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Abstract: Diabetes can induce diseases including diabetic retinopathy, cataracts, glaucoma, etc.
The blindness caused by these diseases is irreversible. Early analysis of retinal fundus images,
including optic disc and optic cup detection and retinal blood vessel segmentation, can effectively
identify these diseases. The existing methods lack sufficient discrimination power for the fundus
image and are easily affected by pathological regions. This paper proposes a novel multi-path
recurrent U-Net architecture to achieve the segmentation of retinal fundus images. The effectiveness
of the proposed network structure was proved by two segmentation tasks: optic disc and optic cup
segmentation and retinal vessel segmentation. Our method achieved state-of-the-art results in the
segmentation of the Drishti-GS1 dataset. Regarding optic disc segmentation, the accuracy and Dice
values reached 0.9967 and 0.9817, respectively; as regards optic cup segmentation, the accuracy and
Dice values reached 0.9950 and 0.8921, respectively. Our proposed method was also verified on the
retinal blood vessel segmentation dataset DRIVE and achieved a good accuracy rate.

Keywords: retinal image segmentation; convolutional neural network; deep learning

1. Introduction

According to WHO statistics, approximately 400 million people worldwide have diabetes.
Diabetes can cause serious complications such as glaucoma and retinopathy. Effectively segmenting
the fundus image assists the physician in diagnosing the disease. The clinical manifestations of
diabetic retinopathy are bleeding spots, hard exudation, retinal microvascular abnormalities, new
microvascular etc., as shown in Figure 1a,b, which can cause severe visual impairment [1]. As one of
the main causes of blindness, glaucoma is irreversible, and it is expected to affect 111.8 million people
in 2040 [2]. Glaucoma is usually evaluated in clinical tests by calculating the vertical cup-to-disk ratio
(CDR) [3]. The CDR can be obtained by the ratio of the vertical cup diameter (VCD) to vertical disk
diameter (VDD). A normal CDR ranges from 0.3 to 0.4; larger CDRs can indicate glaucoma or other
ophthalmic neurological diseases (see Figure 1c,d).

The detection of retinal blood vessels is essential for diabetic retinopathy. However, the retinal
blood vessel structure is complicated, and the manual segmentation of blood vessels is time-consuming
and laborious. At the same time, doctors are required to have extensive professional knowledge.
In recent years, with the development of computer technology, many machine learning methods
have appeared to detect retinal blood vessels. Azzopardi et al. used a B-Cosfire filter to perform the
automatic segmentation of the vessel tree in response to vessels [4]. the authors an automated retinal
blood test method combining the topological segmentation of blood vessels and morphological blood
vessel extractors was proposed in [5]. Bankhead et al. [6] developed a wavelet transform method to
enhance the foreground and background for fast blood vessel detection. the authors constructed a 41-D
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feature vector for each pixel and trained an AdaBoost classifier to classify each pixel in the retinal image
in [7]. Dharmawan et al. [8] used a direction-sensitive improved matched filter bank to segment the
fundus vessels. Deep convolutional neural networks (DCNN) show strong robustness and efficiency
in segmenting blood vessels. A new formulation of DCNN that allowed the simple and accurate
segmentation of the retinal vessels. A major modification was the reduction of the intra-class variance
by formulating the problem as a three-class problem that differentiates large vessels, small vessels,
and background areas [9]. Dasgupta et al. described the segmentation task as a multi-label inference
task, and used a combination of a convolutional neural network and structured prediction to achieve
retinal blood vessel segmentation in [10]. A recurrent convolutional neural network (RCNN) based
on U-Net and a recurrent residual convolutional neural network (RRCNN) based on U-Net, which
were called RU-Net and R2U-Net, respectively, to solve the problem of blood vessel segmentation was
proposed in [11]. A method of connection-sensitive consideration U-Net (CSAU) was proposed to
accurately segment retinal vessel in [12].
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Figure 1. (a) is a healthy fundus image; (b)is an image of diabetic retinopathy with a large amount of
bleeding and exudates on the retina; (c) is a normal fundus image, and the ratio of the vertical cup
diameter (VCD) to vertical disk diameter (VDD) is relatively small; (d) is a glaucoma image with a
narrow nerve-retinal margin band between the optic disc and optic cup.

The detection of glaucoma can be obtained by CDR, so it is of great significance to segment the
optic disc (OD) and optic cup (OC). The existing methods for segmenting the OD and OC mainly
include shape-based template matching, active contour and deformable models, and deep learning
methods. A new method for automatic disc positioning and segmentation was proposed in [13],
The localization process combined vascular and luminance information to provide the best estimate of
the center of the optic disc. A new template-based method was proposed to segment the optic disc
from digital retinal images [14]. A region growing technique based on an adaptive threshold was
proposed for video disc segmentation [15]. Saradhi et al. [16] proposed a novel active region-based
active contour model for OD segmentation. The model combined image information at points of
interest in multiple image channels to resist changes in the OD region and its surrounding regions.
A deformable model based on the active video disc was explored in [17], An active optic disc contains a
pair of concentric inner and outer circles, respectively, corresponding to the OD boundary and the local
background, which are used to define the local contrast energy. A deformable model was used which
incorporated statistical shapes. A set of landmark points on the OD is initialized with the average
shape in the training image and iteratively adapts to the test image, which is consistent with the point
distribution model representing the shape encountered during the training process [18,19]. Singh et al.
proposed a retinal image segmentation method based on a conditional generative adversarial network
(cGAN) in [20]. A novel patch-based output space adversarial learning framework (pOSAL) which
could jointly and robustly segment OD and OC from different fundus image datasets was proposed
in [21] . Sevastopolsky et al. [22] proposed a universal video disc and cup automatic segmentation
method based on deep learning, which was a modification of the U-Net convolutional neural network.

The fundus retinal image has a complex structure and low contrast; in particular, the lesion image
contains a large amount of bleeding, micro tumors, and hard and soft exudates, which has a great
impact on the segmentation of retinal blood vessels and the definition of the optic disc cup boundary.
The methods proposed in the above literature usually have the following problems: (1) due to the large
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downsampling factor, the single-path downsampling process results in the loss of a large amount of
feature information in the retinal image, which ultimately cannot be recovered; (2) insufficiently close
cross-layer feature information contact leads to an insufficient understanding of the information—due
to the single feature information of the same layer, the feature information cannot be complementarily
fused, and ultimately a large amount of feature information is lost; (3) the feature extraction ability of
the network structure is insufficient and it is difficult to restore low-level detailed feature information,
which generates a great deal of noise in the segmented image; (4) the retinal blood vessel segmentation
accuracy is low and the optic disc optic cup boundary segmentation is blurred. In view of the above
problems, this paper proposes a multi-path recurrent U-Net architecture to achieve the segmentation
of the optic disc optic cup. At the same time, the effectiveness of this method is verified on the retinal
vessel segmentation data set DRIVE, and good results are achieved. The main contributions of this
work are summarized as follows:

(1) A multi-path recurrent U-Net network architecture combining a convolutional neural network
and a recurrent neural network is proposed . As shown in Figure 3a, this method implements the
segmentation of retinal medical images.

(2) Multi-branching the encoding path and the decoding path can more effectively obtain different
semantic features.

(3) The multi-path recurrent U-Net combines the recurrent neural network to sequence the multi-path
output features in time to further improve the target features.

(4) For the Drishti-GS1 dataset, the method for the segmentation of the OD and OC achieved
state-of-the-art results. Our method has also been verified on the retinal blood vessel segmentation
dataset DRIVE and achieved a good accuracy rate.

The organizational structure of this article is as follows: Section 2 mainly discusses related work;
in Section 3, the multi-path recurrent U-Net model proposed in this paper is described; Section 4
mainly describes the data set, experiments and results; and finally, Section 5 summarizes this article.

2. Related Work

2.1. U-Net Model

The full convolutional neural network [23] proposed by Jonathan Long can accept input images
of any size and uses a deconvolution layer to up-sample the feature map of the last convolution
layer to restore it to the same size as the input image. Therefore, a prediction can be generated for
each pixel while retaining the spatial information in the original input image, finally performing
pixel-by-pixel classification on the up-sampled feature map. Based on fully convolutional networks
(FCNs), Ronneberger et al. proposed the U-Net model [24], which has achieved great success in the
field of cell segmentation in microscopic tissue sections, as the U-Net achieves acceptable results.

The model has been widely used in various applications of semantic segmentation, such as for
satellite image segmentation and industrial defect detection. The use of data augmentation can train
some relatively small samples of data, especially medical-related data. The emergence of U-Net has
been very helpful for deep learning for medical images with fewer samples. U-Net consists of an
encoding path and a decoding path. The encoding path gradually reduces position information and
extracts abstract features through the pooling layer. For accurate positioning, the local pixel features
extracted from the decoding path will be combined with the new feature map during the upsampling
process to retain some important feature information from the previous downsampling process to
the greatest extent (see Figure 2a). In 2016, Çiçek et al. proposed that the 3D U-Net model [25] is
a simple extension of U-Net and can be applied to 3D image segmentation. The U-Net proposed
in [26] is essentially a deeply supervised encoder/decoder network, in which the encoder and decoder
subnetworks are connected through a series of nested, dense skip paths. The redesigned skip path
aims to reduce the semantic gap between the feature maps of the encoder and decoder subnets.
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Oktay et al. [27] introduced an attention mechanism into U-Net. Before stitching the features at each
resolution of the encoder and the corresponding features in the decoder, an attention module was
used to readjust the output features of the encoder. Because U-Net’s encoder/decoder structure and
skip connection are a very classic design method, many papers have continued the core idea of U-Net,
adding new modules or incorporating other design concepts, and all have achieved excellent results.
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Figure 2. The structure of the U-Net, the recurrent neural network (RNN), and the convolutional neural
network (CNN) and RNN in combination. (a) is the U-net structure; (b) is the expended structure of the
recurrent neural network; (c) is the recurrent neural network without hidden state; (d) is the structure
of the combination of convolutional neural network and recurrent neural network.

2.2. Recurrent Neural Network

A recurrent neural network is a type of recursive neural network that take sequence data as
an input, performs recursion in the direction of the sequence, and connects all nodes in a chain [28]
(see Figure 2b). Recurrent neural networks have certain advantages when learning the nonlinear
characteristics of sequences. Therefore, they are widely used in the field of natural language processing.
Graves et al. used deep recurrent neural networks for speech recognition in [29], and the DiSAN
network proposed in [30] combined an attention mechanism with a recurrent neural network for
natural language processing. At the same time, the combination of the recurrent neural network
and convolutional neural network can effectively deal with computer vision problems including
sequence input. Mosinska et al. [31] passed the modified U-Net generated segmentation results back
to the network along with the original image as input, which led to the progressive refinement of
the segmentation results, as shown in Figure 2c. A novel end-to-end network structure which was
based on recursive neural networks to find objects and their segments one by one in turn and learn
how to segment instances in order was proposed in [32], as shown in Figure 2d. Wang et al. [33]
proposed an effective recursive semantic segmentation method, which could be run in an environment
in which the amount of training data and computing power is limited. There is an increasing amount
of research into combining the convolutional neural network and recurrent neural network in semantic
segmentation. In this paper, U-Net is multi-path processed, combined with recurrent neural unit, and
the output features of each path are serialized and passed through the recurrent unit.

3. Methodology

In this section, we will introduce the overall architecture of the multi-path recurrent U-Net model
proposed in this article in detail. At the same time, the details of the recurrent unit proposed in this
article will also be explained.
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3.1. Multi-Path Recurrent U-Net

The proposed architecture is based on the U-Net model architecture, as shown in Figure 3a.
The proposed network structure has a coding path and a decoding path, with skip connections between
the corresponding coding layer and decoding layer, thereby allowing the network to retain low-level
features for final prediction. In the decoding path, the proposed method resembles a full binary tree.
Convolutional blocks are placed at the nodes of each layer. As shown in Figure 3b, the connection
line between nodes represents the downsampling pooling operation. After each pooling layer in
the encoder, the channel number is doubled. After the input image passes through the first layer of
convolution blocks, the maximum pooling operation and the average pooling operation are performed,
respectively, corresponding to the left and right branches in the binary tree. The coding path has four
layers of convolutional blocks. According to the distribution of full binary tree nodes, the numbers of
convolutional blocks in each layer are L1 = 1, L2 = 2, L3 = 4 and L4 = 8. The authors [34–36] showed that
the error of feature extraction mainly results from two aspects: (1) the variance of the estimated value
increases due to the limitation of the neighborhood size; (2) the error of the convolution layer parameter
causes the deviation of the estimated mean. The average pooling can reduce the error of the increase
in the variance of the estimated value caused by the limited size of the neighborhood and retain more
background information of the image. The maximum pooling can reduce the deviation error of the
estimated mean caused by the error of the layer parameters and retain more texture information.
The proposed method introduces both types of pooling operations, using the maximum pooling
operation on the left branch and the average pooling operation on the right branch to reduce the error.
The decoding path relies on transposed convolution to increase the representation ability of the model,
and the structure is similar to the encoding path. In each convolution block, since the proposed
method usually relies on very small batch sizes, we use group normalization in all convolutional layers.
The proposed method serializes the output feature maps of the eight convolution blocks in the fourth
layer of the coding path. The proposed method serializes the output feature maps of the eight
convolution blocks in the fourth layer of the coding path. First, the output feature of the convolution
block at the leftmost leaf node is taken as the start data of the sequence * 1, and then the output
feature of the convolution block at the rightmost leaf node is taken as the end data of the sequence * 8.
By recursing the sequence, st can simply concatenate the previous segmentation mask st−1 with the
input image xt on each recurrent iteration t. The resulting cascade tensor is then implemented by
a recurrent unit, and finally, the output features of each recurrent unit are input to a decoder in a
corresponding decoding path. Next, we will discuss two variants of the model’s recurrent unit.

3.2. Recurrent Unit

The recurrent unit design in this method is inspired by the gate recurrent unit (GRU) [37].
The encoder represents the input image as a fixed-length vector. Since the proposed method is a
multi-path encoder, the vectors output by each path can be serialized. The sequence is then filtered
through a recurrent unit to output a new sequence vector, and the encoder uses these sequence
vectors to reconstruct the target image. Therefore, this article modifies the GRU equation accordingly,
but retains the original purpose of the GRU, as shown in Figure 3c.

In the t-th iteration, this article first obtains the two gating states by the previous hidden state ht−1

and the current node input xt, resets the gate and updates the gate; see Equations (1) and (2).

rt = σ(conv([xt, ht−1])) (1)

zt = σ(conv([xt, ht−1])) (2)

where rt indicates reset gating and zt indicates update gating. σ() represents the sigmoid activation
function. Through this function, the data can be transformed into a value in the range of 0–1, thereby
serving as a gating signal. [] represents the concatenation of two vectors. conv() represents a 1× 1
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convolution operation. The initial weights of conv() in these two gates are different. After obtaining
the reset gating information, we aim to generate a candidate update ft through the tensor combination
of rt and hidden state ht−1 with the current input xt. At this time, ft contains the current input xt,
and ft is added to the current hidden state in a targeted manner, and the information at the current
time is retained; see Equation (3).

ft = tanh(conv([xt,(rt � ht−1)])) (3)

where tanh() represents the Tanh activation function, which shrinks the data to the range of −1 ∼ 1.
� indicates that the corresponding elements in the operation matrix are multiplied, so the two
multiplication matrices are required to be of the same type. The hidden state ht at the current moment
is obtained according to the information of the update gate and the candidate update ft. The operation
of this step is performed to forget some of the dimensional information passed by ht−1 and add some
dimensional information input by the current node. This is shown in Equation (4).

ht = ft � zt ⊕ ht−1 � (1− zt) (4)

where ⊕ represents the matrix addition operation.
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Figure 3. Multi-path recurrent U-Net structure and detailed internal structure of the model. (a) is the
Multi-path recurrent U-Net structure; (b) is the basic convolution block; (c) is recurrent unit; (d) is a
recurrent unit with an attention gate; (e) is the structure of the attention gate in the recurrent unit.

Finally, according to the hidden state ht at the current moment, we input ht to the basic convolution
block to obtain the output feature map of the t− th recurrent unit as the input of the corresponding
position decoder, as shown in Equation (5).

ot = CB(ht) (5)

CB() represents the basic convolution block used in this paper. In contrast to GRU, the RU in
the proposed method uses 1× 1 convolution in each gate to further abstract the feature, and uses
the current concealed state as the output of the recurrent unit through the basic convolution block.
Compared with the original U-Net, this allows us to extract a large number of features without having
to increase the number of channels in the encoding and decoding layers.
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3.3. Attention Recurrent Unit

The recurrent unit generates the hidden state at the current moment by gating the current
input and the hidden state of the previous recurrent unit. As can be seen from the previous section,
the recurrent unit is sensitive to local information but lacks access to multiple global information.
Therefore, the proposed method makes further improvements to the recurrent unit. Referring to
Figure 3d, the attention gating unit is introduced to obtain global information of the current input.
The attention gating unit is shown in Figure 3e.

Specifically, the attention circulation unit and the circulation unit have similar structures, and only
the attention gating unit is introduced later. Therefore, the equation is basically the same as above,
except for the hidden state. it is now expressed as Equation (6). The attention gating unit first globalizes
the current input xt and turns each two-dimensional feature channel into a real number r ∈ R. r has a
global receptive field to some extent, and the number of channel outputs is the same as the number
of channels of the original feature map. Secondly, R is rescaled to R

′
through two layers of 1× 1

convolution, and then R
′

is output to R
′′

through the sigmoid activation function. Finally, we multiply
xt and R

′′
as the output at of the gating unit.

ht = ( ft � zt ⊕ ht−1 � (1− zt)) ⊕ at (6)

This simple modification combines global information with local information to minimize the
tension between semantics and location. As a result, more accurate predictions can be made, and the
experiments in this article have also proven this.

4. Experiment

4.1. Data Set and Data Preprocessing

The Drishti-GS1 dataset [38] contains a total of 101 fundus images: 31 normal and 70 diseased.
The training set contains 50 images and the test set contains 51 images. All image OD and OC regions
were marked by four ophthalmologists with different clinical experience. In this paper, the average
area marked by four experts is used as the standard optic disc and cup area for training, and the
pictures have different sizes, as shown in Figure 4a,b. This paper draws on the pre-processing method
in [39] to pre-process the original image through polar transformation, which can effectively improve
the segmentation efficiency. Due to the small sample size of the Drishti-GS1 data set, in order to
prevent the model from overfitting and improve the accuracy and robustness of the model, this paper
augments the data of the training set, including the use of a method based on a video disc center
point image detection [40] method to extract 10 different sizes of pictures by performing a random
horizontal flip, random vertical rotation, and random angle rotation. However, when training the
network, the size of the input image is expanded or scaled to the standard 512× 512, the batch size is
4, and the iteration period is 400. Only 700× 700 pictures are extracted on the test set, then scaled to
512× 512 and input into the network, and then the generated predicted image is filled to the original
image size.

(a) (b) (c) (d)

Figure 4. Original images and real labels in Drishti-GS1 and the DRIVE dataset. (a) is the image
number 11 in the Drishti-GS1 dataset; ((b) is the ground truth corresponding to (a); (c) is the image
number 22 in the DRIVE dataset; (d) is the ground truth corresponding to (c).
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The DRIVE dataset consists of 40 retinal fundus blood vessel images, corresponding real labeled
images, and corresponding masks images. The images originate from a diabetic retinopathy screening
program from the Netherlands, and each image has a size of 565× 584. As shown in Figure 4c,d, for the
DRIVE data set, during the training process, 10, 480 image patches of size 128× 128 are randomly
extracted for the training set. At the same time, 10, 480 real label patches with a size of 128× 128 are
extracted from the corresponding real labels at the same location to calculate the loss and train the
network. The input image batch size is 16 and the iteration period is 200. In the test phase, this article
extracts image patches for each test picture of each dataset in a sliding window order. The size of the
sliding window is 128× 128, the sliding step is 5 pixels, and the part of the sliding window beyond
the picture is filled with 0. Similarly, the batch size of the image input to the network is 16.

4.2. Implementation Details

The method was built with the open source deep learning library PyTorch, implemented on a
server configured with an Inter (R) Xeon (R) E5-2620 V3 2.40GHz CPU, Tesla K80 GPU, and Ubuntu64
operating system. During the training phase, the Adam optimizer was used. The parameters were set
to β1 = 0.9, β2 = 0.999, and ε = 1e− 8. The learning rate łr was initialized to 0.001, and the learning
rate was attenuated by the Plateau [41] method. The loss function used a cross-entropy loss function.
The definition is as follows:

Lossce(y, ŷ) = −∑ yilogŷi + (1− yi)log(1− ŷ) (7)

where yi indicates a true label and ŷi indicates a predicted image.

4.3. Evaluation Indicators

In order to evaluate the effectiveness of the method proposed in this paper on the segmentation of
these two data sets, this paper analyzes the sensitivity, specificity, accuracy and F-measure evaluation
indicators by generating a confusion matrix.

It should be noted that the F-measure indexed here is the same as the dice score in the disc and
cup segmentation fields. In addition, in the evaluation of the Drishti-GS1 data set, this paper adds an
evaluation index which is widely used in the industry: boundary distance localization error (BLE) [42].
BLE is used to measure the error (in pixels) between the predicted cup boundary (Co ) and the true
label boundary (Cg), which is defined as follows:

BLE(Cg, Co) =
1
n

θn

∑
θ=0
|rg

θ − ro
θ | (8)

where rg
θ represents the radial Euclidean distance from the predicted boundary point to the centroid in

the direction θ, and ro
θ represents the radial Euclidean distance from the boundary point of the real

label to the centroid in the direction θ. In the evaluation, 24 equidistant points are considered n = 24.
The ideal value for BLE is 0.

4.4. Comparison of Model Improvement Results

In order to verify the effectiveness of the multi-path U-Net recurrent block (RU) and attention
recurrent block (ARU) proposed in this paper, experiments were performed on the Drishti-GS1 dataset
and DRIVE dataset. The indicators in the following tables are averages and standard deviations.
MPU stands for multi-path U-Net, MPR stands for multi-path recurrent U-Net, and MPAR stands for
multi-path recurrent U-Net with an attention gate added to the recurrent block.

In this paper, Drishti-GS1 compares the results of the segmentation of the optic discs of each
model, as shown in Tables 1–3. It can be seen that the performance of the MPR model with the recurrent
block is improved compared to the basic MPU; in particular, for the CupDice indicator, the MPR model
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is 3.44% higher than the MPU model, which shows that combining the convolutional neural network
and the recurrent neural network is significant for the OC segmentation.

Table 1. Comparison of optic cup (OC) model changes based on the Drishti-GS1 dataset. MPU:
multi-path U-Net; MPR: multi-path recurrent U-Net; MPAR: multi-path recurrent U-Net with
attention gate.

Model Accuracy Specificity Sensitivity Dice

MPU 0.9935/0.0037 0.9971/0.0024 0.7849/0.1558 0.8499/0.1194
MPR 0.9945/0.0030 0.9972/0.0019 0.8363/0.1507 0.8843/0.0837

MPAR 0.9950/0.0022 0.9981/0.0022 0.9365/0.0659 0.8921/0.0793

Table 2. Comparison of optic disc (OD) model changes based on the Drishti-GS1 dataset.

Model Accuracy Specificity Sensitivity Dice

MPU 0.9953/0.0032 0.9971/0.0035 0.9155/0.0861 0.9724/0.0157
MPR 0.9964/0.0022 0.9978/0.0024 0.9390/0.0590 0.9737/0.0137

MPAR 0.9967/0.0022 0.9980/0.0020 0.9365/0.0639 0.9817/0.0156

Table 3. Comparison of optic model changes based on the Drishti-GS1 dataset.

Model Accuracy Specificity Sensitivity Dice

MPU 0.9980/0.0012 0.9985/0.0009 0.9838/0.0220 0.9690/0.0168
MPR 0.9983/0.0011 0.9989/0.0008 0.9810/0.0222 0.9726/0.0138

MPAR 0.9985/0.0011 0.9990/0.0009 0.9811/0.0215 0.9740/0.0145

To further prove the improved performance of the model, we propose a hypothesis: the MPAR
model performs better than the MPU model and MPA model. We conducted P value analysis on Dice,
and the results are shown in Table 4. MPAR:MPU represents the comparison between the MPAR model
and the MPU model, and MPAR:MPR represents the comparison between the MPAR model and the
MPU model. In the table, MPAR:MPU has a Pvalue < 0.05 for OC and OD, indicating that the MPAR
model and the MPU model have statistical significance; that is, the MPAR model performs better than
the MPU model. In the table, MPAR:MPR has a Pvalue < 0.05 for OD, indicating that the MPAR model
performs better in OD segmentation than the MPR model.

Table 4. Comparison of Pvalue analysis results based on Dice.

Cup Disc

MPAR:MPU MPAR:MPR MPAR:MPU MPAR:MPR

Pvalue 0.038 0.630 0.003 0.007

Figure 5 shows the result of segmentation of the OC by different models, and the OC region is
enlarged and displayed. The first line of the original image corresponds to the true label of the OD and
the corresponding enlarged image, and the remaining lines are the segmentation results images of
different models. It can be seen from the enlarged image that the contour of the MPAR model is more
consistent when the OD is segmented, but the segmentation contour of the OC is insufficient, and the
MPAR model is better at segmenting the OC.

Table 5 shows the BLE errors of the segmentation results of each model. As can be seen from the
table, the results of the MPAR model are better than the MPU model and the MPR model. Especially
for the video cup, comparing MPAR with MPU, the BLE error is reduced by 6.242 pixels, which also
shows that the model in this paper can segment the video cup more accurately. BLE error plays a
crucial role in the evaluation of the model. This paper shows that the BLE was 360◦ (each 15◦). Figure 6
shows the average error, median, maximum and minimum error, and quartile box of each test picture
in the same orientation.
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        (a)                  (b) (c) (e) (g)(d) (f) (h)

GT

MPU

MPR

MPAR

Figure 5. Comparison of segmented images of each model in the Drishti-GS1 dataset. (a) original
image; (b) is a partial cut of the original image; (c) Disc; (d) is a partial cut of the Disc; (e) Cup; (f) is a
partial cut of the Cup; (g) Optic; (h) is a partial cut of the Optic.

Disc_BLE Cup_BLE

MPU

MPR

MPAR

maximum 

minimum

median

average

quartile box

Figure 6. Box plot of BLE statistics for each model of the Drishti-GS1 dataset.
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Table 5. Boundary distance localization error (BLE) comparison of model changes based on the
Drishti-GS1 dataset.

Model Disc Cup

MPU 5.832/3.301 20.584/16.697
MPR 5.206/2.876 15.087/12.238

MPAR 4.765/2.933 14.342/10.169

This paper compares the receiver operating characteristic curve (ROC) curves of different models
in the optic cup and joint optic cup segmentation, as shown in Figure 7. The MPR model has an
increase in the area under the curve (AUC) of the optic disc by 0.0441 compared with the MPU model.
The MUC model increased the AUC for the optic cup by 0.01 compared to the MPR model. The AUC
of the MPAR model for joint optic disc segmentation was 0.9957.

(a) (b) (c)

Figure 7. Comparison of receiver operating characteristic (ROC) curves of each model in the
Drishti-GS1 dataset. (a) Cup; (b) Disc; (c) Optic.

In order to further illustrate the effectiveness of this method, this paper conducts a generalization
verification on the DRIVE dataset. Table 6 shows the segmentation results of different models, which
can show the effectiveness of the multipath U-Net in retinal vessel segmentation. It can also be seen
that it is reasonable to combine convolutional neural networks and recurrent neural networks. At the
same time, the results also show that the addition of an attention gate to the recurrent block in this
paper also improves the performance of blood vessel segmentation.

Table 6. Comparison of model changes based on the DRIVE dataset.

Model Accuracy Specificity Sensitivity F1

MPU 0.9564 0.9835 0.8022 0.8196
MPR 0.9599 0.9823 0.8145 0.8207

MPAR 0.9642 0.9820 0.8173 0.8275

Figure 8 is an effect diagram of the blood vessel segmentation by each model. As shown in the
figure, the MPAR model can effectively segment the small peripheral blood vessels effectively. and at
the same time, it can more completely segment the blood vessels, reducing the problem of blood vessel
rupture during segmentation. Figure 9 shows the ROC curve of each model on the DRIVE data set.
Comparing the MPA model and the MPU model, the AUC area increased by 0.0034, and the MPAR
model AUC area was 0.9754.



Appl. Sci. 2020, 10, 3777 12 of 17

(a) (b) (c) (d) (e)

Figure 8. Comparison of segmented images of each model in the DRIVE dataset. (a) is original image;
(b) is ground truth of (a); (c) MPU; (d) MPR; (e) MPAR.

Figure 9. Comparison of ROC curves of the DRIVE dataset model.

4.5. Comparison of Results of Different Segmentation Algorithms

This paper compares the performance of the proposed model with other segmentation methods:
the modified Chan-Vese model [43], super-pixel method [44], multi-field depth discontinuity
method [45], U-Net [22], BCRF [46],multi-feature-based method [47], improved U-Net [22], CGAN [48]
and deep learning-based methods [49]. Five evaluation indexes were compared. A value of “-”
indicates that the results of this evaluation index were not given in the original work, as shown in
Tables 7 and 8.

Although a large number of studies did not calculate accuracy, specificity and sensitivity, as shown
in Table 7, compared with the results given in [22,24,48], the proposed method achieves optimal
accuracy and specificity of the OD segmentation. Table 8 also shows the comparison of [24,49].
The method in this paper achieves the best accuracy and specificity of segmentation of the OC.
The indicators calculated by a large number of works are Dice and BLE; Tables 7 and 8 show that, in
these two evaluation indicators, the proposed method is superior to other OD and OC segmentation
algorithms. This shows the benefit of expressing the segmentation task as a bounding box detection
problem in our work.
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Table 7. Comparison of the OD results of different baseline methods on the Drishti-GS1 dataset.

Model Accuracy Specificity Sensitivity Dice BLE

Vessel Bend [43] - - - 0.9600/0.0200 8.930/2.960
Superpixel [44] - - - 0.9500/0.0200 9.380/5.750
Multiview [45] - - - 0.9600/0.0200 8.930/2.960

U-Net [24] 0.9700/- 0.9800/- 0.9600/- 0.9500/- -
BCRF [46] - - - 0.9700/0.0200 6.610/3.550

Gao et al. [47] - - - 0.9470/- 8.885/-
Artem et al. [22] 0.9353/- 0.9684/- 0.8623/- 0.9500/- -

CGAN [48] 0.9800/- 0.9900/- 0.9800/- 0.9700/- -
Xiao et al. [49] - - - 0.9400/- 9.883/-
MPAR (ours) 0.9967/0.0022 0.9981/0.0022 0.9365/0.0659 0.9817/0.0156 4.765/2.933

Table 8. Comparison of the OC results of different baseline methods on the Drishti-GS1 dataset.

Model Accuracy Specificity Sensitivity Dice BLE

Vessel Bend [43] - - - 0.7700/0.2000 30.510/24.800
Superpixel [44] - - - 0.0800/0.1400 22.040/12.570
Multiview [45] - - - 0.7900/0.1800 25.280/18.000

U-Net [24] 0.9700/- 0.9800/- 0.9600/- 0.8500/0.100 19.530/13.980
BCRF [46] - - - 0.8300/0.1500 18.610/13.020

Gao et al. [47] - - - 0.8260/- 21.980/-
Xiao et al. [49] 0.9712/- 0.9758/- 0.8598/- - -

Niharika et al. [50] - - - 0.8110/- 23.335/-
MPAR (ours) 0.9950/0.0022 0.9980/0.0020 0.9365/0.0639 0.8921/0.0793 14.342/10.169

Figure 10 shows the effect of the video cup segmentation of the model and other methods in this
paper. Compared with columns d, f, g, and h, the proposed method is more accurate at segmenting
the optic disc and the boundary is more reasonable, especially compared with the Graph Cut prior
method [51]. Compared with column e, the segmentation boundary of the superpixel method is a
relatively regular ellipse. This method is affected by the conventional shape. The extracted boundary
results are not accurate and reliable. This also proves that the model proposed in this paper can more
accurately and effectively collect the boundary information of the OD and OC.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. Comparison of different method model segmentation images of the Drishti-GS1 dataset. (a)
is the original image; (b) is the ground truth; (c) is the result of the method in this paper; (d) BCRF [46];
(e) Superpixel [44]; (f) Multiview [45]; (g) Graph Cut prior [51]; (h) Vessel bend [43].
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The segmentation of retinal blood vessels is challenging because retinal blood vessels are too
small and diverse in shape. In order to verify the effectiveness of the method in this paper, we carry
out a push verification on the DRIVE dataset and compare it with several recent methods, as shown in
Table 9. The accuracy of the vascular segmentation and F1 score of the method in this paper reached
optimal values, which were 0.9642 and 0.8275, respectively. The specificity is equal to that of the
method in [52], and the sensitivity is only 0.0109 smaller than that of the method in [53], but 0.0747
more than that of the method in [54]. The segmentation effect is shown in Figure 11. This article
enlarges part of the peripheral blood vessels. It can be seen that the method in this paper is more
accurate than the method in [11,53] in segmenting small blood vessels and can effectively reduce the
problem of small blood vessel rupture. In summary, the MPAR model in this paper can detect objects
with variable sizes better than other methods.

Table 9. Comparison of model changes based on the DRIVE dataset.

Model Accuracy Specificity Sensitivity F1

Yan et al. [52] 0.9538 0.9820 0.7361 -
U-Net [24] 0.9554 0.9802 0.7849 0.8175

R2U-Net [11] 0.9556 0.9813 0.7792 0.8171
Samuel et al. [53] 0.9609 0.9738 0.8282 -
Chen et al. [54] 0.9453 0.9735 0.7426 -
Wang et al. [55] 0.9567 0.9816 0.7940 0.8270

MPAR (ours) 0.9642 0.9820 0.8173 0.8275

(a) (b) (c) (d) (e)

Figure 11. Comparison of model segmentation images of different DRIVE dataset. (a) is the original
image; (b) is the ground truth; (c) is the result of the method in this paper; (d) method in [11]; (e) method
in [53].

5. Conclusions

The analysis of medical fundus images has significance in terms of the effects of ophthalmic
diseases. In this article, we propose a deep learning architecture called multi-path recurrent U-Net.
This structure combines a recurrent neural network and a convolutional neural network and makes
corresponding improvements to the original U-Net and the recurrent unit. It implements a multi-path
recurrent U-Net architecture and improves the problem of disc division and cup division. Through
experimental verification, more efficient segmentation results are shown to be generated for the
Drishti-GS1 dataset. At the same time, the method was popularized and verified on the retinal blood
vessel segmentation dataset DRIVE and has achieved good results. In this paper, our method was
validated on 2D images; its extension to 3D data would be a possible future development.
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