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Abstract: High-strength concrete (HSC) is highly applicable to the construction of heavy structures.
However, shear strength (Ss) determination of HSC is a crucial concern for structure designers and
decision makers. The current research proposes the novel models based on the combination of
adaptive neuro-fuzzy inference system (ANFIS) with several meta-heuristic optimization algorithms,
including ant colony optimizer (ACO), differential evolution (DE), genetic algorithm (GA), and
particle swarm optimization (PSO), to predict the Ss of HSC slender beam. The proposed models were
constructed using several input combinations incorporating several related dimensional parameters
such as effective depth of beam (d), shear span (a), maximum size of aggregate (ag), compressive
strength of concrete (fc), and percentage of tension reinforcement (ρ). To assess the impact of the
non-homogeneity of the dataset on the prediction result accuracy, two possible modeling scenarios,
(i) non-processed (initial) dataset (NP) and (ii) pre-processed dataset (PP), are inspected by several
performance indices. The modeling results demonstrated that ANFIS-PSO hybrid model attained
the best prediction accuracy over the other models and for the pre-processed input parameters.
Several uncertainty analyses were examined (i.e., model, variables, and data), and results indicated
predicting the HSC shear strength was more sensitive to the model structure uncertainty than the
input parameters.

Keywords: structure monitoring; shear strength prediction; machine learning; hybrid ANFIS model;
high-strength concrete
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1. Introduction

Among the high-performance concrete (HPC) used in structural engineering, high-strength
concrete (HSC) has received the most significant attention. The HSC is used in several structural
engineering projects and is mostly considered at a compressive strength of >60 MPa due to the benefits
it offers [1]. Despite the lack of a clear difference between HSC and normal-strength concrete (NSC),
several approaches and studies have determined varying ranges of compressive strength (CS) for
differentiating NSC from HSC [2]. This study, however, followed the ACI 363R-10, which described HSC
as concrete with CS of >40 MPa [3]. HSC has significant benefits, which have boosted its implementation
in construction activity globally. Such advantages include its improved physicomechanical properties
such as CS, long-term durability, and stiffness. HSC attracts great interest due to the economic
usefulness associated with it as it helps in reducing geometrical sections and gain in structures. Thus,
HSC is preferred over NSC for economic, aesthetic, and technical purposes [4]. Practically, HSC is
known to be brittle [4] as studies have shown sudden cracking and traversing aggregate particles in
HSC, which produces fracture planes that are relatively smooth [5]. As with NSC, these cracks do not
cover whole aggregate particles. Concrete shear strength is significantly reduced by smooth fracture
surfaces by reducing the aggregate interlock contribution at the shear fracture planes.

For a reinforced concrete (RC) beam without transverse reinforcement, its failure mechanism
can be considered as the generation of three internal forces that contribute to shear resistance. These
internal forces include the concretes’ contribution in the compression region (Vc), the shear contribution
due to the dowel action of longitudinal rebars (Vd), and the shear contribution due to the aggregate
interlock (Va). Consequently, the overall shear resistance is the summation of all these internal forces.
Components Va and Vd are ineffective if the diagonal crack opening is excessive. As a result, all the
shear on the section will be on component Vc, leading to beam collapse as the concrete is crushed in
compression [6].

The shear capacity of beams is mainly influenced by the aggregate interlocking mechanism; thus,
the beams’ ultimate load capacity under shear is influenced by this mechanism [7,8]. As per [9], Va for
beams of CS ranging between 26 and 49 MPa accounts for 33% to 50% of the overall shear resistance
of such beams. However, Va seems not to contribute significantly towards shear at higher concrete
strengths as evidenced by the smooth fracture planes and straight cracks, which do not cover the whole
aggregates as earlier mentioned. Similarly, [10] suggested taking Va as zero for concrete with CS of
>62 MPa.

Based on the existing literature on RC shear slender beams without web reinforcement, it is evident
that no common rational theory exists to explain the collaboration between the three internal forces
that contribute to shear resistance, particularly for HSC [11]. It appears that the precise estimation of
shear capacity of HCS slender RC beam in the absence of shear stirrups is an open topic in research
communities of structural engineering [12,13]. The relationship between the intricate modeling variable
has a remarkable influence on the shear capacity of HSC slender beams without stirrups. As such, the
regression-based models are not considered ideal for such an application [14]. The existing stochasticity
or nonlinearity in the experimental database initiates a very complex regression problem that needs a
sophisticated modeling approach to mimic its actual internal mechanism. Artificial intelligence (AI)
models have found wide application in solving different problems in civil engineering due to their
interesting features, such as their auto-search and adaptation capability when finding multi-variable
interrelationships [15–20]. The shear strength (Ss) problem related to the structural engineering field has
been investigated using the feasibility of AI models that have demonstrated positive progress [8,21,22].

Several versions of AI models have been developed for beam Ss prediction, such as artificial
neural network (ANN) [15,23–25], support vector machine (SVM) [26–29], evolutionary computing
models (ECM) [30–33], and adaptive neuro-fuzzy inference system (ANFIS) [34–38]. Among all the
aforementioned AI models, ANFIS confirmed its potential in modeling beam Ss mechanisms over the
other models. The ANFIS model is characterized by the capability to mimic and capture the associated
non-linearity and stochasticity of data time series [39]. However, the ANFIS model is associated
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with a major drawback, which is the membership function tuning parameters. Thus, combining the
optimization algorithms, which are inspired by the behavior of animals and plants in nature, with
a standalone ANFIS model appears as a new alternative model for improving its performances in
solving difficult problems [40,41]. The hybrid ANFIS model exhibited a noticeable implementation
for diverse civil engineering applications [42–44]. In the current research, some parameters of the
optimization algorithms (e.g., mutation probability) were assigned based on the reported literature
review studies, while the appropriate values of those parameters can be obtained using the Taguchi
approach [45]. This study assumes that the prediction modeling is associated with only input variables
and model structures uncertainties, while the other uncertainty sources such as measurement errors,
data handling, and inadequate sampling were ignored. The modeled dataset was hypothesized to be
associated with redundant observations, and thus the dataset was constructed based on two scenarios
of non-processed and pre-processed.

The main motivation of this study is to investigate the feasibility of the novel hybrid ANFIS
models for modeling high-strength concrete beam Ss. The modeling procedure is involved in several
experiments of HSC slender beams. Being that deep beams behave differently compared to the slender
beams (owing to size effect), only slender beams were used in this research. The data analysis focused
on ascertaining the model validity and establishing its limitations. Before the prediction process,
several input combinations were constructed using the related physical properties including the
effective depth of beam (d), shear span (a), maximum size of aggregate (ag), compressive strength
of concrete (fc), and percentage of tension reinforcement (ρ). The Ss of the HSC slender beams is
predicted using two different modeling scenarios based on (i) non-processed (initial) dataset (NP)
and (ii) pre-processed dataset (PP) to investigate the impact of the non-homogeneity of the dataset on
prediction result accuracy.

2. Materials and Methods

2.1. Database Description

An experimental dataset of HSC slender beams which fails in shear has been selected for
constructing the applied hybrid AI models. The data were gathered from 33 intensive published
types of research from between 1957 and 2013 [4,46–77]. Total observations of the dataset are 250,
which are based on rectangular HSC slender RC beams. In general, the data were selected based on
geometric and material characteristics appearance. Furthermore, the followings precise standards
were considered strictly during the selection of the esteemed database:

i. The selection of beams was based on those that were longitudinally reinforced with pre-stressed
and fewer steel rebars and lack of shear stirrups.

ii. Shear failure was the primary benchmark for the specimens which were uniformly loaded along
with one or two weights.

iii. Range of shear span (a) was observed between 399–2745, where the data are skewed right
(Skewness = 1.85) and leptokurtic (Kurtosis = 3.73). However, in the case of ag/d, the calculated
value was found to be between 0.010811–0.176056, where data were characterised by leptokurtic
(kurtosis = 2.02) but considerably symmetric skewness (0.33).

iv. The majority (83.6%) of observations contained the range of effective depth of beam (d) from 133
to 300 mm; besides, 65.2% of data lie between 200 and 300 mm.

v. Acceptance of the dimension of the shear span was ≥ 2.5 times the a/d (effective depth), where the
majority (84%) of the data falls in the 2.5–4 range of a/d. Moreover, ag varies from 9.5 to 25.4 mm,
where 92.0% of the dataset contains the maximum size of aggregate between 9.5 and 19 mm.

vi. Most of the data (92%) contain the aggregate size between 9.5 and 19 mm; in case of compressive
strength of concrete ( f ′c ), 90% of the data lie at≤ 100 MPa of f ′c , and 4% out of 100 MPa. Among 90%,
the majority (56%) were between 40–60 MPa; in case of the percentage of tension reinforcement
(ρ), the majority of the data (91.2%) are up to 4%.
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It is worth mentioning that there are some limitations in the data which have not been considered,
such as rebar diameter, the concrete tensile strength, the initial shrinkage/thermal strains at early ages,
which might have an impact on shear strength of HCS slender RC beams due to being absent in the
database; hence, these have been excluded from this study.

2.2. Soft Computing Models Overview

Artificial intelligence models are used to solve complex engineering applications associated with
non-linear phenomena that cannot be generally solved using classical regression models. AI models
eliminate the disadvantages of hard computing simulation. For instance, hard computing requires
exact models, but since the AI model’s procedure is similar to a black box, the problem does
not need to be perfectly modeled. Hence, AI can consider both partial truth and approximation,
and models that are soft computing methods can incorporate uncertainty. The goal of the present
study is to assess the shear strength of a high-strength concrete slender beam utilizing efficient hybrid
fuzzy-logic-based approaches. These models include the integrated ANFIS-ACO (ANFIS Ant Colony
Optimization), ANFIS-PSO (ANFIS particle swarm optimization), ANFIS-DE (ANFIS differential
evolution), and ANFIS-GA (ANFIS genetic algorithm). This section is explained by the main theories
of the applied models.

2.2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Fuzzy logic (FL) was introduced many decades ago as a method for identifying several aspects
of data that can consider partial set membership [78]. The prime reason behind its popularity is that
FL permits input variable even though it is not precisely classified as numerical input [79]. The most
important advantage of FL is that it easily generates conclusions from noisy or imprecise input data.

Choosing the appropriate types of membership functions and the reasonable fuzzy rules to
yield the best results depends on having relevant experience and knowledge. In some cases, heavy
computing tasks, such as repetitive calculation, must also be used. To train the fuzzy logic model,
artificial neural networks can be applied to train the model. A synthesis of neural networks with fuzzy
logic approaches could offer a practical tool with the primary abilities of both methods [80–82].

A neuro-fuzzy model can be applied as a hybrid algorithm for making decisions from a fuzzy
modern soft-computing-based approach using ANN. ANFIS was introduced in 1993 by Jang [83].
The neuro-fuzzy model was improved with the intrinsic learning abilities of ANN. The essential
components of fuzzy systems are rules, which are also the basic parts of the whole algorithm. The ANN
is used to optimize these rules [84].

The first proposed ANFIS model had five layers. Figure 1 schematically depicts the structure of
ANFIS. The rules are as follows [83].

Rule #1 : f X is A1 and Y is B1, then f1 = p1x + q1y + r1 (1)

Rule #2 : I f X is A2 and Y is B2, then f2 = p2x + q2y + r2 (2)

In the above relations, A1-A2 and B1-B2 refer to membership functions for input x and input
y, respectively.

In the first phase, each node is described as a square node for making the membership grades.
Applying the membership function, inputs (x and y) are mapped as linguistic terms.

O1,i = µAi(x), i = 1, 2. (3)

where x is the input value to node i, and Ai is the linguistic term. O1
i is the membership function of Ai.

In general, there are three significant types of membership functions, named Gaussian, triangular, and
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trapezoidal. The mathematical expression of the Gaussian function is determined as the following
formula:

µAi(x) = exp

−(x− ai
bi

)2 (4)

where ai and bi are defined as the distribution parameters.
Similar to the previous phase, in layer two, each node is circular, and the output is measured

utilizing the following relation:

O2,i = wi = µAi(x) ∗ µBi(x), i = 1, 2. (5)

In the above relation, wi is determined as the weight of the rule.
In the next phase, the nodes compute the ratio of the weight of rules, divided by the sum of total

weights, as the following relation:

O3,i = wi =
wi

w1 + w2
, i = 1, 2. (6)

The task of this phase is the measurement of the outputs associated with each if–then rule, obtained
using the flowing function.

O4,i = wi fi = wi(pix + qiy + ri), i = 1, 2. (7)

In the above relation, wi refers to the output of the previous layer. pi, qi, and ri are updated during
the training phase.

In the final phase, the summation of the layers in one circle node is computed as follows:

O5,i =
∑

i

wi fi =
∑

i wi fi∑
i wi

, i = 1, 2. (8)
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2.2.2. PSO Algorithm

Particle swarm optimization is inspired by the behavior and migration of a group of birds and
was presented by Eberhart and Kennedy a few decades ago [85]. They considered three operators:
alignment, separation, and cohesion. This optimization model utilizes a body of particles which move
in the search space to explore the optimum solution. In the search space, the positions of particles
are determined based on their own experience in combination with others’ experiences [86]. Their
speeds are similarly adjusted. The positions of the particles change as determined by their current
position, velocity, and distance to the superior particle. In each iteration, the update rule for each
particle determined as follows

p = p + v (9)

with,
v = v + c1.rand.(pBest − p) + c2.rand.(gBest − p) (10)

where p, v, c1, c2, pBest, gBest, and rand refer to the position, the direction, the weight of local solution, the
weight of global solution, the best position associated with total particles, the best-obtained position of
the swarm and a random operator which generates random values between 0 and 1, respectively.

In each iteration, the velocities of the particles are re-computed using the following equation:

Vi
t+1 = vi

t + c1U1
t(pbi

t - pi
t) + c2U2

t(gbt - pi
t) (11)

The three parameters in the equation as mentioned earlier stand for inertia, personal effect,
and swarm effect coefficients, respectively. Figure 2 presents the flowchart of PSO.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 30 
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2.2.3. Ant Colony Optimization Algorithm (ACO)

This optimization model (ACO) was introduced by Dorigo about 30 years ago [87]. Many
researchers subsequently extended the system. Since ACO algorithms are capable of solving statics
problems as well as dynamic ones, they can be undertaken as reliable models in different optimization
problems. This model is inspired by some behaviours such as food searching, the division of labor,



Appl. Sci. 2020, 10, 3811 7 of 25

brood sorting, and co-operative transport (stigmergy), which make ant colonies more organized. In
nature, ant colonies are well known as complex but well-organized structures with their activities
being in line with stigmergy.

Ants communicate with each other using pheromone trails which help them to seek the shortest
way to the source of food. A similar procedure is used in the ACO algorithm for finding the optimal
point in the search space. The ants are moved through the paths in forward and backward manners.
The ants apply an iterative procedure to explore the perfect solution associated with the problem [88,89].
Figure 2 shows the flowchart for ACO.

2.2.4. DE Algorithm

In engineering problems, objective functions may be continuous, nonlinear, or multi-dimensional.
Some may trap in local minima. In such issues, a population-based approach which has stochastic
features is required to achieve the solution. The differential evolution (DE) model, which was presented
by Storn and Price in 1996, has these features [90,91].

To find the best solution for a specific objective function which contains different real parameters
(n), the vectors are expressed the following form

xi, G = [x1, i, G, x2, i, G, . . . xn, i, G] i = 1, 2, . . . , k. (12)

In the above relation, G refers to the generation number. Identifying maximum and minimum
values for each parameter is described as follows:

xLj ≤ xj, i, 1 ≤ xUj (13)

Therefore, the primary values of the parameters are associated with identical probabilities. The
schematic flowchart of the DE algorithm is shown in Figure 2.

2.2.5. Genetic Algorithm (GA)

The genetic algorithm (GA) is an evolutionary search model which can be utilized to solve for
optimization problems [92,93]. The idea of natural selection, which originated from Darwinian theory,
is the basis of this model. The model starts by generating the primary population randomly. The
fitness of each individual is assessed utilizing the fitness function. Afterward, in the selection phase,
approaches, e.g., the Roulette Wheel approach, are used. To produce new offspring, crossover and
mutation operators are applied. These new offspring could be considered as the new solutions (for
optimization problems). Figure 2 schematically presents the GA [94].

2.2.6. Tuning Procedure of the ANFIS Parameters

Previous studies confirmed that the standalone ANFIS is limited in solving complex problems
due to trapping in local optimum results [95]. Besides, it requires a time-consuming process to tune the
parameters of membership functions and fuzzy logic rules [96]. The combination of classical ANFIS
with meta-heuristic optimization techniques inspired by nature can provide fast convergence speed
while the trapping in of local optimum results can be tackled. The classical ANFIS includes two major
sections as antecedent and consequent parts. Tuning the antecedent (ai and bi in Equation (4)) and
consequent (pi, qi and ri in Equation (7)) parameters is essential to obtain reliable solutions. The ANFIS
uses gradient-based techniques to tune those parameters. The major disadvantage of these techniques
is trapping in local optimum solutions. This study aims to tune ANFIS parameters (antecedent and
consequent parameters) by several meta-heuristic optimization algorithms (e.g., PSO, GA, DE and
ACO) according to following steps:

i. Select the training data.
ii. Provide a primary structure for ANFIS.



Appl. Sci. 2020, 10, 3811 8 of 25

iii. Determine the initial values of antecedent and consequent parameters.
iv. In iterative computation, tune the ANFIS parameters using the meta-heuristic techniques.
v. In each iteration, assess the value of the objective function (i.e., root mean square error (RMSE)).
vi. Save the best parameter set of the fuzzy model and terminate the tuning process when the

stopping criterion is satisfied; otherwise, restart step iv.

2.3. Modeling Development Phase

The developed models were built based on several related variables including depth of beam (d),
shear span (a), maximum size of aggregate (ag), compressive strength of concrete (fc) and percentage
of tension reinforcement (ρ). Non-processed (NP) and pre-processed (PP) modeling scenarios were
established to investigate the impact of non-homogeneity of the dataset on prediction result. Table 1
presents the constructed input combinations for both pre-processed and non-pre-processed dataset
modeling development. A total of eighteen models (Model 1–18) were initiated by different input
combination for the possibility to achieve higher prediction accuracy. All these models of input
combinations were used to develop classical ANFIS, ANFIS-ACO, ANFIS-DE, ANFIS-GA, and
ANFIS-PSO models. The total number of dataset items is 250 observations. For the non-pre-processed
dataset scenario, 30%–70% data division was utilized for the training and testing stages, whereas, for
the pre-processed data, a total of 232 observations were used for the modeling with the same data
division percentage.

Table 1. The input combinations constructed for building the proposed hybrid estimator models for
both pre-processed and non-preprocessed dataset.

Models Data d a ag fc ρ a/d ag/d

Model-1 Not Pre-processed 3 3 3 3 3 - -

Model-2 Not Pre-processed - 3 3 3 3 - -

Model-3 Not Pre-processed 3 - 3 3 3 - -

Model-4 Not Pre-processed 3 3 - 3 3 - -

Model-5 Not Pre-processed 3 3 3 - 3 - -

Model-6 Not Pre-processed 3 3 3 3 - - -

Model-7 Pre-processed 3 3 3 3 3 - -

Model-8 Pre-processed - 3 3 3 3 - -

Model-9 Pre-processed 3 - 3 3 3 - -

Model-10 Pre-processed 3 3 - 3 3 - -

Model-11 Pre-processed 3 3 3 - 3 - -

Model-12 Pre-processed 3 3 3 3 - - -

Model-13 Pre-processed 3 - - 3 3 3 3

Model-14 Pre-processed - - - 3 3 3 3

Model-15 Pre-processed 3 - - 3 3 - 3

Model-16 Pre-processed 3 - - 3 3 3 -

Model-17 Pre-processed 3 - - - 3 3 3

Model-18 Pre-processed 3 - - 3 - 3 3

2.4. Description of Performance Indices

To evaluate the accuracy of proposed estimator models, the performance indices such as mean
square error (RMSE), Standardized Root Mean Square Error (SRMSE), mean absolute error (MAE),
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Legate and McCabe’s index (LMI), correlation coefficient (CC), PBIAS, Willmott’s index (WI), and
relative root mean square error (RRMSE) are employed as following equations [27,97–100]:

RMSE =

√
1

Ns

∑Ns

j=1

(
(Ss)exp − (Ss)Sim

)2
(14)

SRMSE =

√
1

Ns

∑Ns
j=1

(
(Ss)exp − (Ss)Sim

)2

(
ds
D

)
Obs

(15)

MAE =
1

Ns

∑Ns

j=1

∣∣∣∣(Ss)exp − (Ss)Sim

∣∣∣∣ (16)

CC =

∑Ns
j=1

(
(Ss)exp − (Ss)exp

)(
(Ss)Sim − (Ss)Sim

)
√∑Ns

j=1

(
(Ss)exp − (Ss)exp

)2 ∑NT
j=1

(
(Ss)Sim − (Ss)Sim

)2
(17)

WI = 1−


∑Ns

i=1

(
(Ss)exp − (Ss)Sim

)2

∑Ns
i=1

(∣∣∣∣(Ss)Sim − (Ss)exp

∣∣∣∣+ ∣∣∣∣(Ss)exp − (Ss)exp

∣∣∣∣)2

 (18)

LMI = 1−


∑Ns

i=1

∣∣∣∣(Ss)exp − (Ss)Sim

∣∣∣∣∑Ns
i=1

∣∣∣∣(Ss)exp − (Ss)exp

∣∣∣∣
 (19)

PBIAS =


∑Ns

i=1

(
(Ss)exp − (Ss)Sim

)
∑NS

i=1(Ss)exp

× 100 (20)

where the (Ss)exp and (Ss)Sim are the experimental and simulated shear strength, (Ss)exp and (Ss)Sim
are their mean values, and Ns is the sample size.

3. Results and Discussion

The main focus of this paper is to establish a reliable and robust model based on the ability of
different types of hybrid ANFIS approaches to predict the Ss prediction of HSC. The challenges of
the mathematical and empirical relations establishing the appropriate relationship between the Ss
and HSC properties highlight the intervention of soft computing aids. However, establishing the
internal mechanism between the related predictors towards the Ss of HSC has a substantial motive
for investigation and examination. Furthermore, robust and reliable models can always construct a
precise intelligence-optimizing technology in the field of structural engineering. Thus, the proposal of
a new hybrid intelligence model can enhance the reliable contribution to the structure design along
with various reinforcement concrete engineering perspectives.

The proposed hybrid intelligence models and the standalone ANFIS models were evaluated based
on various performance metrics and graphical presentations, including heat map, scatterplot, boxplot,
and Taylor diagrams over the training and testing phase for modeling Ss of HSC. Besides, the new
ANFIS models were assessed based on the hybridization algorithms, variables, and data uncertainty.

The performance of classical ANFIS is assessed in both training and testing period for different
input combination models (Model 1–18) using RMSE, MAE, LMI, CC, WI, and SRMSE (Table 2).
The input combination of Model 8 (Incorporated: a, ag, fc, and ρ) appeared to be the most appropriate
choice for generating good prediction results over the training and testing stages. The acquired
magnitudes of assessing metrics in training and testing are: ANFIS (RMSE = 0.263, 0.314; MAE = 0.198,
0.224; LMI = 0.675, 0.640; CC = 0.936, 0.920; WI = 0.966, 0.957; SRMSE = 15.011, 19.584).
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Table 2. The prediction performance of the standalone ANFIS model for all proposed input combinations
over the training and testing stage. The boldfaced represents the best ANFIS model.

Predictive
Models

Input
Combination Stage RMSE MAE LMI CC WI SRMSE

ANFIS Model-1 Train 0.317 0.227 0.626 0.905 0.948 17.883
ANFIS Model-1 Test 0.427 0.313 0.495 0.848 0.917 25.706
ANFIS Model-2 Train 0.298 0.220 0.639 0.917 0.955 16.792
ANFIS Model-2 Test 0.397 0.279 0.550 0.871 0.926 23.887
ANFIS Model-3 Train 0.359 0.248 0.593 0.876 0.930 20.221
ANFIS Model-3 Test 1.221 0.486 0.216 0.439 0.558 73.470
ANFIS Model-4 Train 0.290 0.209 0.656 0.921 0.957 16.371
ANFIS Model-4 Test 0.417 0.303 0.512 0.857 0.921 25.088
ANFIS Model-5 Train 0.330 0.245 0.597 0.896 0.943 18.634
ANFIS Model-5 Test 0.430 0.318 0.487 0.845 0.912 25.872
ANFIS Model-6 Train 0.456 0.346 0.431 0.790 0.875 25.730
ANFIS Model-6 Test 0.537 0.418 0.325 0.748 0.851 32.298
ANFIS Model-7 Train 0.295 0.218 0.642 0.919 0.956 16.852
ANFIS Model-7 Test 0.320 0.241 0.613 0.916 0.956 19.936
ANFIS Model-8 Train 0.263 0.198 0.675 0.936 0.966 15.011
ANFIS Model-8 Test 0.314 0.224 0.640 0.920 0.957 19.584
ANFIS Model-9 Train 0.356 0.244 0.598 0.879 0.932 20.321
ANFIS Model-9 Test 1.076 0.426 0.316 0.477 0.614 67.103
ANFIS Model-10 Train 0.289 0.211 0.653 0.922 0.958 16.483
ANFIS Model-10 Test 0.327 0.228 0.635 0.912 0.951 20.403
ANFIS Model-11 Train 0.308 0.230 0.623 0.911 0.951 17.603
ANFIS Model-11 Test 0.391 0.290 0.535 0.872 0.927 24.373
ANFIS Model-12 Train 0.451 0.341 0.439 0.797 0.879 25.787
ANFIS Model-12 Test 0.481 0.380 0.390 0.798 0.881 29.972
ANFIS Model-13 Train 0.288 0.223 0.633 0.923 0.958 16.445
ANFIS Model-13 Test 0.366 0.273 0.562 0.889 0.936 22.811
ANFIS Model-14 Train 0.297 0.229 0.623 0.918 0.955 16.965
ANFIS Model-14 Test 0.333 0.243 0.611 0.909 0.951 20.743
ANFIS Model-15 Train 0.347 0.255 0.580 0.885 0.936 19.849
ANFIS Model-15 Test 0.415 0.315 0.494 0.861 0.909 25.859
ANFIS Model-16 Train 0.302 0.223 0.633 0.915 0.954 17.228
ANFIS Model-16 Test 0.305 0.227 0.636 0.925 0.957 19.045
ANFIS Model-17 Train 0.284 0.215 0.646 0.925 0.960 16.223
ANFIS Model-17 Test 0.356 0.258 0.586 0.895 0.944 22.180
ANFIS Model-18 Train 0.470 0.354 0.418 0.778 0.862 26.841
ANFIS Model-18 Test 0.505 0.402 0.355 0.777 0.859 31.477

The hybrid ANFIS-ACO model produced the lowest magnitudes of RMSE, MAE, SRMSE, and
highest LMI, CC, and WI values (RMSE ≈ 0.377, 0.399, MAE ≈ 0.282, 0.289, SRMSE ≈ 21.563, 24.912)
and (LMI ≈ 0.537, 0.536, CC ≈ 0.863, 0.870, WI ≈ 0.921, 0.918) for both training and testing stages,
respectively. The best prediction was achieved for the input combination of Model-16 (incorporated:
d, ρ, a/d, fc). These metrics for other input combination models using ANFIS-ACO can be seen in
Table 3. Likewise, the preciseness of ANFIS-ACO with input combination in Model-16 is considerably
good for predicting Ss (Table 3).

Tables 4 and 5 present the statistical performance accuracy of ANFIS-DE and ANFIS-GA models.
The ANFIS-DE with input combination in Model-13 (incorporated: d, ρ, a/d, ag/d, fc) performed the
reasonable prediction for the Ss by obtaining (RMSE = 0.375, 0.398; MAE = 0.281, 0.291; LMI = 0.538,
0.533; CC = 0.865, 0.870; WI = 0.922, 0.919; SRMSE = 21.417, 24.838) for both training and testing phases.
However, ANFIS-GA with Model-16 (incorporated: d, ρ, a/d, fc) achieved highest level of accuracy
in accordance the statistical metrics (RMSE = 0.286, 0.296; MAE = 0.224, 0.243; LMI = 0.632, 0.610;
CC = 0.924, 0.930; WI = 0.959, 0.962; SRMSE = 16.358, 18.477) (Table 5).
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Table 3. The prediction performance of the hybrid ANFIS-ACO model for all proposed input
combinations over the training and testing stage. The boldface denotes the best ANFIS-ACO model.

Predictive
Models

Input
Combination Stages RMSE MAE LMI CC WI SRMSE

ANFIS-ACO Model-1 Train 0.381 0.286 0.530 0.860 0.919 21.460
ANFIS-ACO Model-1 Test 0.414 0.307 0.505 0.859 0.914 24.940
ANFIS-ACO Model-2 Train 0.388 0.291 0.522 0.853 0.915 21.889
ANFIS-ACO Model-2 Test 0.425 0.313 0.495 0.852 0.906 25.569
ANFIS-ACO Model-3 Train 0.418 0.314 0.484 0.828 0.898 23.567
ANFIS-ACO Model-3 test 0.467 0.355 0.427 0.817 0.879 28.103
ANFIS-ACO Model-4 Train 0.382 0.283 0.535 0.859 0.919 21.525
ANFIS-ACO Model-4 Test 0.414 0.306 0.506 0.859 0.913 24.931
ANFIS-ACO Model-5 Train 0.390 0.289 0.525 0.852 0.914 22.003
ANFIS-ACO Model-5 Test 0.417 0.303 0.511 0.857 0.912 25.092
ANFIS-ACO Model-6 Train 0.575 0.474 0.221 0.635 0.743 32.431
ANFIS-ACO Model-6 Test 0.648 0.522 0.158 0.599 0.737 38.993
ANFIS-ACO Model-7 Train 0.377 0.284 0.533 0.863 0.922 21.557
ANFIS-ACO Model-7 Test 0.405 0.296 0.525 0.865 0.916 25.261
ANFIS-ACO Model-8 Train 0.386 0.289 0.525 0.856 0.917 22.050
ANFIS-ACO Model-8 Test 0.421 0.306 0.508 0.853 0.906 26.274
ANFIS-ACO Model-9 Train 0.419 0.314 0.483 0.828 0.898 23.914
ANFIS-ACO Model-9 Test 0.477 0.367 0.411 0.804 0.872 29.763
ANFIS-ACO Model-10 Train 0.379 0.280 0.540 0.862 0.921 21.659
ANFIS-ACO Model-10 Test 0.404 0.293 0.530 0.866 0.916 25.229
ANFIS-ACO Model-11 Train 0.383 0.285 0.531 0.859 0.919 21.876
ANFIS-ACO Model-11 Test 0.408 0.293 0.530 0.862 0.914 25.465
ANFIS-ACO Model-12 Train 0.580 0.478 0.215 0.630 0.738 33.146
ANFIS-ACO Model-12 Test 0.602 0.487 0.219 0.655 0.770 37.556
ANFIS-ACO Model-13 Train 0.377 0.283 0.535 0.863 0.922 21.552
ANFIS-ACO Model-13 Test 0.399 0.289 0.536 0.870 0.918 24.914
ANFIS-ACO Model-14 Train 0.418 0.306 0.497 0.829 0.898 23.865
ANFIS-ACO Model-14 Test 0.438 0.317 0.491 0.840 0.896 27.338
ANFIS-ACO Model-15 Train 0.427 0.320 0.474 0.820 0.893 24.407
ANFIS-ACO Model-15 Test 0.478 0.366 0.413 0.807 0.866 29.828
ANFIS-ACO Model-16 Train 0.377 0.282 0.537 0.863 0.921 21.563
ANFIS-ACO Model-16 Test 0.399 0.289 0.536 0.870 0.918 24.912
ANFIS-ACO Model-17 Train 0.384 0.286 0.530 0.858 0.918 21.936
ANFIS-ACO Model-17 Test 0.403 0.288 0.538 0.866 0.916 25.162
ANFIS-ACO Model-18 Train 0.581 0.477 0.215 0.630 0.739 33.162
ANFIS-ACO Model-18 Test 0.599 0.477 0.235 0.659 0.773 37.391

Table 4. The prediction performance of the hybrid ANFIS-DE model for all proposed input combinations
over the training and testing stage. The boldface denotes the best modeling results.

Predictive
Models

Input
Combination Stages RMSE MAE LMI CC WI SRMSE

ANFIS-DE Model-1 Train 0.378 0.281 0.538 0.862 0.920 21.299
ANFIS-DE Model-1 Test 0.414 0.304 0.509 0.859 0.913 24.914
ANFIS-DE Model-2 Train 0.383 0.286 0.529 0.858 0.917 21.583
ANFIS-DE Model-2 Test 0.988 0.403 0.350 0.292 0.608 59.465
ANFIS-DE Model-3 Train 0.408 0.314 0.485 0.838 0.903 23.023
ANFIS-DE Model-3 Test 0.459 0.357 0.424 0.827 0.883 27.628
ANFIS-DE Model-4 Train 0.382 0.283 0.535 0.859 0.919 21.521
ANFIS-DE Model-4 Test 0.414 0.306 0.506 0.859 0.913 24.931
ANFIS-DE Model-5 Train 0.390 0.289 0.525 0.852 0.914 22.003
ANFIS-DE Model-5 Test 0.417 0.303 0.511 0.857 0.912 25.092
ANFIS-DE Model-6 Train 0.574 0.469 0.229 0.637 0.741 32.372
ANFIS-DE Model-6 Test 0.646 0.518 0.164 0.600 0.734 38.882
ANFIS-DE Model-7 Train 0.356 0.263 0.568 0.883 0.929 20.337
ANFIS-DE Model-7 Test 0.407 0.297 0.523 0.868 0.917 25.371
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Table 4. Cont.

Predictive
Models

Input
Combination Stages RMSE MAE LMI CC WI SRMSE

ANFIS-DE Model-8 Train 0.376 0.284 0.533 0.865 0.925 21.474
ANFIS-DE Model-8 Test 0.406 0.299 0.520 0.863 0.917 25.314
ANFIS-DE Model-9 Train 0.416 0.308 0.494 0.831 0.902 23.745
ANFIS-DE Model-9 Test 0.470 0.358 0.426 0.811 0.876 29.340
ANFIS-DE Model-10 Train 0.379 0.280 0.540 0.862 0.921 21.659
ANFIS-DE Model-10 Test 0.404 0.293 0.530 0.866 0.916 25.229
ANFIS-DE Model-11 Train 0.383 0.285 0.531 0.859 0.919 21.876
ANFIS-DE Model-11 Test 0.408 0.293 0.529 0.862 0.914 25.466
ANFIS-DE Model-12 Train 0.559 0.450 0.260 0.674 0.780 31.958
ANFIS-DE Model-12 Test 0.583 0.471 0.243 0.692 0.797 36.364
ANFIS-DE Model-13 Train 0.375 0.281 0.538 0.865 0.922 21.417
ANFIS-DE Model-13 Test 0.398 0.291 0.533 0.870 0.919 24.838
ANFIS-DE Model-14 Train 0.404 0.307 0.496 0.845 0.909 23.073
ANFIS-DE Model-14 Test 0.411 0.308 0.506 0.858 0.915 25.631
ANFIS-DE Model-15 Train 0.402 0.295 0.515 0.844 0.913 22.941
ANFIS-DE Model-15 Test 0.462 0.345 0.445 0.815 0.889 28.833
ANFIS-DE Model-16 Train 0.377 0.281 0.538 0.863 0.922 21.542
ANFIS-DE Model-16 Test 0.399 0.289 0.536 0.870 0.918 24.912
ANFIS-DE Model-17 Train 0.381 0.283 0.534 0.861 0.919 21.745
ANFIS-DE Model-17 Test 0.399 0.287 0.540 0.870 0.917 24.893
ANFIS-DE Model-18 Train 0.580 0.477 0.216 0.631 0.740 33.116
ANFIS-DE Model-18 Test 0.599 0.477 0.235 0.659 0.773 37.391

Table 5. The prediction performance of the hybrid ANFIS-GA model for all proposed input combinations
over the training and testing stage. The boldface denotes the best modeling results.

Predictive
Models

Input
Combination Stages RMSE MAE LMI CC WI SRMSE

ANFIS-GA Model-1 Train 0.291 0.222 0.636 0.922 0.958 16.416
ANFIS-GA Model-1 Test 0.368 0.271 0.562 0.889 0.939 22.172
ANFIS-GA Model-2 Train 0.313 0.235 0.614 0.908 0.951 17.673
ANFIS-GA Model-2 Test 0.433 0.297 0.520 0.844 0.915 26.069
ANFIS-GA Model-3 Train 0.383 0.270 0.556 0.859 0.921 21.571
ANFIS-GA Model-3 Test 0.457 0.345 0.443 0.822 0.896 27.497
ANFIS-GA Model-4 Train 0.301 0.215 0.647 0.915 0.953 16.976
ANFIS-GA Model-4 Test 0.356 0.262 0.578 0.897 0.943 21.442
ANFIS-GA Model-5 Train 0.325 0.245 0.598 0.900 0.944 18.343
ANFIS-GA Model-5 Test 0.392 0.282 0.544 0.874 0.926 23.577
ANFIS-GA Model-6 Train 0.479 0.385 0.367 0.766 0.858 27.024
ANFIS-GA Model-6 Test 0.571 0.427 0.311 0.711 0.828 34.367
ANFIS-GA Model-7 Train 0.347 0.256 0.579 0.887 0.932 19.838
ANFIS-GA Model-7 Test 0.385 0.284 0.544 0.881 0.923 24.027
ANFIS-GA Model-8 Train 0.300 0.231 0.620 0.918 0.957 17.127
ANFIS-GA Model-8 Test 0.328 0.237 0.619 0.913 0.955 20.444
ANFIS-GA Model-9 Train 0.352 0.249 0.591 0.883 0.932 20.101
ANFIS-GA Model-9 Test 0.448 0.336 0.461 0.828 0.896 27.925
ANFIS-GA Model-10 Train 0.352 0.259 0.574 0.884 0.930 20.111
ANFIS-GA Model-10 Test 0.389 0.285 0.542 0.876 0.923 24.277
ANFIS-GA Model-11 Train 0.336 0.258 0.576 0.894 0.940 19.167
ANFIS-GA Model-11 Test 0.376 0.280 0.551 0.882 0.933 23.466
ANFIS-GA Model-12 Train 0.457 0.350 0.424 0.791 0.870 26.120
ANFIS-GA Model-12 Test 0.431 0.344 0.447 0.842 0.905 26.884
ANFIS-GA Model-13 Train 0.300 0.232 0.618 0.916 0.955 17.119
ANFIS-GA Model-13 Test 0.331 0.262 0.579 0.912 0.951 20.650
ANFIS-GA Model-14 Train 0.295 0.237 0.610 0.922 0.959 16.836
ANFIS-GA Model-14 Test 0.370 0.279 0.552 0.897 0.945 23.062
ANFIS-GA Model-15 Train 0.378 0.270 0.556 0.863 0.923 21.571
ANFIS-GA Model-15 Test 0.447 0.328 0.474 0.828 0.898 27.859
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Table 5. Cont.

Predictive
Models

Input
Combination Stages RMSE MAE LMI CC WI SRMSE

ANFIS-GA Model-16 Train 0.286 0.224 0.632 0.924 0.959 16.358
ANFIS-GA Model-16 Test 0.296 0.243 0.610 0.930 0.962 18.477
ANFIS-GA Model-17 Train 0.317 0.243 0.601 0.906 0.950 18.103
ANFIS-GA Model-17 Test 0.366 0.268 0.570 0.893 0.944 22.812
ANFIS-GA Model-18 Train 0.467 0.370 0.392 0.783 0.874 26.649
ANFIS-GA Model-18 Test 0.491 0.405 0.349 0.806 0.894 30.637

The best performing hybrid model (i.e., ANFIS-PSO) used input combination Model-7 configured
with pre-processed variables (d, a, ag, fc, and ρ) (Table 6). The best inputs combination (i.e., Model-7) was
generated good prediction results over both modeling phases with statistical results (RMSE = 0.206, 0.283;
MAE = 0.157, 0.213; LMI = 0.742, 0.659; CC = 0.961, 0.935; WI = 0.980, 0.965; SRMSE = 11.791, 17.671).

Table 6. The prediction performance of the hybrid ANFIS-PSO model for all proposed input
combinations over the training and testing stage. The boldface denotes the best modeling results.

Predictive
Models

Input
Combination Stages RMSE MAE LMI CC WI SRMSE

ANFIS-PSO Model-1 Train 0.294 0.198 0.675 0.919 0.956 16.558
ANFIS-PSO Model-1 Test 0.394 0.291 0.531 0.871 0.928 23.716
ANFIS-PSO Model-2 Train 0.235 0.187 0.693 0.949 0.973 13.266
ANFIS-PSO Model-2 Test 0.497 0.317 0.488 0.816 0.901 29.904
ANFIS-PSO Model-3 Train 0.340 0.236 0.612 0.890 0.939 19.183
ANFIS-PSO Model-3 Test 0.432 0.314 0.493 0.844 0.906 26.010
ANFIS-PSO Model-4 Train 0.305 0.224 0.632 0.912 0.952 17.197
ANFIS-PSO Model-4 Test 0.397 0.291 0.531 0.869 0.927 23.916
ANFIS-PSO Model-5 Train 0.265 0.182 0.701 0.935 0.966 14.916
ANFIS-PSO Model-5 Test 0.401 0.274 0.558 0.868 0.929 24.129
ANFIS-PSO Model-6 Train 0.459 0.352 0.421 0.787 0.873 25.894
ANFIS-PSO Model-6 Test 0.541 0.407 0.343 0.743 0.848 32.564
ANFIS-PSO Model-7 Train 0.206 0.157 0.742 0.961 0.980 11.791
ANFIS-PSO Model-7 Test 0.283 0.213 0.659 0.935 0.965 17.671
ANFIS-PSO Model-8 Train 0.208 0.162 0.733 0.960 0.980 11.886
ANFIS-PSO Model-8 Test 0.403 0.277 0.555 0.876 0.934 25.109
ANFIS-PSO Model-9 Train 0.346 0.246 0.596 0.886 0.936 19.766
ANFIS-PSO Model-9 Test 0.414 0.310 0.502 0.855 0.914 25.852
ANFIS-PSO Model-10 Train 0.267 0.201 0.670 0.934 0.965 15.260
ANFIS-PSO Model-10 Test 0.307 0.232 0.628 0.923 0.958 19.156
ANFIS-PSO Model-11 Train 0.347 0.255 0.580 0.886 0.936 19.798
ANFIS-PSO Model-11 Test 0.629 0.356 0.429 0.690 0.828 39.252
ANFIS-PSO Model-12 Train 0.404 0.290 0.523 0.841 0.907 23.078
ANFIS-PSO Model-12 Test 0.467 0.355 0.429 0.812 0.891 29.123
ANFIS-PSO Model-13 Train 0.258 0.186 0.695 0.938 0.967 14.757
ANFIS-PSO Model-13 Test 0.379 0.274 0.560 0.880 0.936 23.629
ANFIS-PSO Model-14 Train 0.244 0.184 0.698 0.945 0.971 13.950
ANFIS-PSO Model-14 Test 0.401 0.284 0.544 0.875 0.934 25.006
ANFIS-PSO Model-15 Train 0.360 0.258 0.575 0.876 0.931 20.570
ANFIS-PSO Model-15 Test 0.440 0.322 0.484 0.835 0.900 27.448
ANFIS-PSO Model-16 Train 0.256 0.195 0.680 0.939 0.968 14.652
ANFIS-PSO Model-16 Test 0.292 0.217 0.652 0.931 0.964 18.211
ANFIS-PSO Model-17 Train 0.288 0.216 0.645 0.923 0.959 16.430
ANFIS-PSO Model-17 Test 0.313 0.244 0.608 0.920 0.957 19.547
ANFIS-PSO Model-18 Train 0.399 0.295 0.516 0.845 0.912 22.818
ANFIS-PSO Model-18 Test 0.479 0.386 0.380 0.810 0.896 29.878

The uncertainties arise in model, variables, and data are reported in Table 7 based on the
interquartile range (IQR) indices. The assessment metrics attained in investigating model and variable
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uncertainties are RMSE = 0.691, 0.403; MAE = 0.649, 0.424; LMI = 0.649, 0.424; CC = 0.687, 0.482;
WI = 0.806, 0.702, and SRMSE = 0.806, 0.403, respectively. Based on the minimal absolute error
metrics (i.e., RMSE, MAE, and SRMSE), the model uncertainty was higher as compared to variable and
data uncertainty.

Table 7. The uncertainty analysis of the proposed model-based IQR of indices.

RMSE MAE LMI CC WI SRMSE

Model Uncertainty 0.691 0.649 0.649 0.687 0.806 0.691
Variable Uncertainty 0.403 0.424 0.424 0.482 0.702 0.403

Data Uncertainty 0.334 0.383 0.340 0.348 0.332 0.404

To finalize the best relation between proposed models and the performance metrics, a heat
map was created, where this diagram depicts the graphical comparison between models in term of
standardized performance indices. It can be seen in Figure 3 that all the standardized performance
indices of ANFIS-PSO (Model-7) have a dark blue color (best performance) in both training and testing
phases, while ANFIS-ACO (Model-16) appeared to be the lowest in terms of these performance metrics
(dark red color).
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the correlation coefficient (R) magnitude (Figure 4). The ANFIS-PSO model was revealed to have 
better correlation in comparison with the other applied models by achieving higher R value as 
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The scatter plots were generated between observed and predicted Ss for the cases of training
and testing phases to strengthen the visualization of the applied model’s performance accuracy with
the correlation coefficient (R) magnitude (Figure 4). The ANFIS-PSO model was revealed to have
better correlation in comparison with the other applied models by achieving higher R value as follows:
(ANFIS-PSO ≈ 0.9611, ANFIS ≈ 0.936, ANFIS-GA ≈ 0.9237, ANFIS-DE ≈ 0.865, ANFIS-ACO ≈ 0.863)
in training phase and (ANFIS-PSO ≈ 0.9611, ANFIS ≈ 0.936, ANFIS-GA ≈ 0.9237, ANFIS-DE ≈ 0.869,
ANFIS-ACO ≈ 0.869) in the testing phase.
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Figure 4. Scatter plots presentation between the observed and predicted values of computed shear
strength for the best input combination and models: (a) Training stage and (b) Testing stage.
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To establish the relationship of the interquartile range (IQR) between observed and predicted Ss
by various proposed models, the boxplots of both training (yellow) and testing (green) phases were
displayed in Figure 5. The distinction of performances is visible since the prediction was generated
via ANFIS-PSO (Model-7) against observed (experimental) Ss, which were significantly accurate in
comparison with ANFIS (Model-8), ANFIS-GA (Model-16), ANFIS-DE (Model-13), and ANFIS-ACO
(Model-16). Hence, the boxplots, together with the benchmark models against observed Ss, ascertain
the better accuracy of ANFIS-PSO model.
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To scale the degree between predicted and experimental Ss of HSC for all proposed hybrid and
standalone ANFIS models, a Taylor diagram was drawn (Figure 6). The magnitudes of correlation
are shown in the form of the Taylor diagram that generates a more detailed appraisal of the model
performances [101] for training and testing phases. The Taylor diagram illustrates a more tangible and
convincing statistical relationship between the predicted and observed Ss depending on correlation
with respect to standard deviations. It is seen that the benchmark models ANFIS-DE and ANFIS-ACO
are not appropriate in the training session, as the correlation to standard deviation points was highly
parted from the ideal observed point as compared to ANFIS-PSO, ANFIS, and ANFIS-GA. The hybrid
ANFIS-PSO model lay close to the perfect observed point in the testing phase more closely, followed by
ANFIS-GA, ANFIS, ANFI-DE, and ANFIS-ACO models, which confirms that the prediction accuracy
of ANFS-PSO was reasonably higher than the benchmark models.
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To evaluate the trade-off between the accuracy and efficiency of the newly developed models,
their computational time (CPU time) is presented in Figure 7.
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Figure 7. Comparison between computational time (CPU time) obtained from hybrid ANFIS models.

From Figure 7, it is evident that the lowest CPU time (853.23 s) is observed in ANFIS-PSO, while
the ANFIS-DE offers the highest value (1272.06 s). The results confirm that the ANFIS-PSO model
provides the highest performance prediction with most top convergence speed in comparison with
other hybrid techniques.

The uncertainties of model, variables, and data were evaluated on the basis of boxplots
presentation based on the performance metrics over the training and testing phases at 25%, 50%,
and 75% quantile together with IQR (Figured 8, 9, and 10). In the cases of the model’s uncertainty
based on performance metrics over the training and testing phases, the majority of the cases revealed
a median value towards the 1st quartile for both training and testing phases (Figure 8). However,
in the case of the training set, all performance metrics exhibited marginal higher redundant than
testing phase with the average values of IQR lies at 0.68 and 0.84, respectively. In cases of variable’s
uncertainty based on performance metrics over the training and testing phases were exhibited the
distinguished characters (Figure 9); during the training phase, the median value tends towards the
3rd quartile in most of the performance metrics. In contrast, it was mixed, tending towards the 1st
quartile (for RMSE, CC, and SRMSE), 2nd quartile (for MAE and LMI), and 3rd quartile (for WI)
in the testing phase. In the cases of the data’s uncertainty based on performance metrics over the
training and testing phases were presented mixed characteristics such as the median line of boxplot
tends towards 1st quartile for RMSE, MAE and LMI, whereas CC and WI were opposite towards the
3rd quartile but remained almost in the middle position in case of SRMSE (Figure 10). However, the
testing phase has demonstrated the stability, which is near the middle for all performance metrics
except WI and SRMSE, which were towards the 1st quartile.
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The aptness of the hybrid and standalone ANFIS models using different input combinations
(Model-1, Model-2 . . . Model-18) to predict Ss was explored in this paper. The accuracy of
the hybrid ANFIS-PSO with input combination (Model-7) was reasonably superior to the other
models (i.e., ANFIS-ACO, ANFIS-GA, ANFIS-DE, and ANFIS) with different combinations of inputs
(Tables 2–6), demonstrating that the ANFIS-PSO was a well-designed algorithm to extract pertinent
features for Ss prediction. The precision of ANFIS-PSO with other algorithms revealed that the
different input combinations were also advantageous in indicating the pertinent features making the
model parsimonious.

Since the fundamental operations of the AI models of machine learning are significantly contingent
upon the patterns in historical datasets that can substantially disturb the learning strategy, the results
here assured the suitability of input combinations to sort out the best combination capturing minimum
pertinent features and characteristics. Prior to the prediction process, several input combinations
are constructed using related physical properties. The Ss of the HSC slender beams was predicted
using two different modeling scenarios based on (i) non-processed (initial) dataset (NP) (i.e., Model-1,
Model-2, . . . , Model-6) and (ii) pre-processed dataset (PP) (i.e., Model-7, Model-8, . . . , Model-18). This
was to examine the influence of the non-homogeneity of the dataset on model prediction accuracy.
Apparently, the PP data were excellent data cleaning prior to the model’s construction. This is due to
the fact that some redundant measures associated with some error can influence the learning process,
which leads to poor predictability capacity.

Based on the attained modeling results, a couple limitations are observed, which are worth to be
highlighted for future research. The investigated computer aid model’s performance can be inspected
based on the changes in the type of aggregated consideration and evaluating the weight of the interlock
strength of the total shear strength. Besides, this is clear, noting that the impact of high strength
beam was reported successfully. However, the impact of normal beam shear strength could be a
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prospective objective. Further, the lateral stability of the slender beam can be investigated, which is
totally dependent upon the data availability of the experiments.

4. Conclusions

A contemporary AI model established the prediction of the shear strength of HSC slender beam.
The efficiencies of several optimization algorithms (ACO, DE, GA, and PSO) were reported along
with pre-processed and non-processed data modeling scenarios. Those modeling scenarios were
investigated for the possibility to enhance the prediction accuracy of the applied predictive models.
Among all the optimization algorithms, PSO showed the best optimizer for the current intensive
dataset in case of pre-processed variables (d, a, ag, fc, and ρ) (excluding a/d and ag/d) as depicted by the
performance metrics such as R = 0.9611; RMSE = 0.206; MAE = 0.157; CC = 0.961; WI = 0.980. The IQR
characteristic of the dataset between the observed and predicted Ss using ANFIS-PSO exhibited
significant similarity. It is clearly visible that the selected pre-processed data alleviate the performance
of the hybrid model remarkably. There is need for a prospective study where a lesser exploratory data
analysis (EDA) process along with a homogeneous large dataset, with or without a pre-processed
dataset, might achieve the best prediction accuracy using the proposed hybrid AI model. In the case in
which the performance does maintain a stable result for the non-monotonous IQR dataset, there is a
possible prospective study objective to use more derivative data from the primary character of Ss for
another either HSC or medium strength concrete.
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