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Abstract: In this paper, we analyze the dynamics of non-local correlations (NLCs) in an anisotropic
two-qubit Heisenberg XYZ model under the effect of the phase damping. An analytical solution is
obtained by applying a method based on the eigenstates and the eigenvalues of the Hamiltonian.
It is observed that the generated NLCs are controlled by the Dzyaloshinskii–Moriya interaction,
the purity indicator, the interaction with the environment, and the anisotropy. Furthermore, it is
found that the quantum correlations, as well as the sudden death and sudden birth phenomena,
depend on the considered physical parameters. In particular, the system presents a special correlation:
the skew-information correlation. The log-negativity and the uncertainty-induced non-locality
exhibit the sudden-change behavior. The purity of the initial states plays a crucial role on the
generated nonlocal correlations. These correlations are sensitive to the DM interaction, anisotropy,
and phase damping.

Keywords: two-qubit; Heisenberg spin chain; phase damping; skew-information correlation

1. Introduction

The recent growth of the quantum technology has promulgated the preservation of the quantum
correlation to become a central problem [1–5]. The investigations of the non-local correlations
(NLCs) (including measurement-induced disturbance [6], quantum discord [7,8], and the geometrical
correlations of measurement-induced nonlocality [9] and skew information theory [10]) become the
primary roots of the quantum information [1]. The definitions of NLC measures were mainly on the
Hilbert–Schmidt norm (2-norm), the skew information theory, and trace norm [11]. These definitions
were exalting new types of the NLCs beyond the quantum entanglement (QE), which have generated
many investigations [12,13].

It was proven that the NLC quantifiers, which, based on the 2-norm, are not proper measures for
the NLC, because they encounter the local ancilla problem [14] in which the NLC quantifiers change
arbitrarily under local operations on an unmeasured ancilla state. Therefore, two NLC quantifiers
(local quantum uncertainty (LQU) [15] and uncertainty-induced quantum nonlocality (UIN) [16]) are
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recently defined based on the skew information theory [10]. LQU and UIN are used to quantify the
minimal and maximal skew information correlations, respectively. If the LQU and UIN are equal,
they present the same correlation that is called “skew-information correlation” [12].

Loss of the non-local correlations resulting from the coupling of a two-qubit system to its
environment transforms a correlated two-qubit state into a statistical mixture state [17]. As the
coupling of a two-qubit system to its environment leads to different types of decoherence as qubit
energy and the phase damping. In the phase-damping model, the phase is damped without energy
relaxation [18]. The phase-damping prevents or minimizes the effect of the environmental noise in the
practical realization of quantum information processes [19].

Previous studies of the NLCs in a two-qubit Heisenberg XYZ chain were limited to the quantum
entanglement (QE) and quantum memory-assisted entropic uncertainty relation [20,21]. Solid-state
quantum systems are the most natural candidates for the qubit based on quantum dots, electronic spin,
and optical lattices [22,23].

Here, we investigate the non-local correlations for two-qubit Heisenberg XYZ chain that includes
a virtual spin Dzyaloshinskii–Moriya interaction, which results from the Anderson’s superexchange
interaction. Our study is conducted with new NLC quantifiers based on the skew information theory
(LQU and UIN) and Bell’s inequality. Therefore, an analytical solution of the two-qubit Heisenberg
XYZ model will be found by applying a new method based on the eigenstates and the eigenvalues of
the Hamiltonian. Our results show that is possible to control the generated NLCs, the skew information
correlation, the Bell’s inequality correlation, and the sudden death/brith. The type of initial state
manipulates the unitary interaction between the two qubits.

In this contribution, the physical model and its density matrix, are introduced in Section 2.
NLC functions will be presented in Section 3. The discussions of the non-local correlation dynamics is
conferred in Section 4. Finally, we present our conclusions in Section 5.

2. The Physical Model and Its Master Equation

The incorporating Hamiltonian of the Heisenberg XYZ chain with Dyzaloshinskii–Moriya (DM)
interaction is given by

Ĥ =
n

∑
k=1

[Jxσ̂x
k σ̂x

k+1 + Jyσ̂
y
k σ̂

y
k+1 + Jzσ̂z

k σ̂z
k+1 + ~D.(~σk ×~σk+1)], (1)

where Ji (i = x, y, z) are the symmetric spin–spin interaction coupling constants, ~σk is the Pauli
operators vector for any qubit, and ~D is the DM vector. Despite its simplicity, the model describes
the magnetism of several real physical systems based on the DM interaction which arises from
spin–orbit coupling [24,25]. Moreover, it was successful in explaining the ferromagnetic and
antiferromagnetic behaviors. Besides, the models of the XYZ chain have been used to accomplish
more important resources of the quantum information, like quantum coherence [26] and quantum
correlations [27–29]. According to experimental demonstration [30], the system of spin- 1

2 pyrochlores
R2V2O7 can realize the DM interaction in the anisotropic XYZ chain. Here, we consider the case of
the two-qubit of the spin chain with the DM interaction along z-axis. Thus, the Hamiltonian can be
expressed as

Ĥ = Jxσ̂x
1 σ̂x

2 + Jyσ̂
y
1 σ̂

y
2 + Jzσ̂z

1 σ̂z
2 + χz(σ̂

x
1 σ̂

y
2 − σ̂

y
1 σ̂x

2 ), (2)

where χz represents the strength of DM interaction. This Hamiltonian is exactly diagonalizable and
satisfies the eigenvalue problem: Ĥ|Ψk〉 = Ek|Ψk〉(k = 1− 4), with four eigenstates |Ψk〉 corresponds
to four eigenvalues Ek. In the basis two-qubit states: {|v1〉 = |0A0B〉, |v2〉 = |0A1B〉, |v3〉 = |1A0B〉,
|v4〉 = |1A1B〉}, the eigenstates |Ψk〉 of Equation (1) are given by
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|Ψ1〉
|Ψ2〉
|Ψ3〉
|Ψ4〉

 = M


|v1〉
|v2〉
|v3〉
|v4〉

 , M =


1√
2

0 0 1√
2

0 1√
2

µ√
2

0

0 1√
2
− µ√

2
0

1√
2

0 0 − 1√
2

 , (3)

and the corresponding eigenvalues are

E1 = Jx − Jy + Jz, E2 = Jz +
√

4χ2
z + S2, (4)

E3 = Jz −
√

4χ2
z + S2, E4 = −Jx + Jy + Jz,

with µ = (S + 2iχz)/
√

4χ2
z + S2 = u + iv and S = Jx + Jy.

The principal purpose here is to investigate the robustness of the generated non-local correlations
due to the unitary two-qubit interaction and against the effects of the phase damping, in the
phase-damping model. In this model, (1) the phase is damped without energy relaxation [18,31,32]
and (2) the reservoir is coupled to the two-qubit systems via σ+

i = |1i〉〈0i| and σ−i = |0i〉〈1i| (i = A, B).
The master equation of the model is given by

dρ̂(t)
dt

= −i[Ĥ, ρ̂(t)] (5)

+
1
2 ∑

i=A,B
γi[2|1i〉〈1i|ρ̂(t)|1i〉〈1i| − |1i〉〈1i|ρ̂(t)− ρ̂(t)|1i〉〈1i|],

where γi are the phase damping rates, we take γi = γ.
To find analytical solutions for the master equation of Equation (5), we use the eigenstates

representation (ESR) method, that is based on the eigenstates and the eigenvalues of the Hamiltonian
of Equation (1). In ESR method, we used the canonical transform: W(t) = eiĤtρ̂(t)e−iĤt, the master
equation of Equation (5) becomes

Ẇ =
γ

2 ∑
i=A,B

eiĤt[2|1i〉〈1i|ρ̂(t)|1i〉〈1i| − |1i〉〈1i|ρ̂(t)− ρ̂(t)|1i〉〈1i|]e−iĤt. (6)

Then, we write the two-qubit operators in Equation (6) in terms ESR. Consequently, the Equation (6)
can be written as

dW
dt

=
γ

2

{
|Ψ1〉〈Ψ1|W|Ψ1〉〈Ψ1|+ |Ψ1〉〈Ψ4|W|Ψ4〉〈Ψ1|+ |Ψ4〉〈Ψ1|W|Ψ1〉〈Ψ4|

+|Ψ4〉〈Ψ4|W|Ψ4〉〈Ψ4|+ |Ψ2〉〈Ψ2|W|Ψ2〉〈Ψ2|+ |Ψ3〉〈Ψ3|W|Ψ3〉〈Ψ3|]
+|Ψ3〉〈Ψ2|W|Ψ2〉〈Ψ3|+ |Ψ2〉〈Ψ3|W|Ψ3〉〈Ψ2|

−
4

∑
n=1

[W|Ψn〉〈Ψn|+ |Ψn〉〈Ψn|W
}

. (7)

We assume that the two qubits are initially started with the important class of mixed Werner state:

ρAB(0) = p|ϕ〉〈ϕ|+ (1− p)|1A1B〉〈1A1B|, (8)

=
p
2
[(1 + u)|Ψ2〉〈Ψ2|+ iv|Ψ3〉〈Ψ2| − iv|Ψ2〉〈Ψ3|+ (1− u)|Ψ3〉〈Ψ3|]

+
(1− p)

2
[|Ψ1〉〈Ψ1| − |Ψ4〉〈Ψ1| − |Ψ1〉〈Ψ4|+ |Ψ4〉〈Ψ4|],
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where 0 ≤ p ≤ 1 is the purity indicator of the initial two-qubit states. The state |ϕ〉 is taken to describes
the maximally correlated non-symmetric Bell state: |ϕ〉 = 1√

2
[|10〉+ |01〉], that is not the eigenstate

Hamiltonian of Equation (1). With the chosen class of the Werner state of Equation (13), we can
study the generation of the NLCs when the system starts with uncorrected states, and investigate the
robustness of the initial NLCs against the interactions. The Werner states have manageable features that
they are robust against nonlocal loss [33]. The generation of Werner states and maximally entangled
mixed states are introduced by several universal sources [34,35]

The elements of the density matrix W of the case of i = j, Wi(t) = 〈Ψi|W(t)|Ψi〉, are calculated by
solving the simple differential equations:

Ẇ1(4)(t) = −γ

2
W1(4)(t) +

γ

2
W4(1)(t), Ẇ2(3)(t) = −

γ

2
W2(3)(t) +

γ

2
W3(2)(t), (9)

whereas in the the case of i 6= j, Wij(t) = 〈Ψi|W(t)|Ψj〉, are given by

Wij(t) = e−
γ
2 tWij(0). (10)

By using Equations (13)–(15), the density matrix of the two qubits ρAB(t) in the basis two-qubit
states: {|vi〉}, is given by

ρAB(t) =
4

∑
i,j=1

ρij(t)|vi〉〈vj|, (11)

the non-vanishing elements of ρij(t) are

ρ11(t) =
1
2
(1− p)(1− e−

1
2 γt cos 2∆t),

ρ14(t) = (ρ41(t))∗ = −i
1
2
(1− p)e−

1
2 γt sin 2∆t,

ρ44(t) =
1
2
(1− p)(1 + e−

1
2 γt cos 2∆t),

ρ22(t) =
p
2
− pv

2
e−

1
2 γt sin βt,

ρ33(t) =
p
2
+

pv
2

e−
1
2 γt sin βt,

ρ23(t) = (ρ32(t))∗ =
pµ

2
e−

1
2 γt[u + iv cos βt].

β = 2
√

4χ2
z + S2, and the difference ∆ = Jx − Jy stands for the anisotropy parameter.

The analytical solution of the density matrix of the two qubits will be used to investigate the
different NLCs.

3. NLC Functions

Here, we study the skew information, LQU, UIN, and the Bell’s inequality to explore the
non-classical correlations. Moreover, these measures will be compared with the log-negativity (LN)
that quantifies the entanglement [36]. For a bipartite system ρAB(t), it is given by [36]

N(t) = log2[1 + 2n(t)], (12)

where n(t) is the negativity which is defined as the absolute sum of the negative eigenvalues of the
partial transpose matrix (ρAB(t))TA with respect to subsystem A. Where the elements of (ρAB(t))TA are

〈i, j|(ρAB(t))TA |m, n〉 = 〈m, j|ρAB(t)|i, n〉, (13)
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where the negativity and the log-negativity are zero if and only if the considered state is separable.
They are used to measure the entanglement for any two-qubit state.

3.1. Skew Information Functions

For a bipartite quantum ρAB(t) and local observable K operators, the skew information (SI) is
given by

I(ρAB(t), K) = −1
2

Tr
{
[
√

ρAB(t), K]2
}

, (14)

According to this SI, other NLC measures were introduced beyond the quantum discord and the
entanglement [15].

The first one is the local quantum uncertainty (LQU), which is a reliable quantifier in bipartite
quantum systems [15]. LQU is defined using the SI as

L(ρAB(t)) = min
K
{I(ρAB(t), K)}, (15)

where the minimum is taken over all of the local operators K. The LQU can be considered as a
measure of A discord-like quantum correlation. Compared to the quantum discord, LQU is easy
to calculate and has other properties as (i) it is invariant and does not increase under the local
unitary operations, and (ii) in the pure states, the LQU measures reduces to the entanglement linear
entropy [15]. The closed-form of the LQU is given by

L(t) = 1− λmax(TAB), (16)

where λmax is the maximum eigenvalue of 3 × 3-matrix TAB = [tij],

tij = Tr
{√

ρAB(t)(σi ⊗ I)
√

ρAB(t)(σj ⊗ I)
}

.

The second measure is the uncertainty-induced non-locality (UIN), which is defined by [16]

U(ρAB(t)) = max
K

I(ρAB(t), K), (17)

where the maximum is taken over all of the local operators K, consequently, UIN is the maximal skew
information between the given state and the local commuting observable K. The closed form of UIN
for the bipartite state ρAB(t) can be written as [16]

U(t) =


1− λmin(TAB), ~r = 0;

1− 1
‖~r‖2~r TAB ~r

T , ~r 6= 0.
(18)

where~r = [ri] is the Bloch vector of the reduced density matrix ρAB(t), where ri = Tr(ρAB(t)(σi ⊗ I)) [17].

3.2. Bell Function (Bf)

The maximal violation of the Bell’s inequality, (B(t) > 2), is used as an indicator to the NCC.
The closed form of the maximal Bell’s function (MBF) B(t) [37] for a bipartite quantum system ρAB(t) is

B(t) = 4
√

ξ1 + ξ2, (19)

where ξi(i = 1, 2) are the two largest eigenvalues of the combined matrix R†R, where R = [rmn] represents
the correlation matrix [37], where its components are determined by rmn = Tr{ρAB(t)(σm ⊗ σn)}.
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4. Dynamics of NLC Functions

Our investigations are based on the effect of the anisotropy parameter ∆ = Jx − Jy, the coupling to
the of DM interaction χz, and the coupling environment γ. The anisotropy parameter is the difference
between the two spin–spin coupling constants of the x and y directions. In Figure 1, we show the
3D-evolution of the NLC measures L(t), U(t), B(t), and N(t), where p ∈ [0, 1] and t ∈ [0, 3] for the DM
interaction coupling χz = 0.5, the anisotropic parameter ∆ = 1.5, and Jx = 2 in the absence of the the
phase damping. At points (p, t) = (0, 0), the NLC measures have the values: L(0) = U(0) = N(0) = 0
and B(0) = 1 as we expected from the initial state of Equation (13).
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0.7
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1.75
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2.45

2.8
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2.8

t
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t

Figure 1. The 3D-evolution of L(t) in (a), U(t) in (b), N(t) in (c) and B(t) in (d) as functions of the time
and the purity indicator p ∈ [0, 1] for χz = 0.5, ∆ = 1.5, Jx = Jz = 2 and γ = 0.0. The 2D-evolution
of L(t) (dashed plots), U(t) (dashed dotted plots), B(t) (upper solid plots) and N(t) (solid plots) for
p = 0 in (e) and p = 0.3 in (f).

From Figure 1a–d, we observe that the evolutions of the NLC measures strongly depends on the
purity indicator. The generated maximal and partial correlations of the LQU, the maximal Bell function
and the log-negativity decrease for p ranging from 0 to pc (critical points). After these critical points,
they are enhanced with the increase of the purity indicator p. While the generated correlations of the
UIN is enhanced monotonically with the increase of p (p : 0→ 1), without a critical point. Moreover,
the generated maximal and partial correlations can be delayed/accelerated by particular choices for
the purity of the initial states.

The two cases p ∈ [0, pc] and p ∈ [pc, 1] present opposite dynamical behavior for the NLCs. In the
following, we investigate separately these two cases.

Case A: p ∈ [0, pc] In this interval p ∈ [0, pc], the generated partial and maximal correlations of the

log-negativity, Bell function, and LQU decrease as the purity indicator tends to the critical point pc

(p : 0→ pc). Here, we discuss the dynamics of the NLC for two cases: Pure state p = 0 and partially
corrected state p = 0.3. Therefore, the 2D dynamics for the NLC functions L(t), U(t), B(t), and N(t)
are shown in Figure 1e,f for these cases with the same parameters of the Figure 1a–d. From the 3D and
2D plots of Figure 1, we noted the following.

• The unitary DM interaction between the two qubits leads to the fact that the NLC functions
present different generated correlations. Where the log-negativity, Bell function, LQU, and UIN
correlations present different oscillatory behaviors. The generated maximal correlations depend
on the purity indicator. In the case p = 0, the NLC functions present partial and maximal
correlations, whereas for the case p = 0.3, the LQU generates a correlation greater than the other
measures. The maximal violation of the Bell’s inequality (B(t) > 2) depend on the purity indicator.
In the case p = 0, it occurs, whereas in the case p = 0.3, it appears during small time intervals,
in which the LQU and log-negativity correlations are stronger. As p : 0 → pc, the non-local
correlation of B(t) decreases.
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• The phenomenon of sudden changes appears only in the dynamics behavior of the log-negativity
and the UIN correlations, represented by the abrupt changes in their dynamical behaviors.
The phenomenon of the sudden changes was coined in [38] and experimentally observed in [39].

• During each period of the LQU and UIN behaviors, the UIN has two sudden change (SC) points.
In the time intervals between the SC points, the dynamics of the LQU and UIN show maximal
and minimal skew information correlations, respectively. While in the time intervals out sides
these points, the LQU and UIN have the same correlation that is called the skew-information
correlation (SI correlation) [12], it occurs at L(t) = U(t)) meaning that the minimal and maximal
skew information correlations are equal.

• We have observed that, for p = 0.3 and at some particular times, LQU and UIN present quantum
correlations, whereas the system is disentangled and does not violates the Bell’s inequality. It is
worth noting that such similar observations were reported in [40,41]. The SI correlation depends
on the purity indicator, where in the case p = 0, it occurs during all the time, whereas in the case
p = 0.3, the SI correlation occurs in some time windows.

Figure 2 shows the effect of the DM interaction coupling χz = 3.0 on the dynamics behavior of
the NLC functions L(t), U(t), B(t) and N(t). From 3D and 2D plots of Figure 2, we observe that the
increase of the coupling of the DM interaction leads to more regular fluctuations, which increase as the
purity indicator tends to the critical point pc (p : 0→ pc). The maxima of the L(t) and B(t) are points
in their curves of the case χz = 0.5. The UIN correlation is enhanced by the DM interaction coupling.
We note that the entanglement negativity does not change notably in this interval p ∈ [0, pc].

0 0.5 1 1.5 2 2.5 3
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2.8
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t

(f )
t

Figure 2. The L(t) in (a), U(t) in (b), N(t) in (c) and B(t) in (d) as functions of the time and the purity
indicator p ∈ [0, 1] for χz = 3, ∆ = 1.5, Jx = Jz = 2 and γ = 0.0. The L(t) (dashed plots), U(t) (dashed
dotted plots), B(t) (upper solid plots) and N(t) (solid plots) for p = 0 in (e) and p = 0.3 in (f).

In Figure 3, the dependence of the NLC functions L(t), U(t), B(t), and N(t) on the anisotropy
parameter ∆, is plotted for the different cases: (1) In first case, the dynamics of the NLCs are shown for
different values of the purity indicator p ∈ [0, 1] combined with the small value ∆ = 0.5 in Figure 3a,b.
(2) The NLCs are displayed for the anisotropy interval ∆ ∈ [0, 1.5] when the two qubits start with
pure state in Figure 3g–k, p = 0. The 2D-NLC functions are plotted with the same data of Figure 3a,b,
but for p = 0 in Figure 3e and p = 0.3 in Figure 3f. From Figure 3a,b, we note that the generated
correlations, via the log-negativity, the maximal Bell function, and LQU, decrease with increasing
p : 0→ pc. Meanwhile, the opposite behavior is observed for the generated UIN correlation, in other
words, the UIN correlations is enhanced by the increase of the purity. The 2D plots show that, for small
value of the anisotropy parameter, the period of the regular growth of the log-negativity, Bell function,
LQU and UIN correlations grow with the same dynamical behavior.
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Figure 3. The 3D-evolution of L(t) in (a), U(t) in (b), N(t) in (c) and B(t) in (d) when Jx = Jz = 2,
χz = 0.5 and γ = 0 for the cases: p ∈ [0, 1] with ∆ = 0.5 in (a,b), and ∆ ∈ [0, 1.5] with p = 0 in (g–k).
The 2D-evolution of L(t) (dashed plots), U(t) (dashed dotted plots), B(t) (upper solid plots) and N(t)
(solid plots) for p = 0 in (e) and p = 0.3 in (f).

Figure 3g–k reveals the effect of the anisotropy for the general choice ∆ ∈ [0, 1.5]. As the
anisotropy parameter increases, ∆ : 0→ 1.5, the log-negativity, Bell function, and skew information
quantifiers raise up (with respect of ∆-axis) to their maximal correlations with oscillatory dynamics.
The oscillations of the NLC functions along ∆-axis increase by increasing time. The log-negativity
reaches quickly its maximum than the others quantifiers.

In Figure 4, the effect of the phase damping parameter, γ = 0.4, on the generated correlations
is displayed with the same data in Figure 1. We observed that the phase damping leads to only
reducing the amplitudes of the NLC functions with the same dynamical behavior. The entanglement
log-negativity is more robust against the phase damping than the other NLCs.

The green solid curves of Figure 4f, with the phase damping, show that the log-negativity N(t)
suddenly vanishes completely for a finite time and then it undergoes rebirth again. These phenomena of
the sudden death and sudden birth of the entanglement [42,43] are observed only for the log-negativity
entanglement for several finite periods (see the nest figure). Moreover, the phase damping γ = 0.4
leads to increase of the partial SI correlation intervals and to the completely vanishing of the maximal
violation of the Bell’s inequality. For p : 0→ pc, the 3D plots of the Figure 4a–d show that the purity
indicator accelerates the effect of the the phase damping.
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Figure 4. The 3D-evolution of L(t) in (a), U(t) in (b), N(t) in (c) and B(t) in (d) as functions of the time
and the purity indicator p ∈ [0, 1] for χz = 0.5, ∆ = 1.5, Jx = Jz = 2 and γ = 0.4. The 2D-evolution
of L(t) (dashed plots), U(t) (dashed dotted plots), B(t) (upper solid plots) and N(t) (solid plots) for
p = 0 in (e) and p = 0.3 in (f).

In Figure 5, the dynamics for the NLC functions L(t), U(t), B(t) and N(t) are shown for the case
p = 0.5. The maximal violation of the Bell’s inequality (B(t) > 2) disappears completely. The B(t)
has oscillometry behavior depending on the parameters of the anisotropy, the coupling to the of DM
interaction, and the coupling environment. Figure 5b confirms that the DM interaction coupling leads
to more regular oscillations, while Figure 5c shows that the anisotropy parameter control the period of
the growth of the correlation functions. For the case p = 0.5, the deterioration of the NLCs, and the
sudden death and sudden birth phenomena are more pronounced than the others cases p = 0 and
p = 0.3.
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Figure 5. The L(t) (dashed plots), U(t) (dashed dotted plots), B(t) (upper solid plots), and N(t)
(solid plots) for Jx = Jz = 2 and p = 0.5 with the cases (χz, ∆, γ) = (0.5, 1.5, 0.0) in (a); (χz, ∆, γ) = (3,
1.5, 0.0) in (b); (χz, ∆, γ) = (0.5, 0.5, 0.0) in (c) and (χz, ∆, γ) = (0.5, 1.5, 0.4) in (d).

Case B: p ∈ [pc, 1].

In this subsection, the non-classical correlations are explored for the purity indicator between pc

and 1, p ∈ [pc, 1]. From Figures 1, 4a–d, 6 and 7, we conclude that the NLCs grow with the increasing
of the purity indicator p. This behavior is opposite to what has been observed for p between 0 and pc.
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Figure 6. The L(t) (dashed plots), U(t) (dashed dotted plots), B(t) (upper solid plots), and N(t)
(solid plots) for χz = 0.5, ∆ = 1.5, p = 1, Jx = Jz = 2 and γ = 0.0 for: p = 1 in panel (a) and p = 0.7 in
panel (b). While in panels (c,d) γ = 0.4.

From 3D plots of Figure 1 and 2D plots of Figure 6a,b, we notice that: (1) For p = 1 and γ = 0,
the effect of the unitary interaction on the NLC evolutions is very weak compared to the case p = 0.7.
As the purity indicator decreases , p : 1 → pc, the unitary interaction effect raise up, and the initial
NLCs is deteriorated, except the maximal correlation of the UIN. (2) The maximal violation of the
Bell’s inequality and SI correlations appear for p = 1. While for p = 0.7, the SI correlation disappears,
the violation of B(t) is reduced, and the phenomenon of sudden changes manifests only in the
dynamics of the UIN.
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Figure 7. As Figure 6a,b but for χz = 3 in panels (a,b) and ∆ = 0.5 in panels (c,d).

Figure 6c,d shows the effects of the phase damping γ = 0.4 on the the initial maximal (p = 1)
and partial (p = 0.7) NLCs. The NLC amplitudes are reduced when the time evolves. As observed
from Figure 6a–d, the deterioration of the NLCs increases as p : 1 → pc. The NLC quantifiers are
more sensitive to the phase damping, and the log-negativity entanglement is more robust against the
phase damping.

From Figures 2a–d and 7a,b we observe that a lager value of the DM interaction χz = 3 leads to
the enhancement of the effect of the unitary interaction. In the range p ∈ [pc, 1], the DM interaction has
strong effect unlike the case p ∈ [0, pc]. The NLCs for p ranging from pc to 1 is plotted in the Figure 3a–d
with large value ∆ = 1.5. While Figure 7c,d represents the NLCs for a small value of the anisotropy,
∆ = 0.5, with p = 1 and p = 0.7. For the case p = 1, the NLCs have small oscillations with weak
amplitudes, while for the case p = 0.7, they have notable changes, see Figure 7c,d. The correlations of
the LQU and the Bell’s inequality are more affected than the others quantifiers.
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The two-qubit Heisenberg XYZ system can be realized from spin-1/2 pyrochlores R2V2O7 [30].
Our results present several potential applications in quantum processing as generation of quantum
correlations [27,28] and quantum simulations [44]. Quantum simulations are required to solve various
complex problems in diverse areas of science such as exploring complex molecular structure in
chemistry [45], studying disorder systems in many-body physics [46], and conceiving high-temperature
superconductor materials [47,48]. The two-qubit entangled system can be used to transfer unknown
quantum state by employing quantum teleportation [49], or classical information through quantum
dense coding [50], as the degree of entanglement plays a vital role to transfer the unknown quantum
state in a perfect or probabilistic way. Furthermore, it could manage the transmission capability of
the classical information, which is a crucial parameter to estimate the quality of performing dense
coding. Finally, the approach used here can be applied to other physical systems. The results could be
important for quantum optics, quantum computation, and quantum machine learning.

5. Conclusions

We have studied the nonlocal correlation dynamics of two qubits in anisotropic Heisenberg model
with Dzyaloshinskii–Moriya interaction via the log-negativity, Bell function, local quantum uncertainty,
and uncertainty-induced non-locality. In our investigation, we consider the coupling of DM interaction,
the coupling to the environment, and the anisotropy. When the system is initially prepared in the class
of mixed Werner state, it is found that the purity indicator plays a key role for the nonlocal correlations.
These correlations also depend on the DM interaction, the anisotropy, and the phase damping.
It is observed that both the log-negativity and the UIN correlations exhibit sudden-change behavior.
Furthermore, the system presents skew-information correlation. We have deduced that the purity
indicator, the DM interaction, the anisotropy, and the phase damping control the SI correlation,
the Bell’s inequality correlation, and the sudden death and sudden birth of the entanglement.
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