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Abstract: Liver and liver tumor segmentation based on abdomen computed tomography (CT)
images is an essential step in computer-assisted clinical interventions. However, liver and tumor
segmentation remains the difficult issue in the medical image processing field, which is ascribed to
the anatomical complexity of the liver and the poor demarcation between the liver and other nearby
organs on the image. The existing 3D automatic liver and tumor segmentation algorithms based on
full convolutional networks, such as V-net, have utilized the loss functions on the basis of integration
(summing) over a segmented region (like Dice or cross-entropy). Unfortunately, the number of
foreground and background voxels is usually highly imbalanced in liver and tumor segmentation
tasks. This greatly varies the value of regional loss between various segmentation classes, and affects
the training stability and effect. In the present study, an improved V-net algorithm was applied for
3D liver and tumor segmentation based on region and distance metrics. The distance metric-based
loss function utilized a distance metric of the contour (or shape) space rather than the area. The
model was jointly trained by the original regional loss and the three distance-based loss functions
(including Boundary (BD) loss, Hausdorff (HD) loss, and Signed Distance Map (SDM) loss) to solve
the problem of the highly unbalanced liver and tumor segmentation. Besides, the algorithm was
tested in two databases LiTS 2017 (Technical University of Munich, Munich, Germany, 2017) and
3D-IRCADb (Research Institute against Digestive Cancer, Strasbourg Cedex, France, 2009), and the
results proved the effectiveness of improvement.
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1. Introduction

Liver together with related lesion automatic segmentation represents a vital link to obtain
quantitative biomarkers for the support systems to accurately diagnose in the clinic and make
decisions based on the computer [1]. Nonetheless, liver segmentation remains a challenge in the
medical image processing field, which is due to the anatomical complexity of the liver and the poor
demarcation between the liver and other neighboring organs [2]. Accurate measurements based on the
computed tomography (CT) image, such as location, shape, and the volume of the tumor, together
with the functional liver volume, helps physicians evaluate hepatocellular carcinoma (HCC) and plan
treatment [3]. However, manually outlining the target organ on every slice can be greatly demanding
and effort-consuming; besides, the obtained results are subjective [1].

Two grand challenges benchmarks were carried out with the coordination of the MICCAI
(Medical Image Computing and Computer-Assisted Intervention Society) conference to segment
the liver and related lesions in 2007 and 2008, respectively [4,5]. Several approaches based on
artificial design features were proposed for liver and related lesion segmentation base on CT images.
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Recently, thresholding [6,7], graph cut and level set techniques [8–10], region growing, and deformable
model-based methods [11,12] have been applied in research to segment the liver and related lesions.
However, those methods require substantial human intervention, which may cause bias and mistakes.
Therefore, it is necessary to develop automatic and end-to-end approaches to segment tumors on CT
images [13].

The scientific community has paid great attention to deep Convolutional Neural Networks (CNN)
to solve tasks in computer vision, including recognizing, classifying, and segmenting objects [14–17].
Similarly, novel deep learning-based segmentation approaches have been put forward to analyze
medical images, which achieve greatly competitive findings in comparison with state-of-the-art
methods [18–22]. End-to-end CNN-based approaches have been verified to be sound for analyzing
image appearance, and this has motivated researchers to employ them for fully automatic segmentation
of the liver and related lesions within the CT volumes.

The existing deep learning-based liver and tumor segmentation studies are roughly divided into
two classes—(1) 2D Fully Convolutional Networks (FCN), like U-Net [23], multi-channel FCN [24], as
well as VGG (Oxford Visual Geometry Group) based FCN [25]; (2) 3D FCN, in which 2D convolutions
are substituted with the 3D convolutions in the presence of volumetric input data [26,27].

The 2D FCN-based methods use 2D slices from 3D volumes for the segmentation task. Specifically,
singular or three neighboring slices cropped based on volumetric images are incorporated into the
2D FCNs [24,25], and then 2D segmentation maps are stacked to produce a segmentation volume.
Sun et al. [24] designed a multi-channel fully convolutional network (MC-FCN) to segment liver
tumors from multi-phase contrast-enhanced CT images. Since each stage of the contrast-enhanced
data provided information about pathological features, it is possible to generate fusion feature maps
through merging features from different channels. However, the spatial structural organizations of
organs are not considered, and the volumetric information is not fully explored. It remains insufficient
to explore spatial data even though neighboring slices are used, which may degrade the performance
of the segmentation [3].

The 3D FCN-based method can avoid discontinuities between adjacent slices. For instance, Özgün
Çiçek et al. introduced a 3D U-Net network for volumetric segmentation that learns from sparsely
annotated volumetric images [28]. The network extended the previous U-Net [18] architecture by
replacing all 2D operations with their 3D counterparts. The implementation performed on-the-fly
elastic deformations for efficient data augmentation during training. Milletari et al. [29] had put
forward the V-net architecture, the U-Net 3D variant, to segment 3D images by the direct use of 3D
convolutional layers that had an objective function on the basis of the Dice coefficient. A suitable loss
function is an important measure for the usefulness of segmentation for an intended task. Nonetheless,
the widely used loss functions for 3D FCNs, including cross-entropy or Dice, are proposed on the basis
of integrals (summations) in various segmentation volumes. Besides, the regional loss in segmentation
with a high imbalance level (which is common in liver and tumor segmentation) leads to substantially
different values among different segmentation types, and this possibly affects the training stability and
performance. Kervadec et al. [30] proposed the boundary loss concept, where contour or shape space,
rather than regions, was used to form the distance metric. It reduced the regional loss difficulty when
there were problems of substantially imbalanced segmentation, since integrals were used along the
inter-regional boundary (interface) rather than the imbalanced integrals across regions.

Based on similar ideas, Karimi et al. [31] proposed Hausdorff (HD) loss based on distance metrics.
Although HD was utilized to evaluate the performance of image segmentation algorithms, those
algorithms rarely aimed at minimizing HD directly. An “HD-Inspired” loss function was proposed
in [31] that could be used for a stable training segmentation model with the goal of reducing HD directly.

Moreover, Xue et al. [32] proposed a distance-based loss function named the Signed Distance
Map (SDM) loss. Due to the rigorous mapping of the signed distance map computed based on the
object boundary contour with a binary segmentation map, they took advantage of learning SDM on
the basis of the medical scans directly. The task of segmentation was converted into predictive SDM in
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their method, which retained excellent segmentation performance and had better smoothness and
shape continuity.

In this paper, an improved V-Net based on distance metric was utilized for the 3D liver and tumor
segmentation tasks. Three distance-based loss functions, including BD loss, HD Loss, and SDM Loss,
were used in combination with the original V-Net loss, respectively, to solve the problem of a highly
unbalanced liver and tumor segmentation. In addition, the algorithm was tested on two databases,
and the results proved the effectiveness of improvement.

2. Materials and Methods

2.1. Overall Framework

In this paper, we trained the 3D V-Net using the above-mentioned three distance-based loss
functions and the regional loss function jointly. Figure 1 shows the 3D liver and tumor segmentation
framework utilized in this paper.
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Figure 1. The liver and tumor segmentation framework.

In the training stage, the 3D data was fed into the V-net model for feature extraction, then the
regional and the three distance-based loss functions (which were denoted as LossReg, LossBD, LossHD,
and LossSDM) were combined through variable weight values and used to jointly train the liver and
tumor segmentation model. The loss functions in this paper were denoted as:

LossBD = αLossReg + (1− α)LossBoundary (1)

LossHD = αLossReg + (1− α)LossHausdor f f (2)

LossSDM = αLossReg + (1− α)LossSigned Distance Map (3)

where LossReg was the regional loss function utilized in the original V-net architecture, these loss
functions will be described in detail in the next paragraph. Among them, the distance-based loss
function was used to assist the regional loss function to fine-tune the training models. Therefore, at the
beginning of training, α was set to 1, which indicated that the models were trained only utilizing
regional loss, and the distance-based losses were not involved in the calculation of the loss function.
When the training reached the plateau, the α gradually decreased until it reached a value of 0.01. As
found in these experiments, such a training strategy was more effective than a joint training strategy
from scratch. In the next paragraph, we will expand on the details of the algorithm.

2.2. Related Work

• V-Net
The 3D V-Net architecture, which was the U-Net 3D variant, was put forward to segment the 3D

images. The model was proposed to train end-to-end Magnetic Resonance Imaging (MRI) volumes
that depicted prostate, which also immediately learned to estimate whole volume segmentation [29].
Another important contribution of this work was the introduction of a new loss layer for segmentation
tasks on the basis of the Dice coefficient, which was a commonly used regional overlap measure to
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analyze medical images [33]. The schematic representation of the V-Net architecture is provided in
Figure 2.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 17 
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Figure 2. The schematic representation of the V-Net architecture.

The input of the 3D V-Net was 3D data. The first half of the network was constituted by the
compression path, while the latter half decompressed the signals till they reached the size of their
initial input data. The first half of the network was segmented to diverse phases according to distinct
resolutions. Each phase contained one to three convolutional layers. The Parametric Rectified Linear
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Unit (PReLU) was applied in the entire network. The latter half network extracted features and
expanded spatial support for feature maps with low resolution. The deconvolution manipulation was
performed to enhance the input size following every stage. In addition, this network also connected
features collected via the early stages from the compression to the decompression side of the CNN.
Thus, the fine-grained details were collected, which improved the eventual contour estimation quality.
The regional loss functions, including cross-entropy and Dice loss, were jointly utilized in the V-net,
which was denoted as:

LossReg = Lossseg + LossDice (4)

where Lossseg was the cross-entropy loss function and the LossDice was the Dice loss function.
• Cross-entropy loss

The voxel-wise cross-entropy loss was one of the most commonly used loss functions for image
segmentation task. This loss will examine each voxel individually and compare the class prediction
vector with the ground truth vector. The cross-entropy loss function is denoted as:

Lossseg(p, g) = −
1
n

N∑
i=1

[gi log pi + (1− gi) log(1− pi)] (5)

where pi represents the probability that voxel i belongs to the foreground, and gi represents the
ground truth.
• Dice loss

A novel objective function on the basis of the Dice coefficient (range, 0–1) was utilized in V-Net [29].
The liver and tumor segmentation is a binary segmentation task, in which the soft-max layer outputs
the probability that each voxel belongs to the foreground or background. For the Dice coefficient D of
two binary volumes, it is calculated by the following formula:

D =
2
∑N

i pigi∑N
i p2

i +
∑N

i g2
i

(6)

In the formula, the sums run across N voxels in the estimated binary segmentation volume pi ∈ P,
together with the ground truth binary volume gi ∈ G. The above formula to calculate Dice is also
differentiated in terms of the prediction j-th voxel, yielding the gradient:

∂D
∂p j

= 2

 g j
(∑N

i p2
i +

∑N
i g2

i

)
− 2p j

(∑N
i pigi

)
(∑N

i p2
i +

∑N
i g2

i

)2

 (7)

Using this loss layer, it was no longer necessary to assign the loss weights to different classes of
samples during the training phase. Furthermore, the Dice loss function calculation formula can be
used for both 2d and 3d data.
• Boundary loss

In [30], Kervadec et al. proposed a boundary loss, in which the distance of contour (or shapes)
space, rather than regions, was measured. Boundary loss contributes to alleviating issues associated
with regional loss in the context of substantially imbalanced segmentation tasks. In addition,
boundary loss also provided complementary data to those of regional loss. A symmetric L2 distance
(Euclidean distance) on the space of shapes (or contours) was expressed as a regional integral, which
avoids completely local differential computations involving contour points. The non-symmetric L2
loss function for regularizing segmentation mask S’s boundary deviation compared with the ground
truth G is written as follows:

Dist(p, g) =
∫

G
‖pi − gi‖

2dg (8)



Appl. Sci. 2020, 10, 3794 6 of 16

In the formula, on the ground-truth boundary G, the boundary point gi is aligned based on the
counterpart pi that is located on P (the prediction boundary). The boundary loss function was used to
segment the Magnetic Resonance (MR) images of the brain lesion in [30], and the Dice and Hausdorff
score increased by 8% and 10%, respectively, relative to the baseline levels in which the generalized
Dice was utilized to be the loss function [30].
• Hausdorff Loss

In [31], Karimi et al. put forward a loss function based on the direct HD reduction for training
the CNN-based segmentation algorithms. They proposed three approaches for estimating the HD
based on the map of segmentation probability. One method was to use a distance transform splitting
of the boundary. The second approach was developed on the basis of the use of morphological
erosion to those differences in the real segmentation maps compared with estimated counterparts.
The last approach was to employ spherical convolution kernels with diverse radii to the map of the
segmentation probability. According to the above three approaches proposed to estimate HD, three loss
functions were also put forward in training for the sake of HD reduction. Karimi et al. had optimized
the function on the basis of the Hausdorff distance to compare the estimated segmentation with the
ground truth one, which is shown below.

fHD(p, g) = Loss(p, g) + λ

(
1−

2
∑

Ω(p ◦ g)
(p2 + g)

)
(9)

In the formula, the second term is the Dice loss function, whereas the first one is the Hausdorff
distance of p and g. Parameter λ is the ratio of the HD-based loss term to the Dice loss term. Let Ω
denote the grid on which the image I is defined, and p and g denote the segmentation and ground
truth, respectively. The predicted and ground truth segmentation, separately:

Loss(p, g) =
1
|Ω|

∑
Ω

(
(p− g)2

◦

(
dαp + dαg

))
(10)

Parameter α determines the penalty level for a large error. dg stands for the ground truth
segmentation distance map, which represents an unsigned distance to the δg boundary. Similarly,
represents the distance to δp. Meanwhile, indicates the Hadamard operation. In this paper, the HD
loss function was utilized for training the V-net model jointly with the regional loss function.
• Signed Distance Map Loss

Xue et al. [32] put forward a novel algorithm for solving those existing problems in the current
organ segmentation systems based on deep learning. These systems frequently generated results that
were unable to obtain target organ shape, together with a lack of smoothness. The task of segmentation
was converted into predictive SDM in their method, since there was a rigorous mapping between the
SDM and the binary segmentation map. For the target organ, as well as a point x shown on the 3D
medical image, y is the most adjacent point on the target organ surface, the SDM, which maps R to R3

can be deemed below:

Φ(x) =



0, x ∈ S

−
in f

y ∈ S
‖x− y‖2, x ∈ Ωin

+
in f

y ∈ S
‖x− y‖2, x ∈ Ωout

(11)

In the formula, S represented the target organ surface; Ωin together with Ωout denoted the target
organ interior and exterior, separately. That was to say, the absolute SDM value indicated the distance
between a specific point to the most adjacent one on the surface of the organ, whereas the sign indicated
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the organ interior or exterior. Notably, the zero level or zero distance set indicates the presence of the
point on the organ surface. The SDM loss is defined as:

LSDM = L1 −

C∑
t=1

gtpt

(gtpt + pt2 + gt2)
(12)

where L1 represented the L1 loss, which is the L1 difference between the predicted and the real SDM
values. gt represents the ground truth SDM, and pt denotes the predicted SDM.

3. Experiment and Discussion

3.1. Experimental Preparation and Protocols

We conducted an evaluation of two datasets for liver and tumor segmentation, and the examples
of the data are shown in Figure 3.
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Figure 3. The scans in Liver Tumor Segmentation Challenge (LiTS) 2017 dataset and 3D Image
Reconstruction for Comparison of Algorithm Database (3D-IRCADb).

LiTS 2017: Liver Tumor Segmentation Challenge (LiTS) dataset [34] provides 201 contrast-enhanced
3D abdominal CT scans, and segmentation labels for liver and tumor regions with a resolution of
512 × 512 in each axial slice. There are 131 scans providing ground-truth labels, and 70 scans that do
not provide labels. The in-plane resolution ranges from 0.60 mm to 0.98 mm, and the slice spacing from
0.45 mm to 5.0 mm. We clipped the intensity values to the range [−300, 400] HU to ignored irrelevant
details and normalized the images into [0, 1].

3D-IRCADb: 3D Image Reconstruction for Comparison of Algorithm Database (3D-IRCADb) is
a database containing anonymous medical images of several groups of patients, as well as manual
segmentation of various structures of interest by clinical experts. The database consists of 3D CT scans
of 10 women and 10 men with liver tumors. The in-plane resolution ranges from 0.57 mm to 0.87 mm,
and the slice spacing from 1.6 mm to 4.0 mm. All scans were performed while the arterial phase was in
the inhaled position.

We trained the four 3D V-Net models with regional loss and other three distance-based loss
functions in two databases. The experiments were conducted with Torch and optimized with the
Adam algorithm [35] on four NVIDIA Tesla V100 GPUs. (Gigabyte Technology, Beijing, China) When
the deep models were trained, a batch size of 2 and a learning rate of 0.001 were employed. Of them,
the learning rate was divided by five after 200 epochs, and the training ended after 1400 epochs. For
fairly comparing the diverse loss functions, the models were tested on the test set after every 40 epochs,
and the best models were utilized for the contrast test.
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As mentioned above, the value of α in Equations (1)–(3) was set to 1 from the initial training to
400 epochs. Afterward, it was reduced by 0.01 every 10 epochs till reaching 0.01. Therefore, only
the regional loss was used for training at the beginning, and then the distance-based loss influence
gradually increased. According to our results, the as-proposed convenient scheduling strategy always
gave superior results over the constant value.

3.2. Experimental Results

3.2.1. Quantitative Evaluation

In the LiTS 2017 dataset, 131 scans were used as the experimental data, among which, 102 were
used for training, 20 for verification, and nine for testing. In the 3D-IRCADb dataset, 20 scans were
selected, including 10 utilized as the training set, five as the validation set, and five as the test set.
Three models with HD loss, BD loss, and SDM loss functions were trained on these two datasets,
respectively. We utilized the values of Dice Similarity Coefficient (DSC), the 95th percentile of the
Hausdorff Distance (HD) metrics (HD95), the average symmetric surface distance (ASD), together with
the True Negative Rate (TNR, specificity) and True Positive Rate (TPR, sensitivity) as the evaluation
indicators. The definitions of the indicators were shown as follows:

DSC =
2|TP|

2|TP|+ |FN|+ |FP|
(13)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and negative values,
respectively. The HD95 was defined as the 95th percentile of the Hausdorff distance between the
predicted delineation and the ground truth annotation, which was a common indicator in image
segmentation tasks.

If S(A) denotes the set of surface voxels of A, then the shortest distance of an arbitrary voxel v to
S(A) is defined as:

d(v, S(A)) = min
sA∈S(A)

‖v− sA‖ (14)

where ‖.‖ denotes the Euclidean distance. The other indicators were calculated according to the
following Equation.

ASD(A, B) =
1∣∣∣S(A)

∣∣∣+ ∣∣∣S(B)∣∣∣ (
∑

sA∈S(A)

d(sA, S(B)) +
∑

sB∈S(B)

d(sB, S(A))) (15)

TNR =
|TN|

|TN|+ |FP|
(16)

TPR =
|TP|

|TP|+ |FN|
(17)

Note that in the previous studies, researchers used data with different resolutions for training and
testing, such as 512 × 512 [36], 256 × 256 [13], 224 × 224 [3], and 160 × 160 [26]. Therefore, we firstly
trained the original v-net models with different sized data to evaluate the accuracy and computational
efficiency. Table 1 summarized the DSC values and runtime of the liver and tumor segmentation task
of three original V-net models trained utilizing different resolution data (512 × 512, 256 × 256, and
128 × 128), respectively on two databases. The experimental results showed that the model trained
with 512 × 512 resolution data has a segmentation result improvement of about 2% for the liver
and 7% for the tumor compared to the model trained with low resolution. Especially for the tumor
segmentation task with a smaller target, down sampling has a greater negative influence. Therefore,
we tend to train and test the models utilizing the data with 512 × 512 resolution.
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Table 1. Comparison of the results of models trained with different resolution data.

Category Dataset Resolution Dice Similarity Coefficient (DSC)

Liver

LiTS 2017
512*512 0.953
256*256 0.947
128*128 0.936

3D-IRCADb
512*512 0.929
256*256 0.924
128*128 0.91

Tumor

LiTS 2017
512*512 0.699
256*256 0.655
128*128 0.615

3D-IRCADb
512*512 0.623
256*256 0.597
128*128 0.567

Table 2 summarizes the results obtained from the LiTS 2017 and 3D-IRCADb datasets. Compared
to the models trained using only the region-based loss function (LReg), the segmentation results were
improved by utilizing the joint loss functions (LHD, LBD, and LSDM), which were evidenced by the
indicators. The best results are shown in bold. For liver segmentation and tumor segmentation tasks,
the distance-based loss functions improved the DSC by about 1.2% and 6.5% on the LiTS 2017 dataset,
and they improved the DSC coefficients by 1.9% and 5.9% on the 3D-IRCADb dataset, respectively. On
the LiTS 2017 test set, the HD95 reduced by 40.6% and 28.2%, while it decreased by 52.5% and 29.6%
on the 3D-IRCADb test set. As for ASD, it decreased by 45.3% and 42.4% on the LiTS 2017 test set, and
the decrease on the 3D-IRCADb dataset were 29.8% and 24.2%, respectively.

Table 2. A summary of the results on LiTS 2017 and 3D-IRCADb datasets.

Category Dataset Loss
Function DSC

95th Percentile of
the Hausdorff

Distance Metrics
(HD95) (mm)

Average
Symmetric Surface

Distance (ASD)
(mm)

True
Negative

Rate (TNR)

True
Positive

Rate (TPR)

Liver

LiTS 2017

LReg 0.953 5.44 1.61 0.957 0.998
LHD 0.962 3.60 1.05 0.971 0.998
LBD 0.963 4.24 0.88 0.973 0.999

LSDM 0.965 3.23 1.07 0.982 0.999

3D-IRCADb

LReg 0.929 8.74 2.58 0.921 0.997
LHD 0.942 6.97 2.17 0.949 0.998
LBD 0.947 4.15 1.87 0.955 0.998

LSDM 0.948 4.68 1.81 0.958 0.998

Tumor

LiTS 2017

LReg 0.699 9.36 2.17 0.655 0.998
LHD 0.731 8.77 1.82 0.682 0.999
LBD 0.745 8.14 1.68 0.708 0.999

LSDM 0.764 6.72 1.25 0.761 0.999

3D-IRCADb

LReg 0.623 13.46 3.72 0.564 0.999
LHD 0.648 11.25 3.08 0.587 0.999
LBD 0.677 9.88 2.88 0.674 0.999

LSDM 0.682 9.47 2.82 0.654 0.999

Also, those distance-based loss functions improved the TNR of the liver segmentation and tumor
segmentation tasks on the test sets. The improvement was 2.5% and 10.6% on the LiTS 2017 dataset,
and 3.7% and 11.0% on the 3D-IRCADb dataset. It was also found that the TPR of all models has
reached more than 99.7%, which shows that for the liver segmentation task, the existing models have
already obtained high sensitivity [37].

The models on the 3D-IRCADb database didn’t perform as well as it did on the LiTS 2017 database.
It was mainly due to the small scale of the 3D-IRCADb database, resulting in insufficient model training.
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Some studies have shown that utilizing additional data for training will significantly improve the
performance of the 3D-IRCADb database [8,9,24,27].

Generally, the traditional region-based segmentation methods measure the affinity of the network
probability Softmax output-defined region to related ground truth regions. It assumes that all samples
and classes have the same importance distribution. Therefore, it requires a training set with balanced
classes to get good generality. However, for unbalanced data, the regional loss-based approaches lead
to training instability and biased decision boundaries to most categories.

Adding a distance-based loss function to the regional loss function for joint training can mitigate
the issues. Instead of utilizing the imbalanced integrals on these regions, the distance-based loss
function used integrals on the inter-regional boundaries. Therefore, it was easily combined with
a regional loss for joint training to solve the problem of imbalanced data for the liver and tumor
segmentation task.

In addition, the cross-validation experiments were also conducted on the LiTS 2017 and 3D-IRCADb
datasets. The models trained utilizing the LiTS 2017 training set were tested on the 3D-IRCADb testing
set, meanwhile, the 3D-IRCADb datasets trained models were also tested on the LiTS 2017 testing set.
The experimental results in Table 3 show that the LiTS 2017 testing results of the models trained with
the 3D-IRCADb training set were slightly decreased due to the relatively few training samples. The
models trained on LiTS 2017 training set have achieved impressive testing results on the 3D-IRCADb
testing set, which have hardly declined. In conclusion, the generalization ability of our algorithm has
been proved.

Table 3. The cross-validation experimental results of the LiTS 2017 and 3D-IRCADb datasets.

Category Training
Dataset

Testing
Dataset

Loss
Function DSC HD95

(mm)
ASD
(mm) TNR TPR

Liver

3D-IRCADb LiTS 2017

LReg 0.913 9.8 2.64 0.879 0.995
LHD 0.924 8.06 2.25 0.914 0.996
LBD 0.921 8.41 2.11 0.922 0.996

LSDM 0.923 7.82 2.03 0.941 0.997

LiTS 2017 3D-IRCADb

LReg 0.919 10.74 3.01 0.858 0.995
LHD 0.928 7.45 2.54 0.945 0.997
LBD 0.926 7.12 2.75 0.951 0.997

LSDM 0.934 6.88 2.31 0.960 0.998

Tumor

3D-IRCADb LiTS 2017

LReg 0.598 15.74 4.11 0.564 0.998
LHD 0.644 12.32 3.77 0.58 0.998
LBD 0.653 11.72 3.14 0.644 0.998

LSDM 0.651 10.41 3.18 0.682 0.998

LiTS 2017 3D-IRCADb

LReg 0.587 18.22 4.62 0.526 0.999
LHD 0.627 15.41 4.28 0.557 0.999
LBD 0.631 13.64 3.62 0.682 0.999

LSDM 0.634 13.25 3.24 0.674 0.999

3.2.2. Qualitative Evaluation

The qualitative results are shown in Figure 4. After visual inspection of the above results, great
improvements were found when employing the distance-based loss function. Especially in the case of
highly imbalanced between foreground and background voxels (such as rows 2, 4, and 5), the results
of the joint training models have been greatly improved. The results obtained by the model only
using the regional loss function showed that many small regions (including liver or tumor) were not
correctly segmented. In contrast, adding distance-based loss functions for joint training improved
the segmentation results by varying degrees. Furthermore, the model adding the SDM loss function
obtained better results in most cases, which was also reflected in Table 2.
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Figure 4. The visual comparison of segmentation results. The ground-truths are denoted in red, and
the results are in blue. The first three rows are the results of liver segmentation; the last three rows
are the results of tumor segmentation. Each column represents the results obtained, utilizing different
loss functions.

4. Comparison and Discussion

As mentioned in Equations (1)–(3), α is regarded as a hyperparameter that adjusts the function
proportion based on regional loss and distance-based loss. According to the previously mentioned
rules, the value of this parameter maintained at 1 during the first 400 epochs, and it gradually dropped
to 0.01 during the next 1000 epochs. Considering that the models were tested on the test set for every
40 epochs, the setting of α is discussed based on the results of each test. Typically, the set interval of
the α value for similar problems could be summarized according to the α value of the optimal model
on different databases. As observed from Figure 5, the DSC coefficients of the joint training model
were improved on the two databases with the decrease in the α value. The best results for each model
were obtained at the α value of 0.4–0.6. However, as α continues to decrease, the DSC coefficients of all
models did not continue to improve, but even exhibited a downward trend in some columns.

When the value of α is between 1.0–0.7, the loss function is mainly based on the regional loss. As
mentioned above, it may affect the training stability and performance due to the highly imbalanced
data. However, when the value of α is less than 0.4, the loss function is dominated by the distance-based
loss, which may make the function fall into a local minimum. In general, Thus, the recommended
interval for the distance-based loss weight (1–α) in the joint training strategy is 0.4–0.6.
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Figure 5. The test results on two databases with different α values. (a) The test results of models with
HD loss on LiTS 2007. (b) The test results of models with HD loss on 3D-IRCADb. (c) The test results
of models with BD loss on LiTS 2007. (d) The test results of models with BD loss on 3D-IRCADb.
(e) The test results of models with SDM loss on LiTS 2007. (f) The test results of models with SDM loss
on 3D-IRCADb.

Some studies point out that the earlier use of distance-based loss may lead to convergence to
a local minimum or saddle point [30]. In this paper, the solution for this problem was to utilize the
regional loss function only in the first period of training to avoid falling into local minima. Then,
after the training entered the platform period, the distance-based loss weight gradually increased to
fine-tune the results. This strategy was conceptually similar to the energy on the basis of the classical
contour for the segmentation of the level set, such as the active geodesic contour [38], which also
required additional regional terms to avoid trivial solutions. Taking the model based on SDM loss
function as an example, according to our experimental findings in Table 4, the models utilizing the
training strategy proposed in this paper achieved higher results on two databases, respectively.

A comparison of our approach with similar approaches is given in Table 5. Some values were
missing because they were not available in the original article. On the LiTS 2017 dataset, compared
with the other methods in the table, the algorithm in this paper obtained the best results in the liver
segmentation task. It also surpassed most methods in the tumor segmentation task. Our algorithm
achieved the highest DSC score, while our ASD score was slightly higher than the ASD scores in [3,45].
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Table 4. The results on two datasets with a different training strategy.

Training Strategy Category Dataset DSC HD95
(mm)

ASD
(mm) TNR TPR

Joint training at the
beginning

Liver
LiTS 2017 0.951 4.17 2.1 0.967 0.999

3D-IRCADb 0.937 7.28 2.49 0.951 0.998

Tumor
LiTS 2017 0.742 8.03 2.38 0.623 0.999

3D-IRCADb 0.633 12.22 3.55 0.602 0.999

Our training
strategy

Liver
LiTS 2017 0.965 3.23 0.88 0.982 0.999

3D-IRCADb 0.948 4.68 1.81 0.958 0.998

Tumor
LiTS 2017 0.764 6.72 1.25 0.761 0.999

3D-IRCADb 0.682 9.47 2.82 0.654 0.999

Table 5. The comparison of our approach with similar approaches.

Approach Dataset
Liver Tumor

DSC ASD (mm) DSC ASD (mm)

U-Net [39] LiTS 2017 - - 0.650 -
ResNet [40] LiTS 2017 - - 0.670 6.66

DenseNet [41] LiTS 2017 0.912 6.49 0.492 1.44
FCN+ACM [42] LiTS 2017 0.943 2.30 - -

GIU-Net [43] LiTS 2017 0.951 1.80 - -
ResNet [44] LiTS 2017 0.959 - 0.500 -

RA-Unet [13] LiTS 2017 0.961 1.21 0.595 1.29
H-DenseUNet [3] LiTS 2017 0.961 1.45 0.722 1.10

CDNN [45] LiTS 2017 0.963 1.10 0.657 1.15
ours LiTS 2017 0.965 0.88 0.764 1.25

MPAM [46] 3D-IRCADb - 2.24 - -
ASM [47] 3D-IRCADb - 1.66 - -
U-Net [3] 3D-IRCADb 0.923 4.33 0.510 11.11
ResNet [3] 3D-IRCADb 0.938 3.91 0.600 6.36

CFCNs [48] 3D-IRCADb 0.943 1.50 0.560 -
H-DenseUNet [3] 3D-IRCADb 0.947 4.06 0.650 5.29

ours 3D-IRCADb 0.948 1.81 0.682 2.82

Note: - denotes the result is not reported.

On the 3D-IRCADb dataset, the algorithm in this paper obtained the highest DSC score in the liver
segmentation task, and the ASD score was only higher than the results in [47,48]. As for the tumor
segmentation task, our method obtained the best results on the two indicators of DSC and ASD. As
such, it can be concluded that the overall performance of our algorithm outperforms other similar
algorithms in the table on the two databases.

Spatial information was not used in models based on regional metrics, and the prediction errors
were treated equally. This meant that voxel errors in objects that had already been detected were
as important as errors that occurred within objects that had missed totally. By contrast, because the
distance-based loss was on the basis of a distance map relative to the true boundary, such cases were
penalized, thus assisting in recovering the far and small regions. Therefore, our algorithm will have
advantages in the tasks which need to segment a large number of small objects.

It is worth noting that for the models jointly trained with two or more loss functions, it was
generally necessary to discuss the weight of each loss function. Our experimental results also showed
that as the weight of the distance-based loss function increases, the performance did not continue to
improve, and even showed a downward trend, which required special attention during the model
training stage. In addition, it was also important that the distance-based loss function was gradually
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added for joint training, only after the performance of the model on the validation set entered the
platform period.

5. Conclusions

The present study aims to solve the problem of decreased segmentation performance of the liver
and tumor segmentation algorithm due to the highly imbalanced number of voxels in the foreground
and background. In this paper, an improved V-net algorithm based on region and distance metrics
is applied for the 3D liver segmentation task. Three distance-based loss functions are introduced to
jointly train the model with the original regional loss function, which improves the training effect
and stability. Comparative experiments on the LiTS 2017 and 3D-IRCADb databases indicated the
effectiveness of the improvement. Additionally, the optimal weight coefficient value for joint training
is also discussed, and a new training strategy is proposed. Certainly, our findings in the present study
shed new light on the solution to specific liver and tumor segmentation tasks.
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