not 
consecutive and it was at a specific time (from 10 a.m. to 8 p.m.). Although the period of time is 
important, the amount of information generated with that data and the management of it during 
those periods is more relevant. Salazar et al. [128] used a base of 14,490 data, 50% used them for 
training, 25% for verification and 25% for tests. Database management can be seen in Laribi et al. 
[126], since they used different databases for the different processes, in the training they used a 
one-day data set with temperature ranges from 6 °C to 14 °C; for the tests two days of different years 
were used, but with temperature ranges from 6 °C to 9 °C. In other words, a model can be built with 
a database that already has certain specific information for the network. 

Being able to delimit the minimum data required in a network is an empirical process, as well as 
choosing the amount used in training, verification and testing. Cases such as those of Seginer et al. 
[125] used a registry of 3076 data or as those of Taki et al. [124] that its compiled database represents 
a set of values of one day. The team is currently developing a neural network using 70,032 data 
collected during 1 year, of which 50% will be used for network training, 25% for verification and 25% 
for testing. However, having a large data set can also impair the operation of the network, since the 
presence of trivialities is more likely. For this reason, it is necessary to use techniques that clean the 
database when this type of problem occurs, as well as before constructing the network, delimit the 
most important parameters for the study variables, seeing the influence of the variables of input 
with the output variables using techniques such as sensitivity analysis. 

6.8. Artificial Intelligence 

Artificial Intelligence (AI) researches and builds intelligent software and machines, provides a 
particular solution to a particular defined complex problem, is made up of branches such as genetic 
algorithms, particle swarm optimization, simulation and ANNs and hybrid models (two or more of 
the above) [206,207]. AI consists of mapping non-linear behavior between inputs and outputs of 
processes [208]. AI consists of a large number of practical tools that allow solving difficult problems 
tasks that require biological or human intelligence, with functions such as perceptron, recognition, 
Decision-making and control combines brain science and related fields, such as cognitive science 
and psychology [209]. The AI allows the prediction of thermal properties of biomass, tools such as 
ANN have proven to be vital in the development of research in the prediction of biomass energy, 
which in turn could be used in the control of greenhouse microclimates. NNs are flexible to 
accommodate non-linear and non-physical data; however, they require a large multidimensional 
data set to reduce the risk of extrapolation. [210]. AI employs quite different mathematical and 
algorithmic approaches, from operational research restricted programming, DL and ML [211]. 

DL expands on classic ML by adding more depth to modeling. Its advantage is feature learning 
that is, automatic extraction of features from raw data and quick resolution of complex problems. 
The DL is made up of various components, such as convolutions, grouping layers, fully connected 
layers, gates, memory cells, activation functions, and encoding/decoding schemes, depending on the 
network architecture used, such as the aforementioned convolutional neural networks (CNN) [212].  

6.9. Future of Deep Learning in Greenhouse Agriculture 

DL has demonstrated a great capacity in pattern recognition and ML. One of the main tasks of 
this type of network is to learn to actively perceive patterns by sequentially directing attention to 
relevant parts of the available data [213]. The advantage of DL over conventional networks is the 
possibility of developing simulated data set to train the model, which would allow solving 
real-world problems, such as greenhouse systems. In [214] the various applications of DL in 
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agriculture are exposed, however, its use in greenhouses is still lacking. Of the studies that have 
been carried out of DL in greenhouses we can find the one carried out in [212], who propose a new 
deep RNN, with a long short-term memory neural network (LSTMNN) model to predict the stem 
diameter, or tomato performance problems using environmental parameters such as CO2, humidity, 
radiation, outside temperature and indoor temperature. One of the main disadvantages of this 
method is exposed: the large amount of data necessary for the training process. 

The BP network is the basis of the vast majority of DL algorithms, it also allows models that 
consist of multiple layers of processing to represent data with multiple levels of abstraction, so its 
application in agriculture has begun to be studied. In the field of smart farming (SF) it can be used 
for the detection of plant diseases, weed control, and plant counting through image recognition. 
CNN, RNNs, and generative adversarial networks (GANs) being the most viable types of deep 
networks in this field [215].  

CNN models are an extension of the DL. They consist of MLP networks that involve multiple 
pools and fully connected layers, learn and optimize filters on each layer through the 
back-propagation mechanism. These trained and learned filters extract features that distinctively 
represent the input image. This type of model has managed to overcome state-of-the-art algorithms 
and since then has become the most advanced method in many data processing tasks. Currently, 
CNN architectures are trained from scratch or adjusting pre-trained architectures. Using pre-trained 
architectures allow transfer learning to be used. Transfer learning consists of using the learning of 
models that have been previously trained with large data sets from other systems, in other problems 
or similar systems [216]. 

CNN has a great capacity in image processing, which makes it widely used in agricultural 
research. The challenge with the use of information is to interpret the collected images. Interpreting 
satellite images using CNN and GA has become a useful decision-making strategy, especially for PA 
[215]. Furthermore, they can also be used in weather forecasting, which is key for agriculture [217]. 

6.10. Future of Hybrid ANNs in Greenhouse Agriculture 

The use of the combination of ANNs with mathematical models has been little explored, 
however, as can be seen in Yousefi et al. [218] and Linker et al. [205], the approach can be considered 
from two perspectives: First, using techniques such as fuzzy logic for optimization in the random 
choice of the initial parameters and second, to use the physical models for the generation of synthetic 
data that help the network in the learning process, minimizing the errors due to the lack of 
information that a base can present of data in situ. ANN hybrid models have the potential to provide 
forecasts that work well compared to more traditional modeling, such as the use of ANN models 
optimized by PSO and GA that have shown good prognostic results of energy requirements [219]. 

7. Guidelines for the Application of Neural Networks in Greenhouses 

In this review we have presented the application of ANNs in the prediction of the microclimate 
in greenhouses, their use in energy optimization, as well as other applications in greenhouses. Of 
these topics addressed, it should be noted that the potential of the ANNs continues to be promising 
for future research. Although studies have presented ways in which one should delve further, such 
as the use of physical models in conjunction with NNs, the work is still scarce. 

Physical models for the creation of synthetic data is a good strategy to feedNNs, since it would 
complement in situ data and would allow confronting the possible problems that the nature of this 
type of data entails. Linker and Seginer [205] presents two possible configurations, in series and in 
parallel. However, a serial configuration has not been tested and its use in conjunction with 
statistical tools such as PCA would optimize the data selection process for a neural network. Also, 
the structure of hybrid networks could be expanded and the serial and/or parallel configurations 
could be used in conjunction with optimization algorithms such as GA, PSO, among others. 

The use of WSN in greenhouses is part of SA, offering advantages not only in data collation and 
greenhouse climate control, but also in the energy consumption of this type of device. The 
application of the ANNs in the WSN of the greenhouses would also be an interesting topic to 
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develop, since on the one hand there is the automatic reprogramming of the wireless sensors and on 
the other the forecast of the greenhouse variables collated using this sensor network. 

RNNs are little used compared to FFNNs, but their use in greenhouses in conjunction with 
image analysis can be of help in the identification of diseases and pests in greenhouses. Also, DL and 
CNNs are tools that would facilitate these tasks. Likewise, the forecast of the microclimate in 
greenhouses using analysis of thermographic images and CNNs would be something interesting to 
apply.  

CNNs in the study of growth and transpiration crops is an issue that would be worth 
developing. In traditional methods, these processes represent a mathematical challenge while CNNs 
would simplify them with help of morphological and thermal analysis. 

The application of new technologies such as 4.0 in greenhouses opens the panorama of carrying 
out work with a perspective on integration and exchange information. The studies presented have 
been developed with data obtained from a single greenhouse; that is, the object of study has been the 
case of a particular greenhouse. However, with the IoT, the WSN, the CC, among others, 
information from various points (greenhouses) could be accessed at any time. ANNs can be 
developed that use this data, but first it would be necessary to make a reliable database. Although 
each greenhouse is in the same region or has a similar outside climate, variations would still be 
present. However, synthetic data could be used to minimize these variations. The WSN could be 
trained to detect diseases and plagues in crops and this information can be used in nearby 
greenhouses to predict the presence of these afflictions and take the necessary preventive measures. 

8. Conclusions 

This review presented different studies of ANNs in greenhouses. Most of the studies had a 
focus on the prediction of the microclimate where the use of feedforward networks is the most used 
architecture. However, RNNs are less used and it is necessary to explore different architectures and 
training methods in order to determine the advantages and disadvantages they may have compared 
to feedforward. Likewise, the development of this type of network will allow the use of new 
methods such as DL in tasks that facilitate production under greenhouses. 

Network training is one of the processes where optimization techniques must be measured in 
order to reduce calculation times and data management. The use of statistical tools such as PCA is 
viable, however, the application of methods such as GA, FL, and PSO should be considered in the 
same way in more complex architectures such as RNNs and not only in feedforward networks. 

Unlike the physical models, ANNs take just a few minutes to finish an indoor climate forecast, 
considering that many unknown factors are involved and are not possible to study with physical 
models. ANN and physical models’ combination would allow a better prediction of a microclimate, 
however, this hybrid network’s construction is poorly investigated and hence this network should 
be studied. Within other applications of NNs in greenhouses, the evaluation and prediction of 
plagues and diseases in crops can be driven by technologies such as image analysis in combination 
with DL models such as CNNs. Similarly, microclimate prediction might be feasible with these 
techniques since a greater amount of information can be handled by these methods compared to 
traditional ANN models. 

An important guideline for future works is the integration and exchange of information using 
4.0 technologies. The role of the ANNs is to develop predictive models that take advantage of the 
information generated and its management. 
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