
applied
sciences

Article

On the Security of Practical Mail User Agents against
Cache Side-Channel Attacks †

Hodong Kim 1 , Hyundo Yoon 1, Youngjoo Shin 2 and Junbeom Hur 1,*
1 Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea;

hdkim@isslab.korea.ac.kr (H.K.); hdyoon@isslab.korea.ac.kr (H.Y.)
2 School of Computer and Information Engineering, Kwangwoon University, Seoul 01897, Korea;

yjshin@kw.ac.kr
* Correspondence: jbhur@korea.ac.kr
† This paper is an extended version of our paper published in the 2020 International Conference on

Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020.

Received: 30 April 2020; Accepted: 26 May 2020; Published: 29 May 2020
����������
�������

Abstract: Mail user agent (MUA) programs provide an integrated interface for email services.
Many MUAs support email encryption functionality to ensure the confidentiality of emails. In practice,
they encrypt the content of an email using email encryption standards such as OpenPGP or S/MIME,
mostly implemented using GnuPG. Despite their widespread deployment, there has been insufficient
research on their software structure and the security dependencies among the software components
of MUA programs. In order to understand the security implications of the structures and analyze
any possible vulnerabilities of MUA programs, we investigated a number of MUAs that support
email encryption. As a result, we found severe vulnerabilities in a number of MUAs that allow
cache side-channel attacks in virtualized desktop environments. Our analysis reveals that the root
cause originates from the lack of verification and control over the third-party cryptographic libraries
that they adopt. In order to demonstrate this, we implemented a cache side-channel attack on RSA
in GnuPG and then conducted an evaluation of the vulnerability of 13 MUAs that support email
encryption in Ubuntu 14.04, 16.04 and 18.04. Based on our experiment, we found that 10 of these
MUA programs (representing approximately 77% of existing MUA programs) allow the installation
of a vulnerable version of GnuPG, even when the latest version of GnuPG, which is secure against
most cache side-channel attacks, is in use. In order to substantiate the importance of the vulnerability
we discovered, we conducted a FLUSH+RELOAD attack on these MUA programs and demonstrated
that the attack restored 92% of the bits of the 2048-bit RSA private key when the recipients read a
single encrypted email.

Keywords: cache side-channel attack; encrypted email; mail user agent; GnuPG; desktop virtualization

1. Introduction

Because email is one of the most widely used communication services on the Internet [1], many
Internet users are concerned about their communication privacy because sensitive email content
can be revealed via bulk surveillance (e.g., illegal email surveillance by the NSA in the US) [2],
social engineering attacks [3] or email service breaches [4–6]. Thus, a number of non-governmental
organizations and social media platforms have recommended the adoption of security techniques to
protect communications when sending sensitive information via email [7–12]. An example of this is
email encryption, which was developed as a promising defense against email attacks. It secures the
content of emails using end-to-end encryption in the application layer independently of transport layer
security (TLS). In order to preserve email privacy, many current mail user agent (MUA) programs

Appl. Sci. 2020, 10, 3770; doi:10.3390/app10113770 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3906-7240
https://orcid.org/0000-0002-4823-4194
http://dx.doi.org/10.3390/app10113770
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/11/3770?type=check_update&version=2

Appl. Sci. 2020, 10, 3770 2 of 14

support encrypted email functionality using email encryption standards such as OpenPGP [13] or
S/MIME [14].

GnuPG (also known as GPG) [15] is a free implementation of the OpenPGP standard as defined
by RFC4880 [13]. Since its introduction in 1997, the GnuPG crypto library has been widely used
to implement OpenPGP in many MUA programs; however, though they are widely deployed in
practice, there has been little research on the software structure, security dependencies among
software components and security implications of MUA programs, especially in terms of cache
side-channel attacks.

Since Gullasch et al. [16] first demonstrated the possibility of cache side-channel attacks, many
variants have been proposed [17–20], and most of the secret-dependent cryptographic implementations
that are vulnerable to cache side-channel attacks have been identified. For example, the RSA
implementation of GnuPG 1.4.13 has a secret-dependent control flow. Thus, by monitoring the
execution traces through a cache side-channel, an attacker is able to extract the RSA private key.
The discovery of vulnerabilities in GnuPG led to the introduction of a security patch, thus it has
been assumed that many of the applications utilizing GnuPG are secure against cache side-channel
attacks because the problem was fundamentally resolved within the primitive crypto library;
however, surprisingly, we found that many current MUAs are still vulnerable to cache side-channel
attacks in cross-virtual machine (VM) environments sharing the same hardware, such as desktop
virtualization environments.

In order to understand the root cause of this vulnerability, in this study, we conduct an in-depth
analysis of the security mechanisms of existing MUA programs and determine how they take advantage
of internal and external cryptographic libraries. We then propose a novel MUA attack scenario based
on a cache side-channel attack and demonstrate that a number of MUAs are vulnerable to this attack.
Our attack leverages the vulnerability of MUAs that allow the installation of an old version of the
GnuPG library, which is vulnerable to cache side-channel attacks. An attacker can launch a cache
side-channel attack when the victim reads an encrypted email in a VM environment. The attacker is
consequently allowed to observe the cache activity of the victim and extract the RSA private key, which
can be employed to restore the original content of the victim’s email. We evaluate 13 existing MUAs
that are available for use with Ubuntu 14.04 LTS, 16.04 LTS and 18.04 LTS. Based on our experiment, we
find that 10 of these MUA programs are vulnerable to our attack scenario, even if the secure version of
GnuPG is in use. In order to verify the severity of this vulnerability, we delivered a FLUSH+RELOAD
attack on the MUA programs and demonstrated that an attack can restore 92% of the bits of the 2048-bit
RSA private key when the recipients read a single encrypted email. Because encrypted email uses RSA
encryption, the one-time extraction of a private key could compromise the privacy of all future emails.

Although cache side-channel attacks have been delivered against various TLS implementation
vulnerabilities involving a variety of cryptographic algorithms and protocols, such as Lucky
Thirteen [21] and Bleichenbacher [22], few studies have attempted to identify application vulnerabilities.
Given that most of the current implementations of cryptographic libraries have been designed
or patched to be secure against various cache side-channel attacks, it may be assumed that the
applications using them would also be secure. As we demonstrate, however, an application’s
careless behavior or policies could incapacitate the underlying defense against these attacks. Thus,
it is important for applications to avoid total dependency on the underlying defense provided by
external security mechanisms; rather, they should carefully design and adopt their own independent
security mechanisms.

Contribution. Our study makes the following contributions.

• We conduct an in-depth analysis of the security mechanisms implemented by existing MUA
programs and identify their security flaws in terms of cache side-channel attacks in a virtualized
desktop environment.

• We propose a novel MUA attack scenario based on a cache side-channel attack. It exploits
an implementation flaw in MUA programs that allows a downgrade of the version of the

Appl. Sci. 2020, 10, 3770 3 of 14

cryptographic library used by the program. We find that many of these MUAs are vulnerable to
this attack.

• To demonstrate the efficacy of the proposed cache-side channel attack in practice, we investigated
the latest version of 13 existing MUA programs that work on Ubuntu 14.04 LTS, 16.04 LTS and
18.04 LTS. We find that 77% of these MUAs are vulnerable to our attack, which can extract 92% of
the bits of the 2048-bit RSA private key from MUA users.

• We discuss mitigation strategies to secure MUA programs against cache side-channel attacks
and explain why the security of the application layer should be independent of the underlying
security of the other layers.

Though the presented attack scenario utilizes a FLUSH+RELOAD attack to assess the vulnerability,
security misconfiguration and implementation flaws of the MUA programs, our scenario is not
limited to this attack vector. In other words, more recent cache side-channel attacks such as
PRIME+PROBE [18], EVICT+RELOAD [19] and FLUSH+FLUSH [20] can be used as attack vectors to
demonstrate the efficacy of the proposed attack on the basis of the system environment involved.

Responsible disclosure. We have reported our findings to Evolution and disclosed the technical
details to Evolution developers. Although we confirmed that the presented attack was possible due to
the absence of control over GnuPG, which Evolution relies on, Evolution developers have claimed
that it is a complex issue that combines both technical and human factors, which makes it difficult to
easily resolve. Some of the technical feedback we obtained from Evolution has been integrated into
the paper.

Organization. The rest of our paper is organized as follows. Preliminaries for MUA programs
and cache side-channel attacks are given in Section 2. Our attack scenario, its demonstration on
practical MUAs and analysis results are described in Section 3. Mitigation strategies are presented in
Section 4. Related work is described in Section 5, followed by a conclusion and discussion in Section 6.

Extended part. Based on our previously published work [23], our paper includes further details
to strengthen our attack scenario. Major extended parts are as follows. In Section 3, detailed results
of analyzed practical MUAs and explanation for enforcing version downgrade of cryptographic
library are included to consolidate practicality of our attack scenario. We discuss mitigation strategies
considering the root cause that enables our attack scenario and real world user experiences in Section 4.

2. Preliminary

2.1. Mail User Agents

An MUA, also referred to as an email client, provides overall functionality for the access and
management of a user’s email. MUAs are preferred by many users because they can avoid the
storage and functionality problems of web mail services and manage multiple email accounts in an
integrated, ready-to-use email environment. Also, MUAs offer advantages in terms of reliability and
security. For example, the emails stored in a personal system can be accessed whenever the user wants,
even when the email server is shut down or network access fails. Many MUAs also provide email
encryption functionality for secure email services using third-party crypto libraries such as OpenSSL
or GnuPG. To access encrypted email, a corresponding secret key that is associated with the authorized
user is required. In addition to basic email service functionalities, MUA programs that support email
encryption also provide key management.

Thus, the protection of secret keys is the most important requirement for secure MUA email
services; however, we have observed that many existing MUAs still allow the use of the CRT-RSA
algorithm offered by GnuPG 1.4.13 (and earlier versions) to encrypt and decrypt emails by adopting
the library as a plugin or add-on without a security check. Even in the presence of the patch for
GnuPG (version 1.4.14 and later) introduced to prevent cache side-channel attacks, a flawed MUA
configuration can be exploited to avoid the security patch of the underlying crypto layer, as we
demonstrate in Section 3.

Appl. Sci. 2020, 10, 3770 4 of 14

2.2. Cache Side-Channel Attacks

Desktop virtualization. Desktop virtualization technology has been widely adopted by various
organizations because of the lower management costs and higher security associated with separating
the desktop environment from associated applications. Desktop virtualization technology centralizes
hardware resources and assigns VMs to each user so that they can use the shared hardware (Figure 1).
In a virtualized desktop system, all of the desktop components are virtualized, allowing for a highly
flexible and secure desktop delivery model. In addition, because the components are saved in the
data center, virtualization technology supports complete recovery if a user’s device or hardware is
lost. It offers numerous other advantages such as secure management, cost reduction and mobile
computing [24]; however, in a virtualized environment, when individual users access separate desktop
environments supported by their VM and use their personal devices to run independent applications,
these applications are inherently executed using the shared hardware resources that manage the
VMs. Thus, despite the advantages of virtualization technology, various cross-VM side-channel
attacks [17,18,25] are possible by exploiting the intrinsic features of the shared hardware in the system,
such as the L3 last level cache (LLC) in an Intel processor, unless the system employs appropriate
prevention techniques.

Hypervisor

Shared L3 Cache

Main Memory

Attacker’s
VM

Victim’s
VM

Hardware

Software

L2 Cache

L1 I
Cache

Core

L1 D
Cache

L2 Cache

L1 I
Cache

Core

L1 D
Cache

Figure 1. System model of the virtualized environment.

FLUSH+RELOAD attack. Memory deduplication is a useful strategy within a hypervisor system
for efficient memory management. It allows processors to share a single copy of data instead of
storing multiple copies. Even if the memory deduplication technique is sometimes disabled by current
hypervisors by default for security reasons, it can be still activated by users explicitly because it is
helpful to improve memory utilization, especially in a cross-VM environment. Yarom and Falkner [17]
described how an attacker can exploit a pinhole in the feature for a successful side-channel attack,
known as a FLUSH+RELOAD attack.

The FLUSH+RELOAD attack begins by flushing the observed data from the cache with a clflush
instruction. The attacker then reloads the same data and measures the elapsed access time. In the
period between flushing and reloading the data, if the victim loads the exact same data that the attacker
is interested in (which will be reloaded later), a cache hit will occur during the attacker’s reload phase,
which requires a shorter execution time compared to a cache miss. With a sufficient number of careful
observations of the time difference, the adversary can figure out what data or function the victim
accessed and in what order.

Appl. Sci. 2020, 10, 3770 5 of 14

The FLUSH+RELOAD attack extends Gullasch et al.’s attack [16] in that (1) it uses the clflush
instruction from Intel x86 architecture to flush the monitored memory lines from the LLC and probe the
access patterns of specific memory lines and (2) it allows the spy and victim processes to be executed
in parallel on different execution cores in the virtualized environment, which allows cross-VM attacks.

In order to demonstrate the efficacy of the side-channel attack, Yarom and Falkner showed how
to extract the RSA private key of a victim running GnuPG 1.4.13 via the FLUSH+RELOAD attack.
Specifically, because the access pattern of the memory lines for the square-and-multiply exponentiation
algorithm in RSA depends on the value of the private key, the attacker can extract the RSA private
key from the victim when he performs RSA decryption, even if the attacker and victim processes are
running on separate VMs.

2.3. Cryptographic Implementation

The efficient implementation of cryptographic algorithms is of great importance in many
cryptographic libraries such as OpenSSL and GnuPG. Therefore, many optimization techniques
have been adopted to accelerate encryption or decryption operations in these libraries (for example,
the square-and-multiply algorithm for RSA decryption). Unfortunately, these techniques can lead to
unexpected vulnerabilities against side-channel attacks, such as FLUSH+RELOAD, as a side effect.

RSA implementation in GnuPG. GnuPG supports the RSA public-key algorithm for signature
generation verification or data encryption/decryption in full support of OpenPGP. Because RSA
decryption requires a significant number of exponentiation calculations, GnuPG adopts the optimization
techniques CRT-RSA and square-and-multiply for efficient decryption in its implementation.

CRT-RSA. CRT-RSA is an optimization technique for rapid RSA decryption based on the Chinese
Remainder Theorem (CRT). The general RSA algorithm proceeds as follows:

1. Randomly select two large prime numbers p and q.
2. Calculate n = pq.
3. Select e such that 1 < e < ((p − 1)(q − 1) − 1) and gcd(e, (p− 1)(q− 1)) = 1, where gcd(a, b)

returns the greatest common divisor of a and b.
4. Calculate d = e−1 mod (p− 1)(q− 1).
5. Set public key as (n, e), and private key as (d, n).

RSA encryption and decryption are performed by Enc(m) : c← me mod n and Dec(c) : m← cd

mod n, respectively.
In CRT-RSA, the secret key d is split into two parts: dp = d mod (p− 1) and dq = d mod (q− 1).

The secret parameters would then be private key = (dp, dq, p, q). The decryption function of CRT-RSA
is described in Algorithm 1.

Algorithm 1: CRT-RSA Decryption

decryption(c, dp, dq, p, q)
mp ← cdp mod p
mq ← cdq mod q
h← (mp −mq) (q−1 mod p) (mod p)
m← mq + hq
return m

Square-and-multiply algorithm. The square-and-multiply algorithm is used to reduce the
number of exponent operations required for encryption and decryption. As shown in Algorithm 2,
the square-and-multiply algorithm computes the exponentiation with a square–multiply operation
if the bit of the binary representation of the exponent is 1 and computes it with a square operation
otherwise. For example, for a13, the exponent 13 can be denoted as 11012. The operation sequence
for the exponent would then be (Square−Multiply, Square, Square−Multiply), each followed by a
Modulo Reduce, instead of performing all exponentiation calculations, such as multiplying a 13 times.

Appl. Sci. 2020, 10, 3770 6 of 14

Because each iteration of the square and square–multiply operations exactly corresponds to each bit of
the binary exponent, the execution flow contains all of the information about the exponents, which is
the secret key in CRT-RSA.

Algorithm 2: Square-and-Multiply
// dp is the binary representation of an exponent.
// n is the length of the dp : (dn, dn−1, ..., d0).
// (dp)i is the ith bit of the dp.
square and multiply(c, dp, p)
m← 1
for i = n− 1 down to 0 do

m← m2 (mod p)
if (dp)i == 1 then

m← mc (mod p)
end

end
return mp

Because decryption in CRT-RSA involves two exponents, acquiring the execution flow for the
square-and-multiply algorithm in GnuPG allows the two elements dp and dq to be restored, which
subsequently permits the full recovery of the victim’s private key d. Yarom and Falkner [17] describes
how the attacker is able to perform a FLUSH+RELOAD attack and collect the secret information of
the private key when the victim performs RSA decryption in a virtualized desktop environment with
GnuPG 1.4.13.

In later versions of GnuPG (1.4.14 or later), the square-and-multiply algorithm is replaced by the
square-and-multiply-always algorithm to mitigate FLUSH+RELOAD attacks. The algorithm always
performs a square–multiply operation for each bit and ignores the results of the multiply operation
when the bit value is 0 [26]. Thus, the cache access patterns of each iteration contain access to memory
lines for both the square-and-multiply operations at all times regardless of the bit value in the exponent,
which hinders FLUSH+RELOAD attacks on GnuPG 1.4.14 and later versions.

3. Attacks on Mail User Agents

In this section, we analyze the vulnerabilities of MUA programs in the real world and present
our attack scenario against the MUAs to recover the RSA secret key of a victim. In our attack scenario,
we assume that the attacker and victim processes are deployed in the same virtualized desktop
environment, in which the VMs adopt page-sharing.

The process of our attack consists of the following three steps. First, the attacker performs a
FLUSH+RELOAD attack when a victim reads an encrypted email via the MUA. In this step, the attacker
observes the victim’s execution of the decryption algorithm provided by GnuPG and acquires bit
information for the RSA private key of the victim. Second, the adversary restores the private key based
on the observed bit information in the first step. Finally, the adversary decrypts the victim’s encrypted
email in the MUA with the restored private key.

Figure 2 provides an overview of our attack scenario. The red arrows in the figure depict the
overall process of our attack, which seeks to restore the RSA private key of the victim. The blue arrows
show the process of acquiring an encrypted email delivered to the victim and decrypting the encrypted
content using the restored private key.

Appl. Sci. 2020, 10, 3770 7 of 14

Figure 2. Overview of our attack scenario.

3.1. Analyzing Mail User Agents

We first investigated 37 MUA programs supporting email encryption functionality and installed
13 of these on each VM, all of which are available in Ubuntu 14.04, 16.04 and 18.04. We then tested
whether they allowed the installation of GnuPG 1.4.13, which is vulnerable to FLUSH+RELOAD
attacks. As shown in Table 1, 10 of these MUAs allowed installation without checking the version
of the crypto library, making our attack feasible. However, the other three MUAs (Thunderbird,
Seamonkey Mail and Sylpheed) blocked the installation by checking the version of the third-party
crypto library. Based on our experiment, these three MUAs only allowed the installation of GnuPG
2.0.14 or later.

Table 1. Vulnerability Analysis of mail user agents (MUAs).

Ubuntu 14.04 Ubuntu 16.04 Ubuntu 18.04

MUA Version GnuPG 1.4.13 Version GnuPG 1.4.13 Version GnuPG 1.4.13

Alpine 2.10 Allowed 2.20 Allowed 2.21 Allowed
Balsa - - 2.5.6 Allowed 2.5.3 Allowed
Claws Mail 3.9.3 Allowed 3.13.2 Allowed 3.16.0 Allowed
Cone 0.89 Allowed 1.0 Allowed - -
Evolution 3.10.4 Allowed 3.18.5.2 Allowed 3.28.5 Allowed
GNUmail - - 1.2.2 Allowed - -
i.Scribe - - 2.2 Allowed 2.3 Allowed
KMail 4.13.3 Allowed 5.1.3 Allowed 5.7.3 Allowed
Thunderbird 52.9.1 Prevented 60.2.1 Prevented 60.2.1 Prevented
Seamonkey 2.49.4 Prevented 2.49.4 Prevented 2.49.4 Prevented
Sylpheed 3.6 Prevented 3.5 Prevented 3.5.1 Prevented
Trojitá 0.7 Allowed - - - -
Zimbra 7.3.1 Allowed - - - -

Thunderbird uses the Enigmail plugin for GnuPG. We installed Thunderbird 52.9.1 on Ubuntu
14.04 and Thunderbird 60.2.1 on Ubuntu 16.04 and 18.04. When we executed Thunderbird in all Ubuntu
versions, we observed a warning message from the MUA program about the potential installation of an
old version of GnuPG, which disallowed the sending or retrieving of encrypted email. Thus, the cache
side-channel attack could not obtain any traces with either version of Thunderbird. Seamonkey Mail,
and Sylpeed also prevented the use of all encrypted email services using a vulnerable version of
GnuPG in Ubuntu 14.04, 16.04 and 18.04.

Alpine, Claws Mail, Evolution and Kmail allowed the installation of GnuPG 1.4.13 in all three
versions of Ubuntu in full support of encrypted email services using GnuPG. During the installation of

Appl. Sci. 2020, 10, 3770 8 of 14

the vulnerable libraries on the MUA and the sending/retrieving of emails via the MUA, no warning
messages were generated.

Cone in Ubuntu 14.04 and 16.04 and Balsa and i.Scribe in Ubuntu 16.04 and 18.04 allowed the
installation of GnuPG 1.4.13 and provided all of the functionality of encrypted email without warning
the user about the old version of the crypto library.

Trojita and Zimbra in Ubuntu 14.04 and GNUmail in Ubuntu 16.04 also allowed the installation
of the vulnerable crypto library and supported full email encryption services without any warning
messages or safeguard mechanisms.

3.2. Configuring the Attack

We designed our attack based on the FLUSH+RELOAD technique, assuming that the attacker
and the victim each have a VM in a shared data center. We used a server equipped with an Intel
Xeon E5-2620v4 processor and 256 GB of RAM, running the QEMU-KVM hypervisor (1:2.5+dfsg-
5ubuntu10.5). In our experiment, two guest VMs with Ubuntu OS were instantiated on top of the
hypervisor. On each VM, we installed the 1.4.13 version of GnuPG and the latest available version of
each MUA.

Enforcing version downgrade of cryptographic library. It may be assumed that forcing the
victim to install an older version of GnuPG is impractical in the real world; however, there are
several threat models that make it practically feasible. For example, adversaries may be able to
persuade the victim to download a vulnerable version of the crypto library from a fake GnuPG
website by delivering a DNS spoofing attack or a watering hole attack [27]. As another example,
an algorithm substitution attack (also known as a subversion attack) [28] is also an effective attack
vector to replace an honest implementation of a cryptographic tool with a subverted one. It can force a
leak of private information by having unaware users install a subverted cryptographic library, with the
generated output indistinguishable from the honest output. In addition, there is a diverse array of
social engineering phishing attacks that can lure users into downloading fake software. Any of these
methods could lead to a version downgrade of the cryptographic library in the real world.

Implementing cache side-channel attack. Because the cache side-channel attack is dependent
on the hardware environment, we adjusted several features of our experiment system, such as the
addresses to probe and the threshold and slot size for the detection of cache hits/misses, in order to
configure our attack scenario for the MUA programs.

We used a gdb debugger to determine the addresses of the square, multiply and reduce operations
of CRT-RSA in the GnuPG execution file, which will be probed by the attacker to obtain the execution
patterns for decryption when the victim reads an encrypted email. We then measured the access time
of approximately 80,000 square-and-multiply operations of CRT-RSA to set the threshold. We also
measured the elapsed time of the overall probing process to set the slot size. As a result, we set 120 cycles
as the threshold and 5000 cycles as the slot size based on the success ratio of the measurements.

3.3. Attacking the Mail User Agent

Based on the analysis results in Table 1, we delivered our attack on vulnerable MUAs. The attacker
runs the spy process for a FLUSH+RELOAD attack then sends an encrypted email to the victim. At this
time, the adversary’s MUA encrypts the email content with the public key of the victim. When the
victim retrieves the encrypted email, the MUA decrypts the content by executing the RSA algorithm in
GnuPG, the vulnerability of which is exploited by the adversary’s spy process.

We implemented our attack scenario on the Evolution MUA, which is one of the vulnerable MUAs
that we previously identified. Figure 3a shows the attacker’s view when launching a FLUSH+RELOAD
attack, and Figure 3b shows the victim’s view during email retrieval. In the attacker’s view, S and M
represent the square-and-multiply operations, respectively, and r is the reduce operation preparing
the next input, which is the next execution of the square-and-multiply operation. This experiment

Appl. Sci. 2020, 10, 3770 9 of 14

demonstrates that the attacker is able to obtain the execution flow of the square-and-multiply operation
of the RSA algorithm during email retrieval, which is used to restore the victim’s RSA secret key.

(a)

(b)

Figure 3. Attack on Evolution MUA: (a) Attacker’s view. (b) Victim’s view.

3.4. Recovering the RSA Key

To restore the full RSA decryption key, we need to convert the execution flow of the
square-and-multiply operation obtained in Section 5.3 to the corresponding values of the RSA key
exponents. Because CRT-RSA decryption in GnuPG 1.4.13 (or previous versions) involves two
exponents, tracing the execution flow of the square-and-multiply operation results in the two elements

Appl. Sci. 2020, 10, 3770 10 of 14

dp and dq being restored. dp and dq are sufficient to lead full key recovery [29]. In order to calculate the
victim’s secret key from these two values, we implemented a converter which converts the sequences
‘square-reduce-square’ and ‘square-and-square’ to 0 and ‘square-reduce-multiply’ and ‘square-multiply’
to 1. In the square-and-multiply algorithm, even if the conditional reduce operation is adopted for
efficient exponentiation, it does not actually affect the RSA key exponent. This motivated us to
remove the reduce operations in the trace process, which could remove approximately a third of all
probing cases. Because, in practice, each probe operation may inevitably be affected by noise in the
system, reducing the number of probes would be very helpful for improving the accuracy of key
restoration. By taking advantage of this technique in our converter, the attacker could recover 92% of
the bits of the victim’s 2048-bit RSA secret key for the best case in the proposed attack scenario. To
determine the rest of the bits, the attacker can simply conduct the attack multiple times and combine
the results, or leverage several existing strategies such as reducing search space for brute force attack,
and applying RSA exponent recovery algorithm from partial information [17]. Because the objective
of our experiment was to demonstrate the vulnerability of the MUA programs that we found were
capable of being exploited, determining the rest of the decryption key or improving the accuracy of
the restoration is outside of the scope of this paper.

3.5. Decrypting Email

We observed that there are two different ways to acquire an encrypted email from the victim.
Because the attacker and the victim share the same hardware, the attacker can easily capture all of the
network traffic of the victim using a packet-capturing tool. In our experiment, we had an outsider send
an encrypted email to the victim, which the attacker then obtained the packets using the Wire Shark
packet-capture program. As an alternative to capturing network traffic, another possible way to obtain
encrypted email is to obtain it as an attached file from the web email service. When a user sends an
encrypted email using an MUA program, the receiver retrieves it using other mail programs, such as
web mail services; we found that the encrypted email is supposed to be delivered as a separate file rather
than as email content. Thus, if the adversary compromises the victim’s account by some means, it would
be possible to obtain the attached encrypted email by simply downloading it. If the adversary succeeds
in acquiring an encrypted email from the victim, it would be very straightforward to decrypt it using
the restored decryption key. Even if the latter case requires additional effort to compromise the victim’s
account, the former case does not require such effort, and easily can be achieved by simple wire-tapping.

4. Mitigation

It is widely believed that, if vulnerabilities are fundamentally resolved in the crypto library,
applications would be secure as long as they rely on the library for their security; however, as many
previous studies have demonstrated [21,30–32], this belief may be unfounded in practice because
applications themselves may have unexpected vulnerabilities or implementation flaws that allow
attackers to revive old vulnerabilities of the libraries even if they have been patched.

Verification of underlying library. One important root cause that allows our attack to occur is
that several MUAs completely depend on the underlying crypto libraries for their email security; they
do not implement any security mechanisms of their own (such as verification of the crypto library
via a simple version check). Hence, a simple and effective mitigation of this attack would be for the
MUAs to determine if they have any implementation or configuration flaws and to adopt security
mechanisms (at least, for example, a more rigorous security verification mechanism for the crypto
library before installation) if such flaws are discovered.

Application side security mechanism and user experience. In terms of usable security, despite
the efforts of MUA developers, users still struggle to understand how to use encrypted email services
securely [33–35]. As previous studies have reported, it is difficult to expect users to follow the recent
security patches for the underlying crypto libraries in the real world. Therefore, it is important to note
that programs utilizing outer layer libraries for their security must somehow analyze whether they

Appl. Sci. 2020, 10, 3770 11 of 14

are secure at the time of installation. If not, the programs should prevent installation or utilization on
behalf of the users.

5. Related Work

5.1. Cross-VM Cache Side-Channel Attacks

In 2009, Ristenpart et al. [36] showed that the use of cloud virtualization could introduce
vulnerability to cross-VM side-channel attacks, which allow attackers to extract secret information
from a target VM on the same machine. They demonstrated the efficacy of the attack scenario in
practical cloud systems, such as Amazon EC2. In 2011, Suzaki et al. [37] demonstrated that memory
deduplication of kernel same-page merging (KSM) on a KVM hypervisor is vulnerable to memory
disclosure attacks and explored how this is exploited to identify and restore the data of another user
as a form of cross-VM side-channel attack. Gullasch et al. [16] presented another cache side-channel
attack on AES, which enables an attacker to exploit the cache behaviors of processors on shared
memory pages in a single-core processor and to recover the full secret key of AES-128. They suggested
a technique that exploited the Intel x86 clflush instruction to flush the monitoring memory location and
then to determine whether the data was cached to that location to extract access patterns for the victim
process. In 2014, Yarom and Falkner [17] proposed the FLUSH+RELOAD cross-VM cache side-channel
attack based on the technique introduced by Gullash et al. Unlike previous cache side-channel attacks,
however, they demonstrated that the LLC in Intel x86 architecture can be used as a covert channel
to extract secret information from other victim programs when memory pages are shared between
processes (This inevitably happens when memory deduplication is adopted in the hypervisor.).

5.2. Attacks on Encrypted Email

In 2001, Davis [38] analyzed the security of email encryption and signature standards such as
S/MIME, PGP, PEM, MOSS and PKCS#7, and proposed a surreptitious forwarding attack exploiting
naive sign and encrypt flaws in the standards. Poddebniak et al. [39] described a plaintext injection
attack on encrypted email that exploits the malleability of CBC/CFB in OpenGPG and S/MIME
in 2018. The attack reveals the plaintext of encrypted email by generating an exfiltration channel when
a recipient decrypts an encrypted email to read. They analyzed practical MUA programs, webmail and
web apps based on OpenPGP and S/MIME encryption and identified what exfiltration channels can be
established in many existing email client programs. Because this vulnerability was found in standard
conforming implementations, they advised that the standards be updated to mitigate the attack.

5.3. Attacks on Cryptographic Algorithms and Protocols

In 2015, Irazoqui et al. [21] reanimated the patched vulnerability of the TLS and DTLS protocol
libraries [30] by exploiting their implementation flaws, known as the Lucky Thirteen attack. In their
research, they used a FLUSH+RELOAD attack by exploiting memory deduplication in a hypervisor to
reestablish the patched vulnerability in a cross-VM environment. Recently, in 2018, Ronen et al. [40]
revived the Lucky Thirteen vulnerability and explored how the current implementation patch for
TLS libraries is still vulnerable to another type of cache side-channel attack known as Prime+Probe.
Similarly, Böck et al. [32] demonstrated that many existing email programs in the wild are vulnerable
to a Bleichenbacher attack [31], which exploits the side-channel vulnerability of PKCS#1 v.1.5 in TLS
libraries, even if a countermeasure to the Bleichenbacher attack is already known in practice.

Although many side-channel attacks have been delivered to exploit implementation
vulnerabilities in a diverse range of cryptographic algorithms and protocols, few studies have
attempted to identify MUA vulnerabilities against cache side-channel attacks in practice.

Appl. Sci. 2020, 10, 3770 12 of 14

6. Conclusions and Discussion

In this study, we analyzed the security mechanisms of existing MUAs and identified a security flaw
that allows a version downgrade of the cryptographic library due to a lack of verification and control.
We then proposed a novel cache side-channel attack scenario exploiting the vulnerability of MUAs
and demonstrated that a number of existing MUAs are still vulnerable to the attack. In addition to the
MUA programs we investigated in the present study, other applications can be exposed to the same
threat if they have similar implementation flaws. As we demonstrated in this study, implementing
security mechanisms in the application layer that are independent of the underlying security in the
other layers is of utmost importance for MUA security.

Author Contributions: Investigation, H.K.; methodology, H.K. and Y.S.; software, H.K. and H.Y.; supervision,
J.H.; writing—original draft, H.K.; Writing—review and editing, Y.S. and J.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the research fund of Signal Intelligence Research Center supervised by the
Defense Acquisition Program Administration and Agency for Defense Development of Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. The Radicati Group, Inc. Email Statistics Report, 2018–2022; Technical Report; The Radicati Group, Inc.: Palo
Alto, CA, USA, 2018.

2. Landau, S. Making sense from Snowden: What’s significant in the NSA surveillance revelations.
IEEE Secur. Priv. 2013, 11, 54–63. [CrossRef]

3. Egelman, S.; Cranor, L.F.; Hong, J. You’ve been warned: An empirical study of the effectiveness of web
browser phishing warnings. In Proceedings of the 26th ACM Conference on Human Factors in Computing
Systems (CHI), Florence, Italy, 5–10 April 2008; pp. 1065–1074.

4. Wikileaks. VP Contender Sarah Palin Hacked. 2008. Available online: https://wikileaks.org/wiki/VP_
contender_Sarah_Palin_hacked (accessed on 27 May 2020).

5. Wikileaks. Sony Email Archive. 2015. Available online: https://wikileaks.org/sony/ (accessed on
27 May 2020).

6. Wikileaks. Hillary Clinton Email Archive. 2016. Available online: https://wikileaks.org/clinton-emails/
(accessed on 27 May 2020).

7. Amnesty International. VerschlüSselte Kommunikation via PGP Oder S/MIME. Available online: https:
//www.amnesty.de/keepitsecret (accessed on 27 May 2020).

8. United Nations Educational, Scientific and Cultural Organization and Reporters Without Borders. Safety
Guide for Journalists—A Handbook for Reporters in High-Risk Environments; United Nations Educational,
Scientific and Cultural Organization and Reporters Without Borders: Paris, France, 2017.

9. Got a Confidential News Tip? The New York Times. Available online: https://www.nytimes.com/tips?
module=inline (accessed on 27 May 2020).

10. The Washington Post. Confidential Tips—Maximize Your Data Security. Available online: https://www.
washingtonpost.com/anonymous-news-tips/?utm_term=.feb659746de3 (accessed on 27 May 2020).

11. The Guardian. How to Contact the Guardian Securely. Available online: https://www.theguardian.com/
help/2016/sep/19/how-to-contact-the-guardian-securely (accessed on 27 May 2020).

12. Electronic Frontier Foundation. How to: Use PGP for Windows. Available online: https://ssd.eff.org/en/
module/how-use-pgp-windows (accessed on 27 May 2020).

13. ITFE. OpenPGP Message Format; RFC4880; ITFE: Fremont, CA, USA, 2007.
14. Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification. RFC5751.

Available online: https://tools.ietf.org/html/rfc5751 (accessed on 27 May 2020).
15. The GNU Privacy Guard (GnuPG). GNU Project. Available online: https://www.gnupg.org (accessed on

27 May 2020).
16. Gullasch, D.; Bangerter, E.; Krenn, S. Cache games–Bringing access-based cache attacks on AES to

practice. In Proceedings of the 32nd IEEE Symposium on Security and Privacy (SP), Berkeley, CA, USA,
22–25 May 2011; pp. 490–505.

http://dx.doi.org/10.1109/MSP.2013.90
https://wikileaks.org/wiki/VP_contender_Sarah_Palin_hacked
https://wikileaks.org/wiki/VP_contender_Sarah_Palin_hacked
https://wikileaks.org/sony/
https://wikileaks.org/clinton-emails/
https://www.amnesty.de/keepitsecret
https://www.amnesty.de/keepitsecret
https://www.nytimes.com/tips?module=inline
https://www.nytimes.com/tips?module=inline
https://www.washingtonpost.com/anonymous-news-tips/?utm_term=.feb659746de3
https://www.washingtonpost.com/anonymous-news-tips/?utm_term=.feb659746de3
https://www.theguardian.com/help/2016/sep/19/how-to-contact-the-guardian-securely
https://www.theguardian.com/help/2016/sep/19/how-to-contact-the-guardian-securely
https://ssd.eff.org/en/module/how-use-pgp-windows
https://ssd.eff.org/en/module/how-use-pgp-windows
https://tools.ietf.org/html/rfc5751
https://www.gnupg.org

Appl. Sci. 2020, 10, 3770 13 of 14

17. Yarom, Y.; Falkner, K. FLUSH+ RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In Proceedings of the 23rd USENIX Security Symposium (USENIX Security), San Diego, CA,
USA, 20–22 August 2014; pp. 719–732.

18. Liu, F.; Yarom, Y.; Ge, Q.; Heiser, G.; Lee, R.B. Last-Level Cache Side-Channel Attacks are Practical.
In Proceedings of the IEEE Symposium on Security & Privacy, San Jose, CA, USA, 17–21 May 2015;
pp. 605–622.

19. Daniel Gruss, R.S.; Mangard, S. Cache template attacks: Automating attacks on inclusive last-level caches.
In Proceedings of the 24th USENIX Security Symposium, Washington, DC, USA, 12–14 August 2015;
pp. 897–912.

20. Gruss, D.; Maurice, C.; Wagner, K.; Mangard, S. Flush+Flush: A fast and stealthy cache attack. In Proceedings
of the 13th Conference on Detection of Intrusions and Malware & Vulnerability Assessment, San Sebastián,
Spain, 7–8 July 2016; pp. 279–299.

21. Irazoqui, G.; Inci, M.S.; Eisenbarth, T.; Sunar, B. Lucky 13 strikes back. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security (AsiaCCS), Singapore, 14–17 April
2015; pp. 85–96.

22. Ronen, E.; Gillham, R.; Genkin, D.; Shamir, A.; Wong, D.; Yarom, Y. The 9 Lives of Bleichenbacher’s CAT:
New Cache ATtacks on TLS Implementations. In Proceedings of the 40th IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 20–22 May 2019.

23. Kim, H.; Yoon, H.; Shin, Y.; Hur, J. Cache Side-Channel Attack on Mail User Agent. In Proceedings of the
2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020;
pp. 236–238.

24. Yan, L. Development and application of desktop virtualization technology. In Proceedings of the 2011 IEEE
International Conference on Communication Software and Networks (ICCSN), Xi’an, China, 27–29 May
2011; pp. 326–329.

25. Zhang, Y.; Juels, A.; Reiter, M.K.; Ristenpart, T. cross-VM side channels and their use to extract private keys.
In Proceedings of the 19th ACM Conference on Computer and Communications Security (CCS), Raleigh,
NC, USA, 16–18 October 2012; pp. 305–316.

26. Coron, J.S. Resistance against differential power analysis for elliptic curve cryptosystems. In Proceedings of
the First International Workshop on Cryptographic Hardware and Embedded Systems (CHES), Worcester,
MA, USA, 12–13 August 1999; pp. 292–302.

27. Alrwais, S.; Yuan, K.; Alowaisheq, E.; Liao, X.; Oprea, A.; Wang, X.; Li, Z. Catching Predators at Watering
Holes: Finding and Understanding Strategically Compromised Websites. In Proceedings of the 32nd Annual
Conference on Computer Security Applications (ACSAC), Los Angeles, CA, USA, 5–9 December 2016;
pp. 153–166.

28. Sebastian Berndt, M.L. Algorithm Substitution Attacks from a Steganographic Perspective. In Proceedings of
the ACM Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November
2017; pp. 1649–1660.

29. Campagna, M.J.; Sethi, A. Key Recovery Method for CRT Implementation of RSA. IACR Cryptol. ePrint Arch.
2004, 2004, 147.

30. Al Fardan, N.J.; Paterson, K.G. Lucky thirteen: Breaking the TLS and DTLS record protocols. In Proceedings
of the 34th IEEE Symposium on Security and Privacy (SP), Berkeley, CA, USA, 19–22 May 2013; pp. 526–540.

31. Bleichenbacher, D. Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS#
1. In Proceedings of the 18th Annual International Cryptology Conference (CRYPTO), Santa Barbara, CA,
USA, 23–27 August 1998; pp. 1–12.

32. Böck, H.; Somorovsky, J.; Young, C. Return Of Bleichenbacher’s Oracle Threat (ROBOT). In Proceedings
of the 27th USENIX Security Symposium (USENIX Security), Baltimore, MD, USA, 15–17 August 2018;
pp. 817–849.

33. Whitten, A.; Tygar, J.D. Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0. In Proceedings
of the 8th USENIX Security Symposium (USENIX Security), Washington, DC, USA, 23–36 August 1999;
Volume 348.

34. Sheng, S.; Broderick, L.; Koranda, C.A.; Hyland, J.J. Why johnny still can’t encrypt: Evaluating the usability
of email encryption software. In Proceedings of the Second Symposium On Usable Privacy and Security
(SOUPS), Pittsburgh, PA, USA, 12–14 July 2006; pp. 3–4.

Appl. Sci. 2020, 10, 3770 14 of 14

35. Ruoti, S.; Andersen, J.; Zappala, D.; Seamons, K. Why Johnny still, still can’t encrypt: Evaluating the usability
of a modern PGP client. arXiv 2015, arXiv:1510.08555.

36. Ristenpart, T.; Tromer, E.; Shacham, H.; Savage, S. Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS), Chicago IL, USA, 9–13 November 2009; pp. 199–212.

37. Suzaki, K.; Iijima, K.; Yagi, T.; Artho, C. Memory deduplication as a threat to the guest OS. In Proceedings of
the 4th European Workshop on System Security (EuroSec), Salzburg, Austria, 10 April 2011; p. 1.

38. Davis, D. Defective Sign & Encrypt in S/MIME, PKCS# 7, MOSS, PEM, PGP, and XML. In Proceedings of the
2001 USENIX Annual Technical Conference, General Track, Boston, MA, USA, 25–30 June 2001; pp. 65–78.

39. Poddebniak, D.; Dresen, C.; Müller, J.; Ising, F.; Schinzel, S.; Friedberger, S.; Somorovsky, J.; Schwenk, J. Efail:
Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels. In Proceedings of the 27th
USENIX Security Symposium (USENIX Security), Baltimore, MD, USA, 15–17 August 2018; pp. 549–566.

40. Ronen, E.; Paterson, K.G.; Shamir, A. Pseudo constant time implementations of TLS are only pseudo secure.
In Proceedings of the 25th ACM Conference on Computer and Communications Security (CCS), Toronto,
ON, Canada, 15–19 October 2018; pp. 1397–1414.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminary
	Mail User Agents
	Cache Side-Channel Attacks
	Cryptographic Implementation

	Attacks on Mail User Agents
	Analyzing Mail User Agents
	Configuring the Attack
	Attacking the Mail User Agent
	Recovering the RSA Key
	Decrypting Email

	Mitigation
	Related Work
	Cross-VM Cache Side-Channel Attacks
	Attacks on Encrypted Email
	Attacks on Cryptographic Algorithms and Protocols

	Conclusions and Discussion
	References

