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Abstract: This paper proposes a novel control approach for a robot gripper in which the impedance
control, fuzzy logic control, and iterative learning control are combined in the same control schema.
The impedance control is used to keep the gripping force at the desired value. The fuzzy impedance
controller is designed to estimate the best impedance parameters in real time when gripping unknown
objects. The iterative learning control process is employed to optimize the sample dataset for designing
the rule base to enhance the effectiveness of the fuzzy impedance controller. Besides, the real-time
gripping force estimator is designed to keep an unknown object from sliding down when picking it
up. The simulation and experiment are implemented to verify the proposed method. The comparison
with another control method is also made by repeating the experiments under equivalent conditions.
The results show the feasibility and superiority of the proposed method.
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1. Introduction

The robot gripper is a useful and important component of an automated system. It is often used
to pick up and place a given object on an assembly line in production. It is also used for complex
tasks such as assembly of microelectronic components, surgery, etc., or in areas that have hazardous
conditions such as high temperature or toxic chemicals [1]. There are many actuation principles used
in grippers with mechanical, pneumatic, hydraulic, electric, or piezoelectric actuators, etc. Along with
the development of technology, the grippers have been brought to a new level. The grippers not only
grip, pick up, and place objects to a new position but also are equipped with sensing capabilities to
adapt to changing environments [2].

In automated production, one of the important requirements of grippers is the ability to safely
grasp and hold fragile objects of varying stiffness and shapes. Using flexible grippers is one of the
solutions. In [3], embedded sensors are used to ensure the safe and optimal behavior of the gripper.
The authors establish soft computing methods including extreme learning machines and support
vector regression to achieve the prediction of optimal input displacement of the gripper. The authors
of [4] deal with a multiobjective optimization problem using a genetic algorithm, while [5] establishes a
direct force control for a three-finger adaptive robot gripper by using a proportional-integral-derivative
(PID) control to grasp objects without damaging them. Suebsomran [6] proposes a new design to
control a robot gripper based on the grasping force method. The force controller is designed by
using a PID control algorithm with different control gains and objects tuning by experiment methods.
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A high-speed multifinger reconfigurable gripper is presented in [7]. The gripper can grasp parts
with varying geometrical and physical properties at high speed and accelerations. In [8], the authors
use a force-sensitive resistor (FSR) to grasp novel objects adaptively with minimal gripping force.
A laser-based optical slip sensor is embedded in its fingers to prevent the object from sliding down.
The authors of [9] deal with a microgripper driven by piezoelectric actuators. The authors propose an
adaptive online estimation scheme to calculate uncertain parameters in the dynamics model and the
Kalman filter to predict the system output. Although there is a lot of research in literature, novel control
applications are being studied to enhance gripper performance. This paper proposes an intelligent
control approach for a robot gripper with the main objective of controlling the optimal gripping force
in real time for unknown objects.

The impedance control is used to keep the gripping force at the desired value. Impedance control
is an indirect force control method and very popular in interaction control because of its robustness and
feasibility [10–14]. However, in the impedance control method, the interaction force is changed from
environment to environment and even within the same environment over time. Therefore, it is hard
to determine the desired parameters of the impedance controller. In [15], the authors propose a new
simple stable force tracking impedance control scheme. The main idea is to minimize the force error
directly by using a simple adaptive gain when tracking an unknown environment. In [16], a novel
adaptive impedance control is proposed for the robotic manipulator in assisting the operator to perform
the human–robot cooperative task. It can optimize the impedance parameters with little information
about the model. The authors of [17] use the equilibrium point control theory and reinforcement
learning to determine the impedance parameters for contact tasks. In [18], The gradient-following
and betterment schemes are employed to obtain the desired impedance model, subject to unknown
environments. In [19–22], the combination of fuzzy logic and traditional impedance control is proposed
to enhance the control performance.

The fuzzy logic [23] can deal with nonlinear and uncertain systems, so it can be used to estimate the
optimal impedance parameters in real time. However, its effectiveness depends on the rule base, which
is built on the initial sample dataset. This paper proposes a combination of iterative learning control
(ILC), fuzzy logic, and impedance control. The ILC based on the gradient descent algorithm [24,25] is
used to determine the impedance parameters in unknown environments. However, the ILC process
takes time for the impedance parameter to converge to the desired optimal value. Therefore, it is not
conducive to perform in real time. Instead, it is performed with various sample objects to synthesize a
sample dataset of optimal impedance parameters. This dataset is then used to design the rule base
of the fuzzy impedance controller, which will run in real time to estimate the optimal parameters of
impedance control under each given condition.

Another important requirement of grippers is to keep an unknown object from sliding down
after gripping and picking it up. In [26], the authors develop a microlaser Doppler velocimeter as a
sensor to detect whether a grasped object is slipping or not. In [27,28], a biomimetic tactile sensor
is used to detect and classify slip events. These methods require complicated installation at the
contact between the gripper’s finger and the object. In this paper, a six-axis force/torque sensor (FTS)
mounted on the gripper will be used to design the gripping force estimator, which will calculate the
appropriate gripping force in real time to keep the unknown object from sliding down instead of trying
to detect slippage. The FTS is simple to mount and avoids direct contact with the object. It also proves
effective when it is possible to quickly and accurately estimate the optimal gripping force when picking
objects up.

The main contribution of this paper is the proposal of an optimal fuzzy impedance controller,
which can operate in real time to safely grasp and hold fragile and unknown objects of varying stiffness
and shapes. The optimal fuzzy impedance controller is the combining schema of the impedance
control, fuzzy logic control, and ILC. Many studies mention the combination of impedance control
and fuzzy logic but do not specify the process of building the sample data for designing the rule base,
which plays a very important role in determining the effectiveness of the fuzzy controller. In this study,
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the ILC process is employed to optimize the sample dataset for designing the rule base to enhance the
effectiveness of the fuzzy impedance controller. Besides, the design of the gripping force estimator
based on an FTS is a simple but effective application proposal in keeping an unknown object from
sliding down when picking it up. Compared with other methods, such as PID control, the proposed
method has advantages in that the control parameters are automatically estimated in real time and the
force control has higher accuracy and stability. Its effectiveness has been verified by conducting the
simulation, experiment, and comparison.

The following content of the paper is organized as follows: Section 2 describes the control schema
and system description. Section 3 presents the impedance iterative learning control. Section 4 describes
the fuzzy impedance controller. Section 5 presents the simulations, experiments, and comparisons.
Section 6 discusses the results. Section 7 is the conclusion.

2. Control Schema and System Description

Figure 1 illustrates the model of the two-finger gripper used to apply the optimal fuzzy impedance
controller. The FSR is fitted below the finger pads to provide gripping force value. The gripper is
attached to the FTS fixed on the end effector of the Hexa robot. The FTS measures the weight of the
object, which is gripped and picked up.
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The position control block, using a common PID controller, is responsible for controlling the
position Xc of the fingers to the desired position Xd. The value Xd is determined by the initial reference
position Xr and the position compensation ∆X. For picking up objects of unknown shape and size,
the value Xr is set relative to the gripper’s fully closed position.

The force calculation block includes FSR and FTS. The gripping force Fo is measured by the FSR.
The object weight Fw is measured by the FTS. Fr is the initial gripping force defined by the user. At the
beginning of the gripping process, the desired gripping force Fd is assigned by the value of Fr. When
the gripper starts to pick the object up, based on the value Fw, it will calculate an appropriate value Fd
to prevent the object from sliding down. The calculation Fd is presented in Section 3.4.

The optimal fuzzy impedance control block has three sub-blocks: impedance controller, ILC,
and fuzzy controller. The impedance controller calculates the position compensation value ∆X for the
position control block based on the force error Fe, the initial reference position of fingers Xr, and the
current position of fingers Xc. It is the key control, which ensures the gripping force is always kept at a
sufficient force. The ILC is derived from the gradient descent algorithm to find optimal parameters B
and K of the impedance control in unknown environments. This is the initial learning process. For each
kind of object (with various hardness) and various closing speed, the ILC is performed to find an
optimal data of impedance parameters. By changing the object material, closing speed, and repeating
the ILC, an optimal dataset of impedance control is built for further creating a rule base for the fuzzy
controller. Based on this rule base, the fuzzy controller calculates the best impedance parameters
simultaneously when the gripper fingers touch on the object surface. If the fuzzy controller cannot
match any rule in the rule base, the ILC is recalled to calculate new appropriate parameters of the
impedance control. If these parameters make the control reach the desired state, they will be analyzed
to create new rules and added to the rule base.

3. Impedance Iterative Learning Control

This section may be divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation as well as the experimental conclusions that can be drawn.

3.1. The Impedance Control

This section presents the basic structure of the impedance controller, which keeps the gripping
force at the desired value. The model of impedance control can be expressed as:

M.
( ..
Xr −

..
Xc

)
+ B.

( .
Xr −

.
Xc

)
+ K.(Xr −Xc) = Fe (1)

where M, B, and K represent inertia, damping, and stiffness parameters, respectively. Xr and Xc are the
reference and current positions of the fingers of the gripper, respectively. Fe is the force error, which is
based on the desired force Fd and the current gripping force Fo.

The dynamic behavior of the model is determined by the damping ratio ζ, which is expressed as:

ζ =
B

2
√

K.M
(2)

For gripping the object with a sufficient force and without oscillation, the damping ratio ζmust be
greater than or equal to one (critical damped or overdamped). In practice, it is adjusted to be greater
than one (overdamped state) to both eliminate oscillation and ensure the desired gripping force.

3.2. The Iterative Learning Control

The ILC is proposed to optimize the impedance parameters for various objects and closing speeds.
The inertia parameter M is fixed at an apparent value selected by the experiment based on the mass of
the gripper fingers. Because the damping ratio ζ is fixed, only the damping parameter B is updated
during the ILC process. The stiffness parameter K is calculated by Equation (2).
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The gradient descent ILC algorithm [24] is applied to derive the learning law. The general form of
this algorithm is expressed as:

un+1 = un + β.Gn.en (3)

where n is the iteration number. u is the input applied to the ILC process. β is the learning gain. G
is the transfer function of the nominal model. e is the output error. The product G.e determines the
direction of the update vector.

The convergence of Equation (3) is guaranteed if [24,25]:∣∣∣1− β.Gn
∣∣∣ < 1 (4)

The gripping process tracks the gripping force, so the output error is determined as:

en = Fn
e − Fn−1

e = ∆Fn
e (5)

The input u of the ILC process in Equation (3) is the damping parameter B. The transfer function
G is calculated based on the gradient scheme to ensure a gradual change of the gripping force by
updating B. It is derived as:

Gn =
∂Fn

e
∂Bn =

.
X

n
r −

.
X

n
c =

.
X

n
e (6)

From Equations (3), (5), and (6), the learning law is formed as:

Bn+1 = Bn + β.
.

X
n
e .∆Fn

e (7)

From Equations (4) and (6), the convergence condition of the ILC is determined as:∣∣∣∣1− β.
.

X
n
e

∣∣∣∣ < 1 (8)

In each iteration of the ILC process, the learning gain β is adjusted to satisfy the condition in
Equation (8).

The ILC process is stopped if the following conditions are satisfied: Fn
p ≤ σp

Fn
f e ≤ σe

(9)

where n is the iteration number. Fp is the maximum overshoot of the gripping force. F f e is the final
force error. σ∗ is the desired value.

3.3. The Implementation of ILC

The ILC process is described as follow:
STEP 1: Start the process

Starting with a certain object, the desired closing speed Sg, and a desired gripping force Fd.
STEP 2: Initialization

Loading the initial values of Xr, Fd, M, B, and ζ.
STEP 3: Start a learning loop

Fully opening the fingers of the gripper. Clearing the temporary storage. Starting the gripping
timer. The gripper gradually closes the fingers with the desired speed until the fingers touch on the
object’s surface. The system starts to measure Fp and track the value of F f e.
STEP 4: Iterative learning

In each sample time, the system measures the contact force and calculates the values of
.

Xe and ∆Fe.
The learning gain β is determined by the condition in Equation (8). The new value of B is calculated
by Equation (7). The parameter K is calculated by Equation (2). The new values of

.
Xe, ∆Fe, B, and K
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are added to the temporary storage as a record and loaded to the system for the next sample time.
Repeating Step 4 with each sample time until the gripping force is stable or the gripping timer reaches
a limit value.
STEP 5: End the learning loop

Checking the stopping condition in Equation (9). If it is satisfied, move to Step 6, otherwise, start
a new loop from Step 3.
STEP 6: Finish the process

Recording the optimal values of ILC: each record in the temporary storage combines with the
values Fp and F f e in Step 4 will create a new data record in the dataset.

3.4. The Gripping Force Estimator

Figure 3 shows the force diagram of griping and picking up the object. Po is the weight of the
object that is calculated from the parameters of FTS. Fn is the gripping force of fingers. F f is the friction
force. F f = µ.Fn, where µ is the friction coefficient between the finger pad and the object surface.
To prevent the object sliding down, the gripping force must be satisfied:

Fn ≥
Po

2µ
(10)

In the implementation, the gripping force is set as:

Fn =
kas.Po

2µ
(11)

where kas is the antisliding coefficient.
The friction force µ is set approximately by experiment based on the materials of the finger pad

and object surface. The antisliding coefficient kas is set according to the real model. In this study, kas is
set to 1.4 for the best performance.
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4. Fuzzy Impedance Controller

Through the experiment, the ILC works very well. However, the best impedance parameters
found by ILC are only fit to a specific environmental condition, including object properties and closing
speed. If the environment is changed, the ILC needs to be performed again. Therefore, the fuzzy
impedance controller is proposed to calculate the best impedance parameters simultaneously based on
the knowledge from training without repeating the ILC process.

4.1. The Data Collection for Designing Fuzzy Impedance Controller

The ILC process in Section 3.3 provides the data record of the best impedance parameters for a
specific environment. By changing either the object hardness or desired closing speed Sg and repeating
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this process many times, an optimal dataset is built for creating the rule base of the fuzzy impedance
controller. It is necessary to note that the important parameters in the data record of the ILC learning
process are the gripping force error ∆Fe, the closing speed

.
Xe, the optimal damping B, the optimal

stiffness K, the maximum overshoot Fp, and the final force error F f e.

4.2. Fuzzy Logic Design

The main objective of the fuzzy impedance controller is to estimate the impedance parameter B.
Based on the learning law of ILC in Equation (7), the fuzzy system is designed consisting of two inputs:
the gripping force error ∆Fe and the closing speed

.
Xe. The output is the damping B. The parameter K

is calculated by Equation (2) after the damping B is estimated.
Figure 4 shows the triangular membership functions of inputs and output. The number of fuzzy

regions of inputs ∆Fe,
.

Xe, and output B is i, j, k, respectively. The inputs ∆Fe and
.

Xe are recorded
at the time when the fingers just touched the object for the first time, so these parameters have
negative values and magnitude depending on the closing speed and object hardness. The output B is
always positive. Based on the dataset collected from the data collection as presented in Section 4.1,
the maximum magnitudes of the inputs and output are determined to set the values of Am, Bm, and Cm.
The number of fuzzy regions i, j, and k are experimentally adjusted so that the fuzzy controller achieves
high accuracy.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 19 
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The fuzzy impedance controller employs Mamdani If-Then rules as the following form:
The rth rule: If ∆Fe is Au and

.
Xe is Bv then B is Cw, where u = 1, . . . , i; v = 1, . . . , j; w = 1, . . . , k

The dataset will be preprocessed to filter noise based on the maximum overshoot Fp and the final
force error F f e. Its final data records will be calculated to create the rule base.
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5. Simulation, Experiment, and Comparison

Figure 5 shows the two-finger gripper and control software interface used in the study. The control
software is written in Delphi programming language. The position control of the gripper was
modified to fit for the research purpose. Two FSRs have been added under the finger pads to control
the gripping force. Figure 6 is the model of the gripper in SimMechanics (MATLAB) used in the
simulation of ILC. The model was created with the same parameters and controls as the real model to
ensure the simulation results are closest to reality. This section presents the simulation, experiment,
and comparison. After that, Section 6 will discuss the results.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 19 
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5.1. The Simulation

5.1.1. The Data Collection by ILC

The model of the gripper is programmed to repeat the ILC process in Section 3.3 for different
closing speeds and desired forces in different objects (environment). The closing speed Sg varies
from 5 to 10 mm/s, with each step being 1. The desired force Fd varies from 1 to 8 N, with each step
being 0.5. The initial value of B is set at 10 N.m/s. The total number of experiments is 4200, so the
dataset has 4200 records. The dataset is analyzed to evaluate the performance based on the parameters
of the maximum overshoot Fp and the final force error F f e. Table 1 presents the analysis data from
4200 records of the dataset in the simulation. Figure 7 shows the tracking force of several loops in one
case of the ILC process with a closing speed of 5 mm/s and the desired force of 4 N.

Table 1. The resulted iterative learning control (ILC) quality parameters in the simulation.

Parameter Max MAE

Fp (N) 0.2983 0.0671
F f e (N) 0.0503 0.0004
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5.1.2. The Fuzzy Logic Design

The dataset collected above is processed to create the rule base of the fuzzy impedance controller
as presented in Section 4.2. The number of regions of inputs and output is i = 9, j = 9, and k = 49.
The maximum magnitudes of the inputs and output are Am = 10, Bm = 0.025, and Cm = 200. The total
number of rules created is 45.

5.1.3. The Evaluation of Fuzzy Impedance Control

For evaluating the performance of the fuzzy impedance controller, a testing data is created including
300 records of different values of closing speed, desired force, and object hardness. The testing data
does not coincide with the training dataset. The model runs 300 times with the parameters of the
testing data. In each time, when the fingers have just touched the object for the first time, the values of
∆Fe,

.
Xe are calculated. The fuzzy impedance controller calculates the impedance parameters B and K.

The program measures and records the parameters of the maximum overshoot Fp and the final force
error F f e. Table 2 presents the analysis data from 300 tests. Figure 8 is the force monitoring data of
some cases in the simulation testing. Section 6 will discuss in detail about this figure.

Table 2. The quality parameters on the testing data of simulation.

Parameter Max MAE

Fp (N) 0.2866 0.0247
F f e (N) 0.0013 0.00021
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5.2. The Experiment

5.2.1. The Data Collection by ILC

Similar to the simulation, the gripper is programmed to repeat the ILC process in Section 3.3 for
different closing speeds, desired forces, and object hardness. However, from a practical perspective,
it is hard to find many objects with different hardness, so six objects are used as shown in Figure 9.
The closing speed Sg varies from 5 to 10 mm/s, with each step being 1. The desired force Fd varies
from 1 to 8 N, with each step being 0.5. The initial value of B is set at 10 N.m/s. The total number of
experiments is 540, so the dataset has 540 records. The dataset is analyzed to evaluate the performance
based on the parameters of the maximum overshoot Fp and the final force error F f e. Table 3 presents
the analysis data from 540 records of the dataset in the simulation. Figure 10 shows the tracking force
of several loops in one case of the ILC process with the closing speed of 5 mm/s and the desired force
of 4 N (the same case as shown in the simulation).
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5.2.2. The Fuzzy Logic Design

The dataset collected above is processed to create the rule base of the fuzzy impedance controller
as presented in Section 4.2. The number of regions of inputs and output is i = 9, j = 9, and k = 49.
The maximum magnitudes of the inputs and output are Am = 10, Bm = 0.028, and Cm = 140. The total
number of rules created is 30.

5.2.3. The Evaluation of Fuzzy Impedance Control

For evaluating the performance of the fuzzy impedance controller in the experiment, the gripper is
controlled to grip the objects shown in Figure 9 with different values of closing speed and desired force,
which are different from the set value in the data collection by ILC. The total number of experiments is
90. In each time, when the fingers have just touched the object for the first time, the values of ∆Fe,.
Xe are calculated. The fuzzy impedance controller calculates the impedance parameters B and K.
The program measures and records the parameters of the maximum overshoot Fp and the final force
error F f e. Table 4 presents the analysis data from 90 experiments. Figure 11 is the force monitoring
data of some cases in the experimental testing. Section 6 will discuss in details about this figure.

Table 4. The quality parameters on the testing data of the experiment.

Parameter Max MAE

Fp (N) 0.4629 0.1665
F f e (N) 0.3862 0.1106
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5.2.4. Testing the Gripping Force Estimator

For evaluating the gripping force estimator discussed in Section 3.4, the gripper is controlled to
grip a plastic bottle, which weighs 115 g. The initial gripping force is set at 1.5 N. The friction coefficient
is set as µ = 0.3. The antisliding coefficient is set as kas = 1.4. Once the plastic bottle has been gripped,
the robot will move the end effector to pick the bottle up. The gripping force estimator will calculate
the appropriate gripping force to keep the bottle from sliding down. Figure 12 shows the tracking
force of this process.
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5.3. The Comparison

The performance of the proposed approach is compared with another state-of-art robot gripper
and force control based on the PID control algorithm and objects tuning by experiment methods [6].
The experiments are repeated with the same parameters as summarized in Table 5. The tracking force
data of experiments are shown in Figures 13–15. The force errors of experiments are summarized
in Table 6.

Table 5. The experiments for the comparison.

Experiment Case Object Gripping Force (N)

1
1 61 g egg, 46 mm-diameter,

and 59 mm-height
4

2 8

2

1
115 g plastic bottle, 55 mm-diameter,

and 162 mm-height

2

2 4

3 6

3
1 636 g metal motor, 42 mm-diameter,

126 mm-height
3

2 7

Table 6. The force errors of comparative experiments.

Experiment Case
Force Error (N)

Proposed Approach 6

1
1 0.2270 0.6

2 0.3372 0.8

2

1 0.1481 0.2

2 0.1570 0.4

3 0.2917 0.6

3
1 0.2036 0.4

2 0.3113 0.6
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6. Discussions

6.1. The ILC for Data Collection

By using ILC, the impedance parameter B converges to an optimal value. As shown in Figures 7 and 10,
it takes approximately four loops of the ILC process in each case of both simulation and experiment.
The fluctuation of force in the experiment is greater than in simulation. However, the process of
convergence of the impedance parameter is consistent between simulation and experiment.

Tables 1 and 3 are statistics of the resulted ILC quality parameters in simulation and experiment,
respectively. The maximum overshoot and final error of the gripping force in the simulation are very
small due to the ideality of the model. The maximum overshoot and final error of the gripping force in
the experiment are 0.4827 N and 0.398 N, respectively. This result is quite good and it is safe to grip
fragile objects such as eggs.

The ILC process provides the sample data for the fuzzy controller design. Each record in the data
is optimized by ILC, so the fuzzy controller design will achieve higher accuracy.

6.2. The Fuzzy Impedance Control

Tables 2 and 4 are statistics of testing the fuzzy impedance controller in simulation and experiment,
respectively. It shows that the maximum overshoot and final error of gripping force are within
the desired threshold. In the experimental testing, the final error of the gripping force is 0.3862 N.
In Figure 8, the tracking forces in three cases of simulation testing reach the desired values with very
high stability. In Figure 11, the tracking forces in three cases of experimental testing also reach the
desired values with a little fluctuation. The fluctuation is mainly due to noise when reading the force
value from the FSR. The results confirm that the fuzzy impedance controller can estimate the optimal
value of the impedance parameter in different environments in real time without having to perform
the ILC process again.

6.3. The Gripping Force Estimator

The gripping force estimator keeps the object from sliding down when picking it up. As shown
in Figure 12, the adjustment of gripping force occurs continuously in a short period of about 0.5 s.
Its application is described as follows: when gripping and picking an unknown object up, an initial
gripping force is set small enough not to damage the object. The gripper will grip the object with this
initial force. After that, the robot will move the end effector to pick the object up slowly. As soon
as the object leaves the background, the estimator will be activated to adjust the gripping force to
match the actual weight of the object. Throughout this process, the fuzzy impedance controller keeps
the gripping force always at the desired value with high accuracy and stability to avoid damaging
the object.

6.4. The Comparison

In all comparative experiments, the gripping force always reaches the desired value with high
accuracy. The force at the steady-state has only a little fluctuation, mainly due to noise when reading
the force value from the FSR. Figures 13–15 show the result of the experiment presented in Section 5.3.
Compared to the PID control algorithm and objects tuning by experiment methods [6], the proposed
method has better stability. The final force error is also much smaller than the error in the other method
as summarized in Table 6. This superiority is due to the gripping force being controlled in real time by
the optimal fuzzy impedance controller.

7. Conclusions

In this study, an intelligent control approach for a robot gripper has been proposed to safely grasp
and hold fragile and unknown objects of varying stiffness and shapes. The optimal fuzzy impedance



Appl. Sci. 2020, 10, 3821 16 of 17

hybrid controller of the gripper is the combining schema of the impedance control, fuzzy logic control,
and ILC. The ILC is employed to optimize the sample dataset for designing the rule base to enhance
the effectiveness of the fuzzy impedance controller, which is used in real time to estimate the optimal
parameters in the impedance control. By using ILC, the impedance parameter converges to the optimal
value. The experimental results confirm that the fuzzy impedance controller can estimate the optimal
value of the impedance parameter in different environments in real time without having to perform
the ILC process again. Besides, the design of the gripping force estimator based on a force/torque
sensor is a simple but effective application proposal in keeping an unknown object from sliding down
when picking it up. Throughout the experiment, the fuzzy impedance controller keeps the gripping
force always at the desired value with high accuracy and stability to avoid damaging the object.
Compared with the other methods, such as PID control, the proposed approach has advantages in
that the control parameters are automatically estimated in real time and the force control has higher
accuracy and stability. The proposed optimal fuzzy impedance controller could be used in common
robotic applications such as egg handling, fruit harvesting, or sorting other fragile products.
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