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Abstract: This article reviews the applications of artificial neural networks (ANNs) in greenhouse
technology, and also presents how this type of model can be developed in the coming years by
adapting to new technologies such as the internet of things (IoT) and machine learning (ML). Almost
all the analyzed works use the feedforward architecture, while the recurrent and hybrid networks are
little exploited in the various tasks of the greenhouses. Throughout the document, different network
training techniques are presented, where the feasibility of using optimization models for the learning
process is exposed. The advantages and disadvantages of neural networks (NNs) are observed in the
different applications in greenhouses, from microclimate prediction, energy expenditure, to more
specific tasks such as the control of carbon dioxide. The most important findings in this work can
be used as guidelines for developers of smart protected agriculture technology, in which systems
involve technologies 4.0.

Keywords: artificial neural network; greenhouse; deep learning; optimization algorithms; hybrid
neural networks; microclimate

1. Introduction

Greenhouses are systems that protect crops from factors that can cause them damage. They
consist of a closed structure with a cover of translucent material. The objective of these is to maintain
an independent climate inside, improving the growth conditions for increasing quality and quantity
of products. These systems can produce in a certain place without any restriction of agroclimatic
conditions. However, they must be designed according to the environmental conditions of the place
where they will be installed. Control of the microclimate is necessary for optimal development of
the plant since it represents 90% of the yield of crop production, where the equipment, shape, and
elements of the greenhouse will depend on how different the outdoor climate is from requirements of
the plant [1–4].

When speaking of the greenhouse climate, reference is made to the environmental conditions that
the plants require to be in good condition [5]. The greenhouse microclimate is complex, multiparametric,
non-linear and depends on a set of external and internal factors. External factors include meteorological
factors such as ambient temperature and humidity, the intensity of solar radiation, wind direction, and
speed among others. Internal factors are crops, greenhouse dimensions, greenhouse components and
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elements such as heating, fogging and ventilation systems, soil types, etc. [6]. There are two different
approaches to describe the greenhouse climate: one is based on energy and mass flow equations that
describe the process [7–13] and the other consists of the analysis of input and output data of the process
using a system identification approach [2,14–18]. However, even with these approaches, it is difficult
to fully account for all of these factors. In this sense, it is desirable to solve the microclimate problem
based on modern methods of non-linear and adaptive systems [19].

It is important to describe the greenhouse climate to design a good control system since it is a way
of manipulating the variables that affect its behavior [20]. The greenhouse climate control provides a
favorable environment for cultivation and this achieves predetermined and optimal results. Nowadays,
several control techniques and strategies, such as predictive control [16,21–23], adaptive control [24–27],
non-linear feedback control [28,29], fuzzy logic (FL) control [30,31], robust control [15,32–34] and
optimal control [35–37] have been proposed for the control of the greenhouse environment. However,
for the environmental control of greenhouses, conventional proportional, integral and derivative
controllers (PID) are mainly developed due to their flexibility, architecture and good performance [38].

Another topic of interest derived from the production of greenhouse crops is energetic consumption,
in which solar energy is presented as a viable substitute for traditional sources (fuel and electricity).
Solar energy is better than traditional sources because fuels are not renewable and represent high
cost [39]. Traditional energy sources can be replaced with other sustainable energies, such as solar
energy, wind energy [40], biomass [41–43], geothermal energy [44–46], cogeneration systems [47,48],
among others. However, use of solar photovoltaic cells or solar thermal energy in greenhouses are
more widely used and can commonly be combined with other sustainable energy systems [49]. Solar
greenhouses provide a controlled system cultivation, the most focus is to reduce heating energy
requirements, i.e., the heating requirement is largely derived from the sun [39]. Furthermore, solar
energy represents a primary element in the heating of greenhouses and makes it possible to minimize
production costs [50]. Several studies have been carried out in which energy savings are sought, where
methods such as genetic algorithms (GA) have been applied to optimize energy collection [51], also
physical models [52–54], as well as computational fluid dynamics (CFD) techniques to predict the
microclimate of solar greenhouses [55–57].

Prediction methods can be divided into two groups: physical methods based on mathematical
theory, which requires a large number of parameters to be determined, as well as the difficulty of
measuring those parameters; and black box methods based on modern computational technology
(particle swarm optimization algorithm, least squares support vector machine model), which do not
always guarantee convergence to an optimal solution and easily undergo partial optimization [58].
On the other hand, instead of being programmed, neural networks (NNs) learn to recognize patterns.
These systems are highly appropriate to reflect knowledge that cannot be programmed or justified, as
well as to represent non-linear phenomena [59]. Figure 1 presents the interest topics in greenhouses
and the classification of the models used.

Within the latter, as presented, several studies have been developed for different applications in
greenhouse crop production. However, since greenhouses are non-linear, invariant over time and
with a strong coupling [15], several investigations have opted to use artificial neural networks (ANNs)
for the simulation, prediction, optimization, and control of these processes. Mathematical analysis
methods have been developed for the optimization of the ANNs database. These models present a
variables relationship, make the variables less trivial, and simplify the structure of the network. In this
way improve greenhouse total yield [60].

This review explores different ANNs investigations and applications in greenhouse technology.
Presents trends for future research in the development of this type of model will improve its application
and integration with the 4.0 technologies that are currently applied in smart agriculture (SA) but are
little used in greenhouse production such as the internet of things (IoT), machine learning (ML), image
analysis, big data, among others. The structure of this document is: Section 2 gives an explanation of
ANNs, different activation functions, types and different knowledge about ANNs. Section 3 presents
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the NNs application for the prediction of microclimates in greenhouses. Section 4 shows neural
network applications in greenhouse energy optimization. Section 5 indicates other studies and ANNs
in greenhouse applications. Finally, Section 6 addresses the challenges in the development of NNs in
greenhouse agriculture.
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2. Artificial Neural Networks

An ANN is a ML algorithm based on the concept of a human neuron [13]. It is a biologically
inspired computational model, consisting of processing elements (neurons) and connections between
them with coefficients (weights) attached to the connections [61]. ANNs are inspired by the brain
structure and for this reason it is important to define the main components under which a neuron,
dendrites, cell body, and axon works. Dendrites are a network that carries electrical signals to the cell
body. The cell body adds and collects the signals. The axon carries the signal from the cell body to
other neurons using a long fiber. When the axon of a cell comes in to contact with a dendrite of another
cell it is known as a synapse. Therefore, the functions of neuronal networks are established through
the arrangement of neurons and individual synaptic forces [62]. Figure 2 presents a general schematic
of a biological neuron with each element that makes it up.
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Neural structures develop through learning; however, they constantly change, strengthening
or weakening the synaptic junctions. Although ANNs are inspired by the brain, they are not that
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complex. However, the greatest similarities are primarily that both networks are interconnected and
the functions of the networks are determined by the connections between neurons [63].

Neurons receive inputs such as impulses. The peak rate generated over time and the average
peak generation rate in several runs, are some measures used to describe neuron activity. In ANNs,
a neuron is identified by the speed at which it generates these peaks. A neuron connects to other
neurons in the previous layer through adaptive synaptic weights. Knowledge is generally stored as a
set of connection weights. When these connection weights are modified in an orderly manner and
with a suitable learning method, a training process is carried out. The learning method consists of
presenting the input to the network and the desired output, adjusting the weights so that the network
can produce the desired output. After training the weights will have relevant information, whereas
before training it is redundant and meaningless [64].

Figure 3 presents the simple neuron structure. The processing of the information in a neuron
begins with the inputs Xn, they are weighted and added up before going through some activation
function to generate its output, this process is represented as ξ = ΣXi·Wi. For each of the outgoing
connections, this activation value is multiplied by the specific weight Wn and transferred to the next
node. If it considers a linear activation, the output would be given by y=α(wx+b) [65].
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2.1. The Activation Function of an Artificial Neural Network

The activation function is a function that receives an input signal and produces an output signal
after the input exceeds a certain threshold. That is, neurons receive signals and generate other
signals [66]. The neuron start is only performed when the sum of the total inputs is greater than
the neuron threshold limit, then the output will be transmitted to another neuron or environment.
This threshold limit determines whether the neuron is activated or not, the most common activation
or transfer functions are the linear, binary step, piecewise linear, sigmoid, Gaussian and hyperbolic
tangent functions [67].

Table 1 shows the activation functions commonly used in NNs. The behavior of neurons is defined
by these functions. If it transfers a function that is linear and the network is multi-layered, it can be
represented as a single-layer network, since it is product of weight matrices of each layer and will
only produce positive numbers over the entire range of real numbers. On the other hand, non-linear
transfer functions (sigmoid function) between layers allow multiple layers to provide new capabilities,
adjusting the weights to obtain a minimum error in each set of connections between layers [68,69].
Linear functions are generally used in the input and output layers, while non-linear activation functions
can be used for the hidden and output layers [70].

The most used non-linear activation functions are sigmoid and hyperbolic tangents. Hyperbolic
and sigmoid tangents are mainly used because they are differentiable and make them compatible with
the back-propagation algorithm. Both activation functions have an “S” curve, while their output range
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is different [71]. The sigmoid function is the most used activation function in ANNs. This function
varies from 0 to +1, although the activation function sometimes seeks to oscillate between −1 and
+1, in which case the activation function assumes an antisymmetric form with respect to the origin,
defining it as the hyperbolic tangent function [72–74].

Direct implementation of sigmoid and hyperbolic tangent functions in hardware is impractical
due to its exponential nature. There are several different approaches to the hardware approximation
of activation functions, such as the piecewise linear approximation. Linear part approximations are
slow, but they are the most common way of implementing activation functions [75]. In addition, this
uses a series of linear segments to approximate the trigger function. The number and location of these
segments are chosen so that errors and processing time are minimized [76].

Table 1. Activation functions for layers in artificial neural networks.

Name Graphic Function

Linear
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The Gaussian activation function can be used when finer control over the activation range is
needed [69]. Furthermore, it can uniformly perform continuous function approximations of various
variables [77].

2.2. Types of Artificial Neural Network

The ANNs are classified according to different criteria, we can establish that there are two
types [78]:

� Feedforward neural networks (FFNNs);
� Recurrent neural networks (in discrete time) or differential (in continuous time);

2.2.1. Feedforward Neural Networks

The neuron is the basic component of NNs. Neurons are connected to each other through synaptic
weight [62]. Considering a neural network with three layers such as in Figure 4: an input layer, a
hidden layer and an output layer the intermediate layer is considered self-organized Kohonen map,
which consists of two layers of processing units (input and output), depending on the complexity
of the network (there may be several hidden layers in each network) [79]. In FFNNs, information
progresses, from the input nodes to the hidden nodes and from the hidden nodes to the output nodes.
When an input pattern is fed into the network, the units in the output layer compete with each other,
and the winning output unit is the one whose input connection weights are closest to the input pattern,
the number of neurons in the input and output layers is the same as the number of inputs and outputs
of the problem [80]. The learning method can be divided into two stages, the first stage is to determine
the neuron of the hidden layer whose weight vector is the first input vector and the second refers to
the training process. Initially, the Euclidean distance between the input and the weight vector of the
first neuron will be calculated. If the distance is greater than a predetermined distance threshold value,
a new hidden-layer neuron is created by assigning the input as the weight vector. Otherwise, the input
pattern belongs to this neuron. During training, each pattern presented to the network selects the
closest neuron on a Euclidean distance measure, modifying the winner’s weight vector, and topological
neighbors draws them in the direction of the input, the weights leaving the winning neuron and its
neighbors are adjusted by the gradient descent method [81]. Forward NNs fall into two categories
based on the number of layers, either single layer or multiple layers [82].
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Back-propagation (BP) is a type of ANN training, used to implement supervised learning, tasks
for which a representative number of sample inputs and correct outputs are known. BP is derived
from the difference in desired and predicted, output; this is calculated and propagated backward [83].
First, network weights to a small random weight are initialized, the vector set of input data to the
network are presented, the input propagated to generate the output, which is called the input advance
phase, and the error comparing the estimated net output with the desired output calculated [84]. The
weight will be corrected from the output to the input layer that is, in the backward direction in which
the signals propagate when objects are introduced into the network. This is repeated until the error no
longer improves [85].

2.2.2. Recurrent Neural Networks

In recurrent neural networks (RNNs) the information goes back and forth as can be seen in
Figure 5a, for this reason, they are also called feedback networks. In these networks, the connections
between nodes form a directed cycle, where at least one path leads back to the initial neuron. In this
type of network there are different types of structure [86]:

� Hopfield network: each neuron is completely symmetrically connected with all other neurons in
the network. If the connections are trained using Hebbian learning, then the Hopfield network
can function as a solid memory and resistant to the alteration of the connection. Hebbian learning
involves synapses between neurons and their strengthening when neurons on both sides of the
synapse (input and output) have highly correlated outputs [87] as shown in Figure 5b. There is a
guarantee in terms of convergence for this network [88].

� Elman network: this is a horizontal network where a set of “context” neurons is added. In
Figure 5c the context units are connected to the hidden network layer fixed with a weight. The
subsequent fixed connections result in the context units always keeping a copy of the previous
values of the hidden units, maintaining a state, which allows sequence prediction tasks [89].

� Jordan network: these are very similar to Elman’s networks. However, context units feed on the
output layer instead of the hidden layer.
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RNN is distinguished from a FFNN by the presence of at least one feedback connection. FFNNs do
not have the intrinsic ability to process temporary information. There are two important considerations
about why recurrent networks are viable tools for modeling: inference and prediction in noisy
environments. In a typical recurrent network architecture, the activation functions of the hidden unit
are fed back each time step to provide additional input. That is, the recurrent networks are built in
such a way that the outputs of some neurons feed back to the same neurons or to the neurons in the
previous layers [86]. Feedback from hidden units allows filtered data from the previous period to be
used as additional input in the current period. This causes the network to work not only with the new
data, but also with the past history of all entries, as well as their leaked equivalents. This additional
filtered input history information acts as an additional guide to assess the current noisy input and its
signal component. By contrast, filtered history never enters a FFNN. This is where recurring networks
differ from a FFNN. Second, since recurrent networks have the ability to maintain the past history of
filtered entries as additional information in memory, a recurrent network has the ability to filter noise
even when the noise distribution can vary over time. In a FFNN a completely new training must be
carried out with a new data set containing the new type of noise structure [78].

2.3. Learning of Artificial Neural Networks

Learning is an essential part of NNs; this process defines the input-output relationship by looking
for the most accurate prediction calculation. The learning process can be classified into two categories:
supervised and unsupervised. Supervised learning knows the expected results and uses known or
labeled data, while in unsupervised learning it is not necessary to have known data, and the learning
is done through the discovery of internal structures and data representation [88,90].

Supervised learning consists of minimizing a cost function that accumulates the errors between
the actual outputs of the system and the desired outputs, for the given inputs. To minimize this cost
function, several methods are used, and the gradient descent as the error BP algorithm is the most
used for its acceptable results in one layer and multilayer networks. [91].

In unsupervised learning, it is based only on input data and the update of the weights is carried
out internally in the network, the algorithms are designed for the self-organization of the ANNs and
can be derived by Hebbian law, or the use of algorithms such as algebraic reconstruction technique [68].

The exposed be learning techniques have allowed the development of advanced algorithms such
as SOM (self-organizing maps) and SOTA (self-organizing tree algorithm), which are times series
clustering algorithms based on unsupervised NNs [92]. SOM is a known data analysis tool for tasks
like data visualization and clustering. One disadvantages of this tool is that the user must select
the map size. This may lead to many experiments with different sized maps, trying to obtain the
optimal result. Training and using these large maps may be quite slow [93]. While the SOTA permits
classification in the initial levels of groups of patterns that are more separated from other and to classify
patterns in final layers in a more accurate way [94]. These techniques open up the possibility of not
only learning connection weights from examples, but also learning a neural network structure from
examples. This is thanks to the fact that a neural network can be built automatically from the training
data by SOTA methods [95].

3. Application of Artificial Neural Networks for the Prediction of the Greenhouse Microclimate

The application of methods and tools that simplify the treatment of the variables related to the
climate of the greenhouses is a very important subject since the calculation speed, the precision in the
prediction of the behavior and control of the variables of the different elements remain a significant
challenge. ANNs are used to attend to these tasks largely by non-linear systems models [74]. Among
the main studies that evaluated the viability of NNs in modeling the state of the greenhouse climate
is [96], which focused specifically on the input-output relationships and the most efficient election
process of inputs, although the training of the network was not an important part of their studies,
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proved that the ANNs obtain better results than the physical models of mass and energy transfer, and
also emphasized their potential application for the environmental control of greenhouses.

3.1. Greenhouse Microclimate

Greenhouses are complex and non-linear systems, and a means to achieve a controlled agricultural
production [7]. Greenhouse production systems have a complex dynamic impulse by external factors
(meteorological), control mechanisms (ventilation openings, exhaust fans, heaters, evaporative cooling
systems, etc.) and internal factors (crops and internal components) [6].

Concerning the greenhouse microclimate and its control, the crop represents the central element,
but also the most complex part of the system. Due to this complexity and the great diversity of crops
in greenhouses, it is common to consider only certain general issues that are more relevant to the
response of crops in relation to greenhouse microclimate [97].

Greenhouse climates refer to the set of environmental variables in this system that affect
the growth of crops and their development [98]. Greenhouse microclimate control has received
considerable attention in recent years due to its great contribution to the improvement of crop
yield [13,29,99]. The different factors such as temperature [100,101], relative humidity [102], amount of
CO2 [103,104] are analyzed to predict different events implementing artificial intelligence, statistics
and engineering [49,105–108].

Numerous greenhouses use a conventional control, but this control strategy may not be suitable to
guarantee the desired performance [15,26]. In this scenario, various strategies and control techniques
have been proposed like generalized predictive control [109], optimal control [110], model predictive
control [16,111], NNs control [112], fuzzy control [113–115], robust control [15,116] and linear-quadratic
adaptive control [117]. The vast majority of these proposals are simulations of the behavior of the
variables and possible control against these changes and are also focused on a specific crop [118].

The application of NNs in the control of microclimates is a topic that has currently gained interest.
NNs provide reliable models that can reflect the non-linear characteristics of the greenhouse that are
difficult to solve using traditional techniques, do not require any prior knowledge of the system. and
are very suitable for modeling dynamic systems in real time [119,120].

Temperature and humidity are of the most relevant parameters in the greenhouse microclimate,
since they have complex exchanges and interactions of heat and mass between the inner air, other
elements of the greenhouse and the outside. Building a model is a difficult assignment with simple
mathematical formulas or transformation functions. However, the method of building models with
ANNs has a great capacity for mapping non-linear functions, which is applied to many production
process systems [121].

For the network design, air temperature and humidity of the greenhouse air are generally
considered outputs, this due to the aforementioned factors. However, setting the inputs is more
complicated and required an understanding of the system. It is not convenient to consider a large
number of inputs, as this could cause uncontrolled extrapolations instead of increasing the estimation
power. Three elements can be considered in order to consider an input variable: (1) correlation of
selected input with other inputs, (2) physical dependence nature of the output and the input (3) input
variable range. The third point, solar radiation and greenhouse temperature, can be considered an
example [96].

3.2. Feedforward Neural Networks Models for Prediction of Microclimate in Greenhouse

Ferreira et al. [112] modeled the indoor temperature of a hydroponic greenhouse based on indoor
relative humidity, outdoor air temperature, and solar radiation. They discuss different training
methods for a neural network of radial base function (RBF) that are structurally simpler than multilayer
perceptron (MLP), which are a type of FFNNs. The objective of using a radial base function artificial
neural network (RBFANN) is that the design and training process is a simpler task. The training
methods compared are the off-line and on-line, mainly differentiated in that the use of the learning
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algorithm adjusts the free network parameters as the output or input data are determined, respectively.
In the study, they concluded that for both off-line and on-line training, better results are obtained by
applying the Levenberg–Marquardt (LM) method, which is the best online. Other works applied the
RBFANNs, as is the case of Hu et al. [99] who presented an adaptive proportional and derivative control
(PD) scheme based on the RBF neural network. The RBF network used it to adjust the parameters
of the PD controller using the Jacobian information for the greenhouse climate control problem. The
results showed that the proposed adaptive controller obtained a more satisfactory performance than
a conventional PD scheme and was even considered for application in non-linear dynamic systems
such as the climate system of a greenhouse. Furthermore, Zeng et al. [38] presented a control strategy
that combines RBF with PID, for greenhouse climate control. They compared the proposed adaptive
online adjustment method with the offline adjustment scheme that uses GA to find the optimal gain
parameters based on the error criteria. Offline learning consists on adjusting weight vectors and
network thresholds after the entire training set is presented (requires at least one training data stage),
while in online learning network weights and threshold adjustments are made after each training
sample is submitted (after executing the adjustment step, the sample can be discarded) [122]. Interesting
results were obtained such as better set point monitoring performance, a smoother control process
characterized by smaller oscillatory amplitudes that the control can be applied in real time online and
that the control scheme adapts well to fluctuations in external climate.

Regarding the MLP networks, which are a type of FFNNs, Dariouchy et al. [123] used them with
training based on a gradient BP algorithm to predict the internal temperature and internal humidity
within a tomato greenhouse from external climatic data (external humidity, total radiation, wind
direction, wind speed, and external temperature). When comparing the results obtained from the
network with a multiple linear regression method (MLR), the prediction of the MLP network proved
to be significantly better. Also, He et al. [60] proposed a BP network based on principal component
analysis (PCA) to predict the indoor humidity in a greenhouse. The PCA values were taken as inputs
from the back propagation neural network (BPNN), the objective of the PCA was to simplify the data
samples and make the model have a faster learning speed. The predicted humidity coincided well with
the measurement, which showed that the model had high accuracy. Furthermore, they compared the
PCA-based BPNN method with a stepwise regression method and observed that the PCA-based BPNN
performed better. Likewise, Taki et al. [124] used four MLP architectures with learning algorithms
based on gradient descent momentum (GDM) and LM to predict roof temperature, indoor air humidity,
soil temperature and soil moisture of a greenhouse. The results obtained showed that the prediction
error is low and when compared with predictions obtained through regression models, the error used
to predict the four parameters were approximately two times greater than the MLP method.

The structure of the network depends on the type of task to be described, the complexity of
the system and the learning process. Table 2 shows various works in which FFNNs have been used,
details the input and output variables that were used, the architecture of the network, the activation
functions that were used by the network or each layer of the network, and the algorithm used in the
training process.
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Table 2. Applications of feedforward neural network models for prediction of microclimate in greenhouses.

Author Inputs Variables Outputs Variables Artificial Neural Network
(ANN) Architecture Activation Functions Training Method Comments

Zeng et al. [38];
Hu et al. [99]

• Outside temperature
• Outside humidity
• Wind speed
• Solar radiation
• Carbon

dioxide concentration
• Heating
• Ventilation
• Carbon dioxide injection

• Inside temperature
• Inside humidity

• Feedforward neural
network (FFNN)
specifically radial base
function (RBF).

The model had three layers:

• Input layer
• Hidden layer
• Hidden layer
• Output layer

• Gaussian transfer
function for the
hidden layer

Gradient descent
back-propagation (BP)

Results show that the model
proposed has better adaptability,
and more satisfactory real-time
control performance compared
with the offline tuning scheme
using genetic algorithm (GA)
optimization and proportional,
and derivative control (PD)
method.

He et al. [60]

• Outside air temperature
• Outside humidity
• Wind speed
• Solar radiation
• Inside air temperature
• Open angle of top vent

and side vent
• Open ration of

sunshade curtain

• Inside humidity

FFNN.
The model had three layers:

• Input layer
• Hidden layer
• Hidden layer
• Output layer

• The sigmoid transfer
function for the
hidden layer

• The logistic sigmoid
transfer function for the
output layer

BP

The principal component
analysis (PCA) simplified the
data samples and made the
model had faster learning speed.

Ferreira et al. [112]
• Outside air temperature
• Solar radiation

Inside humidity
• Inside temperature FFNN specifically RBF.

Off-line methodology:

• In method 1 they used the
linear least squares (LS)

• In method 2 they used the
orthogonal least squares (OLS)

• In method 3 they used the
Levenberg – Marquardt (LM)

On-line methodology:

• In method 1 they used the
extended Kalman filter (EKF)

• In method 2 they based on the
interpolation problem with
generalized radial basis
functions (GRBFs)
with regularization

• In method 3 they used the LM

In this paper off-line training
methods and on-line learning
algorithms are
analyzed.Whether off-line or
on-line, the LM method achieves
the best results.
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Table 2. Cont.

Author Inputs Variables Outputs Variables Artificial Neural Network
(ANN) Architecture Activation Functions Training Method Comments

Dariouchy et al. [123]

• External humidity
• Total radiation
• Wind Direction
• Wind Velocity
• External Temperature
• Internal temperature
• Internal humidity

• Internal temperature
• Internal humidity

FFNN. Logistic sigmoid transfer
function for all layers BP

Different architectures were
tested. Initially, networks with a
single hidden layer were built
by successively adding two
additional neurons to it.
Networks with two hidden
layers were also tested,
triangular structures were
considered, for which the
number of neurons in one layer
is greater than the next. The
optimal model was composed of
a hidden layer with six neurons.

Taki et al. [124]

They used four ANNs
models:
First model:

• Inside air temperature
• Solar radiation on

the roof
• Wind speed
• Outside air temperature

Second model:

• Inside soil temperature
• Inside air humidity
• Solar radiation on

the roof
• Inside air temperature

Third model:

• Inside air temperature
• Solar radiation on

the roof
• Inside roof temperature
• Inside air humidity

Fourth model:

• Inside air temperature
• Inside roof temperature
• Outside air temperature
• Solar radiation on

the roof

They used four ANNs
models:
First model:

• Roof temperature

Second model:

• Soil humidity

Third model:

• Soil temperature

Fourth model:

• Inside air humidity

FFNN.

• Sigmoid transfer
function for the
hidden layer

• Linear transfer function
for the output layer

Basic BP

Demonstrated that multilayer
perceptron (MLP) network with
4 inputs in first layer, 6 neurons
in hidden layer and one output,
and MLP network with 4 inputs
in the first layer, 9 neurons in
hidden layer and one output
had the best performance to
predict inside soil, inside air
humidity, inside roof and soil
temperature with a low error.
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Table 2. Cont.

Author Inputs Variables Outputs Variables Artificial Neural Network
(ANN) Architecture Activation Functions Training Method Comments

Seginer et al. [125]

Weather variables:

• Outside temperature
• Outside humidity
• Outside solar radiation
• Wind speed

Control variables:

� Heater heat flux
� Vent opening angle
� Misting time fraction

State variables:

� Leaf area index (LAI)

Time variables:

� Julian day
� Hour of day

� Inside temperature
� Soil temperature
� Inside humidity
� Inside radiation

FFNN.
For the model of the neural
network (NN) used a
commercial program
(NeuroShell™, Ward
System Group, Inc.)
The model had three layers:

� Input layer
� Hidden layer (The

number of the nodes
was determined by
the program)

� Output layer

Sigmoid function (S-shape
logistic function) for the
three layers

BP

They found that leaf area index
(LAI) did not have a significant
influence on the internal
conditions of the greenhouse.
Also, they determined that the
wind direction has minimal
effects on the results.

Laribi et al. [126]

� Outside temperature
� Outside humidity
� Wind speed
� Solar radiation

� Internal temperature
� Internal humidity

FFNN.
The networks had three
layers:

� Input layer
� Hidden layer with

7 neurons
� Output layer with

2 neurons

� The sigmoid transfer
function for the
hidden layer

� The linear transfer
function for the
output layer

BP

Two approaches were used to
predict the climate of the
greenhouse, multimode
modeling and neural networks.
They point out that the neural
network model is easier to
obtain and specify that it can be
used to simulate different output
variables at the same time.

Bussab et al. [127]

� External temperature
� External global radiation
� External

relative humidity
� Wind speed

� Internal Temperature
� Internal
� Relative Humidity

FFNN.
A multilayer NN with two
hidden layers:

� First hidden layer with
40 neurons

� Second hidden layer
� with 20 neurons

� The hyperbolic tangent
function for input layer
and for the first
hidden layer

� The linear function for
second hidden layer

BP

The NN obtained better results
in the prediction of the internal
temperature than of the internal
relative humidity
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Table 2. Cont.

Author Inputs Variables Outputs Variables Artificial Neural Network
(ANN) Architecture Activation Functions Training Method Comments

Salazar et al. [128]

� Outside
average temperature

� Outside
relative humidity

� Wind velocity
� Solar radiation

Three different network
architectures were tested,
where the number of
outputs was varied:

� 1st inside temperature
� 2nd inside

relative humidity
� 3rd inside temperature

and relative humidity

FFNN.
The networks had three
layers:

� Input layer
� Hidden layer
� Output layer

Hyperbolic tangent
function for all layers BP

They report that the third
network obtained better results
in the prediction of temperature
and relative humidity, which
explains the interactions
between these two variables.
Also, they emphasize the
relevance of the input variables
in the predicted variables, in this
study the solar radiation was the
most important.

Alipour et al. [129]

� Wind speed
and direction

� Relative humidity
� Infra-red light
� Visible light
� Air temperature
� Carbon

dioxide concentration

� Inside temperature
� Light
� Inside Relative humidity
� Carbon dioxide

FFNN.
Three different
configurations were tested:

� The feedforward neural
network with several
delays in input

� Two layers with one
feedback from the
hidden layer and delay
in input

� Three layers neural
network with two
feedbacks from hidden
layer and delay in input

Not specified

The three-layer neural network
with two hidden-layer
feedbacks and delayed entry
showed better relative humidity
and light index results.
The FFNN with multiple entries
delays better predicted the
temperature and infrared index.

Outanoute et al. [130]

Values and the previous
value of:

� External temperature
� External

relative humidity
� Command of heater

and ventilator

Previous values of:

� Internal temperature
� Internal

relative humidity

� Internal Temperature
� Internal

relative humidity

FFNN.
The networks had three
layers:

� Input layer
� Hidden layer (the

number of nodes
depending on the type
of network training)

� Output layer

� The logistic sigmoid
transfer function for the
hidden layer

� The linear transfer
function for the
output layer

� Gradient descent with
momentum and adaptive
learning rate algorithm (GDX)
for seven nodes on the
hidden layer

� Broyden-Fletcher-
Golfarb-Shanno (BFGS)
quasi-newton BP for five
nodes on the hidden layer

� Resilient Back-propagation
algorithm (RPROP) for twelve
nodes on the hidden layer

Three NNs were tested with
different training
algorithms.BFGS is better than
the GDX and the RPROP.
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Table 2. Cont.

Author Inputs Variables Outputs Variables Artificial Neural Network
(ANN) Architecture Activation Functions Training Method Comments

Taki et al. [131]
� Outside air temperature
� Wind speed
� Outside solar radiation

� Inside air temperature
� Soil temperature
� Plant temperatures

FFNN.

� Feedforward networks,
specifically MLP and
RBF, were used in this
investigation. Also,
different algorithms for
network training were
applied and compared
with each other and
with the support vector
machine (SVM) method

For MLP:

� No transfer function for
the first layer was used

� Sigmoid functions for
the hidden layers

� The linear transfer
function for the
output layer

For radial base function
artificial neural networks
(RBFANNs):Used radial
basis functions as activation
functions

� LM back- propagation
� Bayesian regularization
� Scaled conjugate gradient BP
� RPROPVariable learning

rate BP
� Gradient descent with

momentum BP
� Gradient descent with

adaptive learning rate BP
� Gradient descent BP
� BFGS quasi-Newton

back- propagation
� Powell–Beale conjugate

gradient BP
� Fletcher–Powell conjugate

gradient BP
� Polak–Ribiere conjugate

gradient BP
� One step secant BP

Thirteen different training
algorithms were used for ANNs
models. Comparison of the
models showed that RBFANNs
has lowest error between the
other models
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3.3. Recurrent Neural Networks Models for Prediction of Microclimate in Greenhouses

Compared to FFNN, RNN application is a less studied field as can be seen in table Table 3,
however, the results obtained show a good performance because they have a faster calculation due
to the lower number of units in the input layer and a recovery structure similar to the structure of
FFNNs training [132]. Fourati et al. [133] used an Elman-type RNN to simulate the dynamics of a
greenhouse. In addition, for the control of the greenhouse, they developed an FFNN with a reverse
learning process. In the operation and control of the greenhouse, they connected both NNs in cascaded
obtaining a lower criterion error (Ec = 344.12) in comparison of a neural network simple (Ec = 533.31).
Later, Fourati et al. [134] reapplied the same structure of the Elman-type RNN. However, they focused
on developing a neuronal control strategy based on online training, adjusting the parameters of the
controller (connection weights) with a generalized and specialized learning. That is to say, after offline
learning, they applied the neuronal controller trained to provide control actions to the greenhouse
through online learning. As a result, they obtained that the neuronal control took into account the new
situations in the greenhouse environment by adjusting the aforementioned neuronal weights through
online learning. On the other hand, Hongkang et al. [135] used an RNN model as a deep learning (DL)
algorithm for predicting the temperature and humidity of a greenhouse. For the learning process, they
applied the Elman type, they also applied the dynamic BP algorithm to modify the connection weights
to reduce the prediction error and improve the learning capacity. When comparing this method with a
BP network and an untrained RNN, they concluded that the Elman-type network based on the BP
dynamic algorithm can predict temperature and humidity accurately and in the short term in the next
step based on the data of the interior environment due to recursive online training. They also mention
that the use of an RNN for the prediction and control of climate in greenhouses is very effective since
the online model can adapt to changes and guarantee its evolution.
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Table 3. Applications of recurrent neural network models for prediction of microclimate in greenhouses.

Author(s) Inputs Variables Outputs Variables Artificial Neural Network
(ANN) Architecture Activation Functions Training Method Comments

Fourati et al. [133]

� External temperature
� External hygrometry
� Global radiant
� Wind speed

� Internal temperature
� Internal hygrometry

Recurrent neural networks
(RNN).

� Elman neural network

Sigmoid function for the
hidden layer Back-propagation (BP)

Elman neural network was used to
emulate the direct dynamics of the
greenhouse. Based on this model,
a multilayer feedforward neural
network (FFNN) was trained to
learn the inverse dynamics of the
process to be controlled.

Fourati et al. [134]

� External temperature
� External hygrometry
� Global radiant
� Wind speed

� Internal temperature
� Internal humidity

RNN.

� Elman neural network
Sigmoid function for the
hidden layer

Neural control using with
Online training:

� Generalized learning
� Specialized learning

In order to evaluate the different
control strategies (offline and
online training), they defined an
error criterion. When they
compared the error between
training methods, obtained that
online methods are better than
offline method (FFNN based on
Elman neural network).

Hongkang et al. [135] � Internal temperature
� Internal humidity

RNN.

� Elman neural network
Sigmoid function for the
hidden layer Dynamic BP

Different from the traditional batch
trained neural network, the
dynamic BP method in the training
process uses the output of the
previous step together with the
next input to the network, and the
calculator outputs the weights.
They compared a dynamic BP
RNN whit untrained RNN, the
Elman network based on dynamic
BP algorithm can accurately
predict the temperature and
humidity in the greenhouse better
than the untrained RNN

Dahmani et al. [136]

� External temperature
� External Humidity
� Global radiation
� Wind speed
� Heating input
� Opening of the shutter
� Misting input
� Curtain entrance

� Internal temperature
� Internal humidity

RNN.

� Elman neural network
Sigmoid function for the
hidden layer BP

The control law is based on a
multilayer perceptron (MLP)
network type trained to imitate the
inverse dynamics of a greenhouse.
The direct dynamics of the
greenhouse were described by a
RNN of the Elman type
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Table 3. Cont.

Author(s) Inputs Variables Outputs Variables Artificial Neural Network
(ANN) Architecture Activation Functions Training Method Comments

Salah et al. [137]

� External temperature
� External hygrometry
� Heating
� Sliding shutter

in degrees
� Sprayer
� Curtain

� Internal temperature
� Internal hygrometry

RNN.
Three Elman neural
network are considered:

� One hidden and
context layers

� Two hidden and
context layers

� Three hidden and
context layers

Sigmoid function for the
hidden and output layers

Deep learning (DL) where
BP algorithm was used

Concluded that the network with
two hidden layers and two context
layers were the most efficient to
describe the system
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3.4. Other Artificial Neural Networks Models for Prediction of Microclimate in Greenhouses

Other models using ANNs have also been developed as shown in Table 4. Rodríguez et al. [138]
built a neural network model in a non-linear autoregressive configuration (NNARX). The model was
carried out through NNs s using the lagged values of the measurable signals as input vector. The
structure of the network consisted of an MLP, concluding that the network for long-range prediction
purposes does not guarantee optimal results, with one step or two step prediction being more convenient,
but to make a long-range prediction they recommend decreasing the number of autoregressive entries
and increasing the number of non-regressive entries. Similarly, Manonmani et al. [139] developed
intelligent control schemes based on a NNARX to control the internal temperature and humidity of a
greenhouse. In their work, they propose two intelligent control schemes, a neural predictive controller
(NPC) and a non-linear autoregressive mobile average controller (NARMA-L2).

The results of the temperature and humidity simulation indicated that the NARMA-L2 controller
provides good monitoring of the setpoint and disturbance rejection capabilities. The performance
indices showed that the setup time is shorter for the NARMA-L2 controller than for the NPC. They
also found that unlike other ANN control schemes, the NARMA-L2 controller uses only a neural
network for modeling and control. Models have been made to predict the internal temperature of the
greenhouse using an auto-regressive model with external input and neural networks (NNARX) as
proposed by Frausto et al. [5], the network structure consisted of an MLP where the entrance to this
structure was using a vector containing the regressors of an auto regressive with exogenous input
(ARX) model and the training was using the BP algorithm. The models showed good performance
(daily average absolute simulation error smaller than 1 ◦C) for long periods without the need to readjust
the parameters frequently, they also indicate that the number of neurons in the hidden layer of the
NNARX system plays an important role in obtaining a good performance.
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Table 4. Other types of neural network models for prediction of microclimate in greenhouses.

Author(s) Inputs Variables Outputs Variables Artificial Neural Network (ANN)
Architecture Activation Functions Training Method Comments

Lu et al. [140]

� External temperature
� External humidity
� Internal temperature
� Internal humidity

� Internal temperature
� Internal humidity

Nonlinear autoregressive
with external input neural network
(NNARX)
The fundamental structure was
three-layer feedforward
neural network (FFNN):

� Input layer with 2 nodes
� Hidden layer with 2 neurons
� Output layer with 1 neuron

� Hyperbolic tangent
function for
hidden layer

� Linear transfer function
for the output layer

Levenberg–Marquardt
(LM)

Compared the NNARX
with the genetic algorithm
(GA) model, the prediction
obtained by the neural
network (NN) method was
better

Zhang et al. [141] � Temperature
� Humidity

� Skylight
� Sun-shade net

Circulation fan
� Side windows
� Fuel heater
� Micro-mist humidifier

Fuzzy Neural Network
The structure was four-layers:

� Input layer
� Second layer were represented

a linguistic variable
� Third layer where the function

was to complete the fuzzy logic
inference, and calculate the
fitness of each rule

� Output layer

The inputs and outputs are
fuzzified

Gaussian function as the
membership function for
the layers

Compared the fuzzy neural
network
controller with the
conventional proportional,
integral and derivative
controller (PID) to verify
the performance. The fuzzy
neural network had small
overshoot, fast response,
good stability, and small
steady-state error

Patil et al. [142]

� Outside air temperature
� Outside air

relative humidity
� Global solar radiation

flux density
� Cloud cover

� Inside air temperature

NNARX.
The fundamental structure was
three-layer feedforwardneural
network:

� Input layer with 4 inputs
� Hidden layer with 24 neurons
� Output layer with one output

� Hyperbolic tangent
function for
hidden layer

� Linear transfer function
for the output layer

LM

Eighteen different models
were tested. auto regressive
with exogenous input
(ARX), autoregressive
moving average
with exogenous input
variables (ARMAX) and
NNARX models were
compared to each other and
concluded that
NNARXperformed better.



Appl. Sci. 2020, 10, 3835 21 of 43

4. Artificial Neural Networks in Energy Optimization of Greenhouses

Another problem of interest in greenhouses is the optimization of energy consumption derived
mainly from heating and, ventilation systems, among other control elements [143]. Optimal control
strategies, for the most part, are based on mathematical models for calculating greenhouse energy
consumption and mathematical methods to minimize total energy consumption. An example is
the state energy balance model’s use. The use of this model is not new [144], nor is its use for
real-time energy optimization [9]. However, the implementation of these techniques with sustainable
technologies such as photovoltaic (PV) collectors have allowed predicting performance and establishing
better systems for energy consumption [145]. Furthermore, greenhouses with systems that optimize
energy consumption must assess heating needs before being implemented, and one of the ways to do
this is through mass flow and energy transfer models [146]. Currently these models are still being
developed to predict heating requirements. They make it possible to resolve different issues related to
this topic, such as the forecast of the hourly energy requirements based on the entry of the parameters
of environmental control inside the greenhouse, the physical and thermal properties of the crops
and the construction materials [147]. In addition, CFD-based energy saving and system performance
models have been proposed [148].

The use of other types of models such as based optimization techniques such as particle swarm
optimization (PSO) and GA have also shown good results [149], as well as with NNs [10]. Energy
consumption is largely derived from two factors that influence the aforementioned control elements,
temperature, and humidity. Trejo-Perea et al. [150] developed a predictor of energy consumption for
greenhouses from an MLP, also compared the ANN model with a non-linear regression model. The
results obtained show that the prediction power of the network is superior to the regression model
with a significant accuracy level (95%). Regarding the structure of the network, a cascade architecture
was carried out where the input variables were temperature, relative humidity, time and electrical
consumption, on the other hand, the output variable considered was the electrical consumption.
Several MLP models were tested, where the hidden layer was the only variant with five, four, three
and two neurons. While the Levenberg–Marquardt reverse propagation algorithm was used for the
learning procedure. The MLP model with the best results was the model with three nodes in the
hidden layer, also compared to the regression model.

The use of elements that help the energetic production in greenhouses is also a topic of interest,
in the same way, its energy management and optimization. Photovoltaic modules are a viable
option for this task, Pérez-Alonso et al. [151] developed a photovoltaic greenhouse, where the use of
ANNs focused on the prediction of instantaneous production of the system. The network used was
feedforward trained using an LM algorithm. The input variables considered were ambient temperature,
relative humidity, wind speed, wind direction, and radiation. As output variables, only photovoltaic
energy production was considered. The hidden layer of the network consisted of 140 neurons, the tests
were obtained in 1 second and prediction errors for the instantaneous production of electricity below
20 Watts.

Other studies have used ANNs to predict greenhouse production using the amount of energy use
as a basis. Such is the case of Taki et al. [152] who, through an MLP network, predicted greenhouse
tomato production. They used as inputs the energy equivalences of chemical products, human energy,
machinery, chemical fertilizers, diesel fuel, electricity, and irrigation water. The architecture used
consisted of 7 inputs, 10 neurons for each of the two hidden layers and one output (tomato production).
No transfer function was used for the input layer, for the hidden layers a hyperbolic tangent transfer
function was used, and for the output layer a linear transfer function was chosen. The results revealed
that diesel fuel (40%), chemical fertilizers (30%), electricity (12%) and human energy (10%) consumed
most of the energy. The comparison between the ANN model and the multiple linear regression model
(MLR) showed that the ANN model predicts the output performance significantly better than the
multiple MLR model.
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Development of new control strategies influence energy costs by reducing the energy consumption
of greenhouses. However, the potential for energy saving control seems to be over-estimated. Climate
control strategies for energy saving have been developed [153], from the analysis of greenhouse roofing
materials and how these affect energy consumption [154] to the use of thermal screens and how
they can reduce consumption of energy at night [155]. Likewise, the response of the crop has been
investigated when applying techniques for energy saving [156], however, it is necessary to explore
more methods beyond those exposed and the NNs application as a viable tool.

5. Other Applications of Artificial Neural Networks in Greenhouses

The ability of ANNs to model complex and non-linear systems allows their application in different
tasks in greenhouses, not only in predicting the microclimate where the great majority of studies focus.
As indicated, the internal temperature and humidity are among the variables that generate the most
interest to predict their behavior. However, other elements such as CO2 enrichment in hot climates
exert considerable weight for the proper functioning of the greenhouses, since a balance is required
between the need to ventilate and enrich as explained by Linker et al. [157]. They developed NNs
for the prediction of temperature and CO2 concentration separately, the training algorithm used was
the BP. The activation function chosen for the hidden layer was sigmoidal, while the linear activation
function was used for the output layer. In this case, it was decided to reduce the size of the NN instead
of a more complex NN with multiple inputs and multiple outputs (MIMO).

The models fit the data well, and also generated reliable optimization results. In addition, they
demonstrated the effect of evaporation cooling by extending the duration of CO2 enrichment. Another
aspect that is related to the concentration of CO2 is photosynthetic efficiency and crop growth, and
Moon et al. [158] performed an ANN to predict the concentration of CO2 in greenhouses considered
environmental factors. The network consisted of a feedforward, with an architecture of an input
layer (10 neurons), two hidden layers (the number of neurons of 32, 64, 128, 256, 512, 1024, and 2048
were being changed with the aim of finding the optimal ANN, both layers had the same number
of neurons) and one output layer (one neuron). The variables considered as inputs were internal
temperature, internal relative humidity, internal atmospheric pressure, photosynthetic photon flow
density (PPFD), external temperature, external relative humidity, external atmospheric pressure, wind
speed, and wind direction while the CO2 concentration was the output variable. The transfer function
that was used throughout the layers was the rectified linear unit (ReLU) and the training algorithm was
the AdamOptimizer. The results obtained show that the prediction of CO2 concentration is possible
through ANNs with a coefficient of determination of 0.97. However, the estimates made in the study
were limited to data obtained from each greenhouse and the authors indicate that it is necessary that
ANNs should be trained with data from several measurement sites to generalize all possible situations.

The networks potential for the growth improvement of greenhouse crops by means the forecast
and description of the microclimate has been exposed, these studies are based on the fact of having
the ideal conditions of the plant controlling through predictions one, two or several environmental
factors. However, other research has evaluated the close relationship between crop yield, growth
and water use in response to changes in the greenhouse climate. An ANN was developed by [159]
to predict the yield, growth and amount of water used in tomato crops under the greenhouse. The
input variables were radiated, relative humidity, growth, CO2 concentration, and temperature. The
network was a feedforward, they used software (Predict®, v3.21) for the construction of the network
which was responsible for defining the structure and the training process. The yield, growth, and use
of water responded similarly to the climatic variables. Radiation and temperature remain the most
influential variables, however, the CO2 concentration has a significant weight in the positive change of
the output variables. On the other hand, Juan et al. [160] modeled the tomato growth process. The
factors considered influential and input elements were solar radiation, temperature, humidity, and
CO2. A modified Elman network was used to model the dynamics of the system. They made arbitrary
connections from the hidden layer to the context layer, they also used the hyperbolic tangent function
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as an activation function in the hidden layer, while in the other layers they used linear activation
functions. A fuzzy GA, was used for the learning process, which deals with a modification to the
traditional method of GA through a crossover with fuzzy logic. The simulation results showed that the
modified Elman network and the fuzzy genetic algorithm are better for the description of the system
compared to an Elman network trained using a BP algorithm.

The transpiration of plants in greenhouses is an element that represents a challenge in matters
of modeling since the elements that intervene with this phenomenon remain a challenge for their
mathematical representation [161]. The application of ANNs for modeling the transpiration of
greenhouse crops is a way of presenting reliable results, as presented by [162]. The exposed model
consisted of a modified BP network, since the randomness of the conventional BP algorithm in the
weights and the threshold in each training represented a disadvantage for the prediction of transpiration.
The modified algorithm was a genetic algorithm that, through an optimization adjustment function
selected the best weights and thresholds, used a network called genetic algorithms-back propagation
neural network (GA-BPNN). Also, using a NNARX model, the error accumulated by the long training
time was only recorded.

Wireless sensor networks (WSN) are a new form of distributed computing and are encompassing
a wide variety of applications that can be implemented with them [163]. In greenhouses it is primarily
concerned with collecting environmental information and sending it to the grouping nodes via wireless
data link. WSN is a type of self-organizing wireless network that takes data as its core [164]. The role
of this technology and ANNs is that they are a good combination for controlling greenhouses. WSN
can be used to monitor CO2 concentration [165]. Zhang et al. [166] carried out a greenhouse control
system using a WSN to collect data on temperature, humidity and CO2 concentration. They related
the internal environmental factors and the actuators of the system for the implementation of a fuzzy
rule and combined with a neural network. The fuzzy neural network consisted of three inputs and six
outputs to improve control precision. Moreover, Ting et al. [167] measured and collected real-time data
on air temperature, humidity, CO2 concentration, soil temperature, soil moisture, and light intensity
using WSN. The measurement of these parameters was to predict the photosynthetic rate of plants and
in turn to quantitatively regulate CO2. The prediction model was established based on a BP neural
network. The environmental parameters were used as input neurons after being processed by PCA,
and the photosynthetic rate was taken as the output neuron.

There are many important areas where WSN can improve. One of the aspects to consider is to give
the sensor networks the ability to reprogram themselves wirelessly, allowing users not to physically
interact with the sensor nodes. This wireless reprogramming can be based on the concept of NNs as
proposed by Cañete et al. [163], and thus be able to implement it in greenhouses.

6. Perspectives: Greenhouse Artificial Neural Networks Application

6.1. Agriculture 4.0 and the ANNs

Farmers today need to adapt to new technologies and apply them in agriculture. Agriculture has
gone through different stages, starting with agriculture 1.0 characterized by the use of animal force;
then came agriculture 2.0 that used combustion engine machinery; moving to agriculture 3.0 where
guide systems (such as geographic positioning (GPS) systems) and precision agriculture (PA) would
be used; and finally agriculture 4.0, which is based on the principle that activities are connected to the
cloud [168].

Agriculture 4.0 is the integration of technologies (IoT, PA, artificial intelligence (AI), cloud
computing (CC), among others) through the cloud to automate cyber-physical tasks and systems,
allowing the planning and control of production [169]. This new era arose when telematics and data
management were combined with the concept of PA and largely driven by the use of the IoT [170]. PA
is the management of spatial and temporal variation in fields with respect to soil, atmosphere, and
plants using information and communication technologies. Its concept was born from the need for the
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development of site-specific techniques. In other words, it applies treatments to areas within a field
that requires different management than the field average, allowing fine-tuning of crop management
systems [171].

IoT in the agricultural context refers to the use of sensors and other devices to convert every
element and action involved in agriculture into data. IoT technologies are one of the reasons why
agriculture 4.0 can generate such a valuable amount of information [172].

Agriculture based on agricultural data is known by different names apart from agriculture 4.0:
Digital agriculture or SA. However, SA emerges as a main concept of agriculture 4.0. The SA addresses
important agricultural objectives such as saving water, conserving the soil, limiting carbon emissions
and increasing productivity by doing more without stopping [173].

6.1.1. Precision Agriculture and Internet of Things

The PA integrates the new technologies derived from the information age with the agricultural
industry. It consists of a crop management system that tries to optimize the type and quantity of inputs
with the real needs of crops for small areas within an agricultural field. PA uses crop inputs more
effectively, including fertilizers, pesticides, tillage, and irrigation water [174].

As a management tool, PA consists of five elements: geographic positioning (GPS), information
gathering, decision support, variable-rate treatment, and performance mapping. Yield mapping allows
the farmer to monitor the actual result of the different inputs, being a tool for collecting information on
previous years. For this reason, large data set (big data) are required to interpret specific variables. In
this area, new technologies are still under development [175]. Mapping many different factors of soil,
crops, and the environment produces large amounts of data. Farmer data overload must be overcome
by integrating expert systems and decision support systems [176], which in turn must be based on
models such as those that have been exposed throughout this paper.

PAhas been applied and developed in greenhouses [177–179], as well as the use of NNs as a
support tool [180]. Being the real-time monitoring systems for the management of the greenhouse to
control environmental parameters, this is the area in which it is necessary to go deeper [181]. Likewise,
SA broadens the concept of PA, since the tasks for decision management are reinforced by knowledge
of the situation. This in turn causes real-time assistance resources to be required to perform agile
actions such as the IoT [182].

IoT is the interaction between a variety of physical things or objects that use specific addressing
schemes to connect to the internet, and this type of technology allows the inherent reduction of
environmental impact by real-time reaction to alert events such as detections of weeds, pests or
diseases, climate or soil monitoring warnings, which allow a reduction and the adequate use of inputs
such as agrochemicals or water [183,184].

One of the advantages of IoT is its ability to control other devices remotely transversely based
on the existing system, which makes a good interrelation between the physical world and different
computer-based frameworks and creates possibilities for greater financial effectiveness advantages
and precision. In the near future, IoT will be trusted with numerous administrative functions [185].
Currently, IoT has been implemented in crop care. Kitpo et al. [186] applied IoT to determine the date
of tomato harvest, for this they carried out a monitoring of the 6 different stages of tomato cultivation,
using as parameter the visible wavelength as a characteristic in the classification of support vector
machines (SVM). Climatic data such as temperature, humidity, illuminance, among others, were
recorded daily during tomato cultivation, these data and the data obtained from the SVM classification
were used for the training of a NN, the results applied to the elaboration of an automated system by
using IoT to support greenhouse growers in the future.

Tervonen [187] studied the effectiveness of IoT in quality control during vegetable storage. During
the storage of potatoes, it determined that for the proper control of temperature and other parameters,
multiple measurement points are required in different locations to guarantee the desired behaviors
for the entire volume. Wang et al. [188] verified that the data loss rate between the data acquisition
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unit and the gateway was 1.52%, and the data loss rate was 0.4% between the gateway and the server,
making the IoT system feasible for monitoring greenhouses. IoT has emerged as an alternative for
optimizing the agricultural sector since it allows farmers to monitor their agricultural fields in real time
and receive recommendations to produce good quality crops while maximizing their overall profits on
the products sold [189]. Linked to the IoT, there is the CC. CC is a model that allows convenient access
to the network request to share configurable calculation resource groups [190], it is a model to allow
ubiquitous, convenient network access and on demand to a shared pool of computing resources that
can be quickly provisioned and released with minimal effort from management or service provider
interaction [191].

6.1.2. Smart Agriculture

SA and PA are booming, but they could take advantage of technology in the agricultural world.
SA is an agricultural management concept that uses modern technology to increase the quantity
and quality of products, access to GPS, soil scanning, data management, and IoT technologies. In
the case of smart greenhouses, evaluation of production, energy loss and increased labor costs is
essential as a result of manual intervention against environmental impact. In addition, to control
the climate, monitoring must be intelligent so that there is no need for manual intervention. The
parameters necessary for efficient product production are determined by various sensors and the data
are transferred to a cloud-based environment for evaluation [192].

One of the main disadvantages of the current agricultural greenhouses is the efficient and
intelligent information management. That is, what is needed for the efficient implementation of
technologies such as IoT is the design and implementation of the general system as shown in Figure 6.
The design of these systems where internet or local area network (LAN) technology is used will allow
sensors, controllers and computers to be combined to connect people and “things”, thus obtaining
data, and remote control and intelligent network management [193].Appl. Sci. 2020, 10, x FOR PEER REVIEW 30 of 49 
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In traditional agriculture, pesticides, fertilization and irrigation depend on the experiencing of
farmers; however, it does not guarantee the accuracy of parameters such as temperature, humidity,
lighting and other indicators that are difficult to determine and adjust only by experience. In a smart
greenhouse, by having a large number of sensors, the collected data can be communicated via the
Internet and, therefore, to an operator. The operator might also have an Internet interface to control
fertilization, irrigation, heating, lighting and other parameters [194].

The amount of information generated can be used to develop more robust models that predict the
behavior of greenhouse parameters, and thus speak of an adaptable AI with more complex learning
capacity. The challenge is that these models coexist with technologies such as CC and IoT. The ANNs,
specifically deep NNs, which are powerful tools for prediction and optimization are an option for
various applications in agriculture [137] and greenhouse agriculture. CNNs, RNNs and long short-term
memory neural network can consider various types of information and handle a large amount of data,
the potential of having information stored in the cloud and access to it from anywhere would allow
training and use of networks to be more efficient, since any unit with computing capacity could use
this information simultaneously and not only depend on each neural network, NNs could operate
in parallel.

6.2. Artificial Neural Networks and Greenhouses

The main topic involved in the development of the research is the efficient production of crops with
the help of greenhouses to meet the growing needs and demands. That is, greenhouse cultivation can
be an option to overcome such problems, problems that go hand in hand with economic development,
ecology, and climatic conditions. Traditional greenhouses have changed in such a way that they can
now be equipped with temperature, light, carbon dioxide, and relative humidity control systems.
The optimization and adaptability to the changes that the system undergoes are vital to achieve an
improved plant growth. These changes are in parameters such as temperature, water vapor, air
pressure, air velocity, radiation rate, etc. In addition to this, greenhouses require a continuous supply
of energy from renewable or non-renewable sources to maintain the internal microclimate with the
aforementioned parameters [195].

The use of mathematical models that allow the prediction of changes and adaptability of the
greenhouse has been thoroughly studied. The complexity of these models is given by the complexity
of the greenhouse itself, the choice of which type of model (physical or those that analyze the inputs
and outputs of the system) is the most convenient depending largely on time, resources, type of crop
and type of greenhouse you have to implement it. The use of ANNs as an option to satisfy these
demands has been developed for approximately 40 years. After analyzing 35 works, 74% focus on
the description and prediction of the microclimate, 9% on energy optimization and 17% on other
applications of greenhouse networks. The most used type of NN is feedforward with 46% of the
investigations, while RNNs represent 20% and other types of NNs 32%. Figure 7 presents the topic in
which NNs are used, as well as the most used architectures and the predominant training method.

Although the vast majority of the works present favorable results in the use of these types of
models, there are several issues that need to be pointed out. The results are simulations performed for
the validation generating models [38,60,99,135], where the implementation of the model in conjunction
with the greenhouse control systems and the yield obtained compared to conventional systems
are not presented. The construction of the networks in greenhouses has been carried out with
cultivation [123,128,159,162] or without cultivation [129–131,134], however, the results obtained are
not tested in the opposite situation is obtained with a greenhouse without cultivation is not tested with
cultivation and vice versa. In addition, the models obtained can hardly be used in another type of
greenhouse, so the generalization of the models should be a more relevant issue [125].

The importance of addressing the points described above is being able to apply ANNs daily in
greenhouse production and integrate them to emerging technologies and make the change to agriculture
4.0 and SA as well. Ensuring that connectivity and data transmission are more efficient and economical.
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Work with the automation of knowledge work through models such as ANNs to manage assets and
optimize the performance of the greenhouse production process by having improved sensors and
remote monitoring; to implement CC where the integration of the measurement systems of greenhouses
is done through the Internet; and, in addition, to improve artificial intelligence to automate precise
tasks in this type of system [196]. Similarly, it can be used with the IoT for the design of new methods
to solve problems in market demand, precision in operation and supervision [197]. In addition, the use
of learning algorithms and activation functions to open the landscape in ML and provide powerful
analytical tools will help establish more efficient control and automation systems in greenhouses. Of
the papers presented, only [137] presented the option of deep learning, while Wang et al. [162] they
explored the feasibility of using GA as an optimization resource to work together with NNs (the
development of the GA-BPNN model). DL and hybrid NNs are rarely used in greenhouse agriculture;
however, they are concepts that are currently being developed in different areas and can be the way
for the development of networks that match the new technology and challenges faces agriculture
in greenhouses.
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6.3. Classic Models versus ANNs

Greenhouse climate models can be classified into two categories [125]: models for the design of
new greenhouses and models for climate control of existing structures. The latter are also known as
classic models, and they are based on steady state energy balances. The number of parameters in this
type of model is small compared to MIMO (multiple input multiple output) black box models, this
being one of its main advantages.

On the other hand, mechanistic models provide a clear physical explanation of the greenhouse
environment such as static [198,199] and dynamic models [100]. Static models are based on the
static energy balance of the greenhouse components and usually their heat storage capacities are not
considered [200]. The relevance of physics-based models in greenhouses is that they take the physical
parameters that describe the system, they can include the location of the greenhouse, local weather
conditions, geometry, construction materials, hours of operation, systems of air conditioning and
settings. That is, they allow its use for the design phase and help to evaluate the energy performance
of the greenhouse [125,201]. However, the current state of climate control still leaves much room for
improvement [202] and optimal control of greenhouse environments can be improved by combined
models to allow selection of greenhouse designs and control algorithms to maximize the room for
improvement benefit such as models based multi-objective optimization [203,204].
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From the studies presented in Table 2, Bussab et al. [127] found that the efficiency of the FFNNs
in models based on mass flow and energy equations is better when forecasting the relative humidity
and internal temperature of a greenhouse. The ANN was more accurate in 81% of the cases than the
classic method in forecasting the internal relative humidity and 62% more efficient in forecasting the
internal temperature. These results comply with what was mentioned in Seginer et al. [125]. Among
the reasons why ANNs are more efficient than classic models is that mentioned above, the ability to
consider more parameters, that is, with a sufficient number of adjustable parameters, is capable of
making accurate predictions, provided that it presents all the factors that have a significant influence
on the outputs (in this case, the internal relative humidity and the internal temperature). In addition,
in the case of ANNs, you can always choose to increase the number of neurons in the hidden layers
to increase the predictive power of the network. However, there is a point at which the network
will not show significant improvement no matter how many neurons it has in the hidden layer. For
Bussab et al. [127], a configuration with two hidden layers was optimal, where the first hidden layer
consisted of 40 neurons and the second of 20. Studies comparing the effectiveness of ANNs with classic
models are few, however, Seginer et al. [125], Seginer [96] and Linker and Seginer [205] expose several
factors that make networks have greater predictive power, the importance of reducing the number of
inputs on a neural network and how it can help the network with classic models.

Supporting the ANNs with classic models for predicting the microclimate in greenhouses brings
great benefits. Linker and Seginer [205] were among the first to develop such a model. The reason for
using physical models in black box models, specifically in NNs is due to its main disadvantage. The
poor extrapolation property, in other words, lacks prior knowledge, and the most evident in sigmoidal
black box models. Linker and Seginer [205] demonstrated that hybrid models of this type produce
efficient predictions, especially in the operational domain, decreasing their precision in the training
domain. The proposal is to use the classical model to generate “synthetic” training data. In this way,
prior knowledge of NNs can be included, solving the problem previously exposed. The configuration
of the physical model can be done in two ways: serial and parallel. The one proposed in his work
was in parallel, where synthetic data was generated for the training period for all the inputs during a
two-year period. Experimental data from the training period was added to the synthetic database,
and all synthetic points associated with the nodes for which at least one experimental data point was
already available were removed. In this way, the synthetic data was only used in regions where no
experimental data was available. The main problem with this technique is that the database can be
very large and there is a risk that the experimental data may be lost among the synthetic data.

The use of physical models in conjunction with the FFANNs was also presented in other works,
but with a totally different approach to that of Linker and Seginer. Hu et al. [99] proposed an RBF
network to adjust the parameters of a conventional PD controller, they used the model based on energy
equations and mass fluxes to address the humidity and temperature of the indoor air of a greenhouse.
They compared this model against a model based on conventional RBF networks. When calculating
the mean errors, they found that the proposed model had smaller values, also the control signals
were smoother. Likewise, in comparison with the previous models, the operation of the model was
tested in conjunction with a control scheme, obtaining the decrease of the serious oscillation in the
greenhouse actuators. Later, Zeng et al. [38] compared this same model with a method that uses GA.
They found results that would be interesting to see in future studies with other models than GA. The
main disadvantage of GA is that being an offline model it could not adjust to the external climate
fluctuation of the greenhouse. Changes in solar radiation, external temperature, and external humidity
caused a decrease in control performance, in addition, it is time consuming and depends on the GA
optimization calculation time, and in practice its application in a real-time control system is not very
convenient. By establishing the following advantages of a physical model-based RBF network over
offline models such as GAs: they have better setpoint tracking performance, they have a smoother
control process characterized by smaller oscillatory amplitudes, it can apply to real-time monitoring
and, most importantly, it is well adapted to external weather fluctuations.
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6.4. The Input Variables in the ANNs and in the Prediction of Greenhouse Microclimate

One of the important issues in a neural network is to reduce the number of inputs. He et al. [60]
used PCA as the base in a BP neural network. In the proposed network, the input layer consisted
of 4 inputs, which were the main components and the output layer was 1, the internal humidity of
the greenhouse. To determine the behavior of the PCA-based BP network, it was compared to a
conventional BPNN network, where the training times of these methods were 42 and 130, respectively.
The PCA allows network training to be faster. However, although the PCA-based network achieved
85% accuracy it is still less than the conventional BPNN network, and this is because there is a loss
of original data information. With these results they also compared the PCA-based BPNN network
with a stepwise regression model, when calculating the mean squared error (MSE), the PCA-based
BP network performed better with a value of 1.6745 while with the stepwise regression method they
obtained a value of 4.5437. The use of techniques such as the PCA to determine and simplify the entries
of the ANNs is a very viable option, although this may affect its effectiveness, it is still better than other
methods and is rarely used.

Another way to delimit their number is to apply the sensitivity analysis to the different input
variables to determine which ones are more relevant to the variables whose behavior is to be determined,
just as did Seginer et al. [125], who found that solar radiation and outdoor air temperature are the
factors that have the greatest impact on the temperature and internal humidity of the greenhouse.
Similarly, Salazar et al. [128], using a sensitivity analysis, determined that the most important variables
for predicting temperature are outdoor temperature and solar radiation. Both Seginer et al. [125] and
Salazar et al. [128] analyzed the effect of considering separate models for each of the outputs, that is,
a model to predict humidity, one more to predict internal temperature and finally a model in which
consider two outputs, the humidity and the internal temperature of the greenhouse. They concluded
that the separate models present poorer predictions, this due to noise from unnecessary inputs. For
their part, Salazar et al. [128] obtained very similar results in the three models, when calculating
the coefficients for the three cases, in the first model which predicted the internal temperature they
obtained a value of 0.976, while the model that predicted the internal humidity obtained a value of
0.982 and the third model for the internal temperature and internal humidity obtained values of 0.975.
Salazar et al. results show that the third model is less efficient in predicting the output variables,
however it is not significant and has the advantage of predicting the output variables at the same time.

One way in which you can “feedback” to a FFNN is through delays in the input variables, this
process consists of considering certain outputs also as inputs; these outputs, when considered inputs,
have a certain delay to be able to feed the network with new information on the variable of interest.
Alipour et al. [129] tested three network configurations with this type of delay to forecast the relative
humidity, the infrared index, the light index and the internal temperature of the greenhouse. For
example, to predict internal temperature, Alipour et al. [129] found that the optimal structure should
use a direct feeding neural network with 7 input delays and 5 neurons in the hidden layer. In this way,
a way to build FFNNs that have been exploited very little is presented, and of the studies analyzed
only Alipour et al. [129] and Outanoute et al. [130] explore this path.

6.5. The Hidden Layer of ANNs and Their Importance in Prediction of Greenhouse Microclimate

In the documents presented, Taki et al. [124,131] emphasize the importance of the hidden layer
in prediction of the greenhouse microclimate, that is, the number of optimal layers and neurons.
Although the method for determining the number of neurons and layers is more of a trial and error
process, Taki et al. [124] mention three circumstances to consider when building a neural network
for microclimate in greenhouses: the first is that the performance of the network can improve as the
number of hidden neurons increases; the second is that too many neurons in the hidden layer can
cause overfitting problems, which influences learning and memory of data, but impairs the ability
to generalize; and finally the third, if the number of neurons is too low it is possible that the neural
network loses the ability to learn. Taki et al. [131] through an RBF network determined that the optimal
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hidden layer is built by three layers with 21, 9 and 9 neurons, respectively, for the prediction of internal
air temperature, plant temperature, and greenhouse soil temperature. They indicate that adding more
neurons than those established in your specific case does not significantly increase the predictive power.
Furthermore, in the case of the RBF network, the process of increasing the coefficient R2 also depends
on the values in the propagation parameters.

6.6. Learning Algorithms in the ANNs

Training algorithms have a great influence on the efficiency of NN sand choosing which the best
will depend on various factors. Outanoute et al. [130] tested three training algorithms, the momentum
gradient descent (GDM), the quasi-Newton BP Broyden–Fletcher–Golfarb–Shano (BFGS), and the
resilient BP algorithm (RProp). For each network, the number of nodes in the hidden layer was also
varied, since the efficiency of the network varies for each case and the number of optimal neurons
was searched for each network. The results in the training stage showed that the BFGS network has
better performance, the mean square errors (MSE) were for the internal temperature of 0.0022 and for
the internal humidity of 0.0034, while for the GDM they were 0.1877 and 0.1143 and, for the RProp
they were 0.0349 and 0.0433. Ferreira et al. [112], when testing online or offline methods, determined
that the LM algorithm has an advantage over techniques such as resource allocating network (RAN),
orthogonal least squares (OLS) algorithms, among others. The smallest root means square error (RMSE)
off-line was 0.0108 with a network of 8 neurons in the hidden layer, and an online network obtained a
value of 0.0072 with a similar structure. That is, better results were achieved either online or offline
with the LM methods compared to other hybrid and adaptive.

6.7. Database for ANNs and Prediction of Greenhouse Microclimate

The database is highly relevant for the proper functioning of the neural network. Throughout
this document, different works have been presented where the ANNs are applied for the prediction
of the greenhouse microclimate, and it can be seen that the optimization of the network is linked to
its type and structure. However, the elaboration and collation of data takes equal importance, since
the effectiveness of training and building the network depends on it. At least three stages can be
mentioned in which the database becomes the pillar of a neural network: training, validation and the
testing phase. These stages, in the same way, can be considered as the stages through which a neural
network must pass.

The amount of data that a black box model requires specifically if we are talking about an ANN,
must be from a relatively large sample. Delimiting the optimal amount is a process of trial and error, as
is the choice of hidden layers and the number of neurons. Having a sample with a really large data
set benefits the prediction power, however, the training and prediction process of the network will
be affected by less-efficient processes. Applying techniques such as proposed by Seginer et al. [125]
and He et al. [60] can simplify excessively large databases and optimize training processes of the
NNs. Taki et al. [124] mention that a 12-month database is ideal for an ANN that predicts the
greenhouse microclimate, although the vast majority of the studies presented do not consider this
period. Dariouchy et al. [123] only consider a database of 29 days; in the training phase it used most of
the data (22 days) and for the test phase, used the rest (7 days). Outanoute et al. [130] only considered
a three-day period, although the amount of collated data consisted of 25,750 values, which divided
them into 70% for network training, 15% for validation and 15% for the phase test. Alipour et al. [129],
also used a three-day database, the difference being these days were not consecutive and it was at
a specific time (from 10 a.m. to 8 p.m.). Although the period of time is important, the amount of
information generated with that data and the management of it during those periods is more relevant.
Salazar et al. [128] used a base of 14,490 data, 50% used them for training, 25% for verification and 25%
for tests. Database management can be seen in Laribi et al. [126], since they used different databases for
the different processes, in the training they used a one-day data set with temperature ranges from 6 ◦C
to 14 ◦C; for the tests two days of different years were used, but with temperature ranges from 6 ◦C to
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9 ◦C. In other words, a model can be built with a database that already has certain specific information
for the network.

Being able to delimit the minimum data required in a network is an empirical process, as well as
choosing the amount used in training, verification and testing. Cases such as those of Seginer et al. [125]
used a registry of 3076 data or as those of Taki et al. [124] that its compiled database represents a set
of values of one day. The team is currently developing a neural network using 70,032 data collected
during 1 year, of which 50% will be used for network training, 25% for verification and 25% for testing.
However, having a large data set can also impair the operation of the network, since the presence of
trivialities is more likely. For this reason, it is necessary to use techniques that clean the database when
this type of problem occurs, as well as before constructing the network, delimit the most important
parameters for the study variables, seeing the influence of the variables of input with the output
variables using techniques such as sensitivity analysis.

6.8. Artificial Intelligence

Artificial Intelligence (AI) researches and builds intelligent software and machines, provides a
particular solution to a particular defined complex problem, is made up of branches such as genetic
algorithms, particle swarm optimization, simulation and ANNs and hybrid models (two or more
of the above) [206,207]. AI consists of mapping non-linear behavior between inputs and outputs of
processes [208]. AI consists of a large number of practical tools that allow solving difficult problems
tasks that require biological or human intelligence, with functions such as perceptron, recognition,
Decision-making and control combines brain science and related fields, such as cognitive science and
psychology [209]. The AI allows the prediction of thermal properties of biomass, tools such as ANN
have proven to be vital in the development of research in the prediction of biomass energy, which
in turn could be used in the control of greenhouse microclimates. NNs are flexible to accommodate
non-linear and non-physical data; however, they require a large multidimensional data set to reduce
the risk of extrapolation. [210]. AI employs quite different mathematical and algorithmic approaches,
from operational research restricted programming, DL and ML [211].

DL expands on classic ML by adding more depth to modeling. Its advantage is feature learning
that is, automatic extraction of features from raw data and quick resolution of complex problems. The
DL is made up of various components, such as convolutions, grouping layers, fully connected layers,
gates, memory cells, activation functions, and encoding/decoding schemes, depending on the network
architecture used, such as the aforementioned convolutional neural networks (CNN) [212].

6.9. Future of Deep Learning in Greenhouse Agriculture

DL has demonstrated a great capacity in pattern recognition and ML. One of the main tasks of
this type of network is to learn to actively perceive patterns by sequentially directing attention to
relevant parts of the available data [213]. The advantage of DL over conventional networks is the
possibility of developing simulated data set to train the model, which would allow solving real-world
problems, such as greenhouse systems. In [214] the various applications of DL in agriculture are
exposed, however, its use in greenhouses is still lacking. Of the studies that have been carried out of
DL in greenhouses we can find the one carried out in [212], who propose a new deep RNN, with a
long short-term memory neural network (LSTMNN) model to predict the stem diameter, or tomato
performance problems using environmental parameters such as CO2, humidity, radiation, outside
temperature and indoor temperature. One of the main disadvantages of this method is exposed: the
large amount of data necessary for the training process.

The BP network is the basis of the vast majority of DL algorithms, it also allows models that
consist of multiple layers of processing to represent data with multiple levels of abstraction, so its
application in agriculture has begun to be studied. In the field of smart farming (SF) it can be used for
the detection of plant diseases, weed control, and plant counting through image recognition. CNN,
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RNNs, and generative adversarial networks (GANs) being the most viable types of deep networks in
this field [215].

CNN models are an extension of the DL. They consist of MLP networks that involve multiple
pools and fully connected layers, learn and optimize filters on each layer through the back-propagation
mechanism. These trained and learned filters extract features that distinctively represent the input
image. This type of model has managed to overcome state-of-the-art algorithms and since then has
become the most advanced method in many data processing tasks. Currently, CNN architectures
are trained from scratch or adjusting pre-trained architectures. Using pre-trained architectures allow
transfer learning to be used. Transfer learning consists of using the learning of models that have been
previously trained with large data sets from other systems, in other problems or similar systems [216].

CNN has a great capacity in image processing, which makes it widely used in agricultural research.
The challenge with the use of information is to interpret the collected images. Interpreting satellite
images using CNN and GA has become a useful decision-making strategy, especially for PA [215].
Furthermore, they can also be used in weather forecasting, which is key for agriculture [217].

6.10. Future of Hybrid ANNs in Greenhouse Agriculture

The use of the combination of ANNs with mathematical models has been little explored, however,
as can be seen in Yousefi et al. [218] and Linker et al. [205], the approach can be considered from two
perspectives: First, using techniques such as fuzzy logic for optimization in the random choice of the
initial parameters and second, to use the physical models for the generation of synthetic data that help
the network in the learning process, minimizing the errors due to the lack of information that a base
can present of data in situ. ANN hybrid models have the potential to provide forecasts that work well
compared to more traditional modeling, such as the use of ANN models optimized by PSO and GA
that have shown good prognostic results of energy requirements [219].

7. Guidelines for the Application of Neural Networks in Greenhouses

In this review we have presented the application of ANNs in the prediction of the microclimate in
greenhouses, their use in energy optimization, as well as other applications in greenhouses. Of these
topics addressed, it should be noted that the potential of the ANNs continues to be promising for
future research. Although studies have presented ways in which one should delve further, such as the
use of physical models in conjunction with NNs, the work is still scarce.

Physical models for the creation of synthetic data is a good strategy to feedNNs, since it would
complement in situ data and would allow confronting the possible problems that the nature of this
type of data entails. Linker and Seginer [205] presents two possible configurations, in series and in
parallel. However, a serial configuration has not been tested and its use in conjunction with statistical
tools such as PCA would optimize the data selection process for a neural network. Also, the structure
of hybrid networks could be expanded and the serial and/or parallel configurations could be used in
conjunction with optimization algorithms such as GA, PSO, among others.

The use of WSN in greenhouses is part of SA, offering advantages not only in data collation and
greenhouse climate control, but also in the energy consumption of this type of device. The application
of the ANNs in the WSN of the greenhouses would also be an interesting topic to develop, since on the
one hand there is the automatic reprogramming of the wireless sensors and on the other the forecast of
the greenhouse variables collated using this sensor network.

RNNs are little used compared to FFNNs, but their use in greenhouses in conjunction with image
analysis can be of help in the identification of diseases and pests in greenhouses. Also, DL and CNNs
are tools that would facilitate these tasks. Likewise, the forecast of the microclimate in greenhouses
using analysis of thermographic images and CNNs would be something interesting to apply.

CNNs in the study of growth and transpiration crops is an issue that would be worth developing.
In traditional methods, these processes represent a mathematical challenge while CNNs would simplify
them with help of morphological and thermal analysis.
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The application of new technologies such as 4.0 in greenhouses opens the panorama of carrying
out work with a perspective on integration and exchange information. The studies presented have
been developed with data obtained from a single greenhouse; that is, the object of study has been the
case of a particular greenhouse. However, with the IoT, the WSN, the CC, among others, information
from various points (greenhouses) could be accessed at any time. ANNs can be developed that use
this data, but first it would be necessary to make a reliable database. Although each greenhouse is in
the same region or has a similar outside climate, variations would still be present. However, synthetic
data could be used to minimize these variations. The WSN could be trained to detect diseases and
plagues in crops and this information can be used in nearby greenhouses to predict the presence of
these afflictions and take the necessary preventive measures.

8. Conclusions

This review presented different studies of ANNs in greenhouses. Most of the studies had a
focus on the prediction of the microclimate where the use of feedforward networks is the most used
architecture. However, RNNs are less used and it is necessary to explore different architectures and
training methods in order to determine the advantages and disadvantages they may have compared to
feedforward. Likewise, the development of this type of network will allow the use of new methods
such as DL in tasks that facilitate production under greenhouses.

Network training is one of the processes where optimization techniques must be measured in
order to reduce calculation times and data management. The use of statistical tools such as PCA is
viable, however, the application of methods such as GA, FL, and PSO should be considered in the same
way in more complex architectures such as RNNs and not only in feedforward networks.

Unlike the physical models, ANNs take just a few minutes to finish an indoor climate forecast,
considering that many unknown factors are involved and are not possible to study with physical
models. ANN and physical models’ combination would allow a better prediction of a microclimate,
however, this hybrid network’s construction is poorly investigated and hence this network should be
studied. Within other applications of NNs in greenhouses, the evaluation and prediction of plagues
and diseases in crops can be driven by technologies such as image analysis in combination with DL
models such as CNNs. Similarly, microclimate prediction might be feasible with these techniques
since a greater amount of information can be handled by these methods compared to traditional
ANN models.

An important guideline for future works is the integration and exchange of information using
4.0 technologies. The role of the ANNs is to develop predictive models that take advantage of the
information generated and its management.
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