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Abstract: A method for separating multisource partial discharges (PDs) in a substation is proposed
based on selected bispectra of ultrahigh frequency (UHF) electromagnetic waves. Bispectra are
sensitive to Gaussian noises and processes of symmetrical distribution. The phase information
contained in bispectra can be useful and important for further signal processing. Bifrequencies
where Fisher-like class separability measures between signals’ bispectra achieve their maximums
are selected as characteristic parameters of the signals. Then, the selected bispectra are utilized for
training the radial basis neural network to separate PD UHF signals in a substation. The method
is used to analyze simulated UHF signals mixed with Gaussian white noise and frequency-fixed
interference, and to separate PD UHF signals that are collected in a 500 kV substation. In order to
prove the validity of the proposed separation method, the localization results are compared with
the results calculated by time delay sequence, and the proposed separating algorithm is verified in
the interference circumstances of a substation. However, the exact location of PD sources cannot be
calculated according to the time delay sequence when the PD sources in a substation are close to each
other or there are fewer than four antennas for receiving signals.

Keywords: partial discharge; ultrahigh frequency (UHF); electromagnetic wave; selected bispectra;
substation

1. Introduction

The monitoring for partial discharges (PDs) has become the main method for insulation testing
and diagnosis. Ultrahigh frequency (UHF) electromagnetic waves are widely used in PD detection due
to their superiority of strong anti-interference, high sensitivity, and stable transmission [1–8].

In order to extract signal characters and separate different PD sources, the suppression of field
electromagnetic noise interference is important in PD detection and analysis. Recently, methods
have been proposed for separating multiple PD sources, including time-resolved partial discharge
(TRPD) [9,10], phase-resolved partial discharge (PRPD) [11], and time-frequency analysis with neural
network and fractal technologies [12,13]. However, when multiple PD sources exist in the power
station, their PRPD patterns blend together. Therefore, it is difficult to extract the characteristics of a
single source from PRPD patterns. There are always many types of electromagnetic noise mixed in the
UHF signals that are radiated from PDs and collected in a substation, such as white noise, wireless
communication, and radio signals. The noise sources mentioned above cause difficulty in extracting
waveform characteristics of PD pulses; therefore, the TRPD-based method is poor for separating
multisource PDs. It is also hard to reach the goal by time-frequency analysis methods due to the
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complication of getting high-dimension time-frequency parameters. Furthermore, the time-frequency
methods can only efficiently suppress narrowband or periodical noise. As far as white noise is
concerned, the time-frequency methods do not work.

As properties of high order cumulants described in [14–17], high order cumulants whose orders are
no less than three of a Gaussian process are zero. The odd-order cumulants of the symmetric distribution
procedure are also zero. Therefore, the high order cumulants of the observation process are equal to
the non-Gaussian signals, which is embedded in the colored-Gaussian noise. If the spectra of PD UHF
signals in substations are reconstructed by using odd-order cumulants of the signals, the reconstructed
spectra will not be mixed with colored-Gaussian noise, white noise, and symmetrical distribution
noise. The high order cumulant algorithms can work without prior knowledge for correlation between
signals and noise, and are better than other statistical methods using high order moment. Therefore,
the high order cumulants are usually utilized as the tool for analyzing non-Gaussian signals.

In [18], the frequency spectrum of a signal is reconstructed based on an autoregressive and moving
average (ARMA) model using high order cumulants; then, characteristic frequencies are selected
by Fisher-like class separability measures. Finally, simulations and on-site experiments are used to
show the capability of the algorithm. However, the phase information of signals is lost due to the
spectrum reconstruction.

High order cumulants and multispectra have the properties of time-shift invariance, scale
variability, and phase stability [19]. Furthermore, because of the special properties of high order
cumulants, it can be deduced that the application of selected bispectra can effectively suppress
Gaussian noise, periodic narrow-band signals, and frequency-fixed signals blended in the PD UHF
signals. The phase information maintained in bispectra can be useful and important for further
signal processing.

In the proposed algorithm, bifrequencies of signals where the bispectra have the maximum
Fisher-like class separability measures are selected as characteristic parameters, which are used for
training a radial basis neural network to separate the received signals. The simulated UHF signals
mixed with fixed-frequency signals and different SNRs are analyzed by the proposed method. The result
shows that the method is very effective at separating signals. Furthermore, the separation rate will be
insensitive with variation in the number of characteristic parameters when more than 10 characteristic
parameters are selected. Therefore, it is easy to determine the number of characteristics. Finally,
the proposed method is used to handle the UHF signals radiated by different PD sources in a 500 kV
substation. The field test results verified the effectiveness and prospect of the proposed method in
separating PD signals.

2. Principle of Separating Multiple Signal Sources Based on Selected Bispectra

Supposing that a = [a1, · · · , aL]T is a random vector, rth-order cross-cumulant means accumulant
between different processes, and the rth-order cross-cumulants of a are defined as [16,18,19]:

Ck1+···+kL = cr

a1, · · · , a1︸     ︷︷     ︸
k1

, · · · , aL, · · · , aL︸     ︷︷     ︸
kL


= (− j)r ∂rln(Φ(ω1,ω2,··· ,ωL))

∂k1ω1∂
k2ω2···∂

kLωL

∣∣∣∣
ω1=ω2=···=ωL=0

(1)

where Φ(ω1, ω2, · · · , ωL) is the first characteristic function of the random vector a, and ωi (i = 1, 2, · · · ,
L) is the ith angular frequency. Φ(ω1,ω2, · · · ,ωL) = E

[
e j(ω1a1+ω2a2+···+ωLaL)

]
k1 + k2 + · · ·+ kL = r

, (2)
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where j is the imaginary unit, i.e., j2 = −1, and E [·] represents mathematical expectation. rth-order
auto-cumulant means the cumulant of the process itself, and the rth-order autocumulants of a random
process {b[n]} are defined as:

Crb = cr
{
b[n], b[n + τ1], · · · , b[n + τr−1]

}
, (3)

where τi(i = 1, 2, · · · , r − 1) denotes the time delay, and [n] is the sampling point. When the order
of the cumulants is no less than three, the cumulants are defined as high-order cumulants with the
multidimension Fourier transform.

Denoting the real signal observed by an antenna as {x[n]}, the signal sampling rate is fs and the
mean value of {x[n]} is zero. By the definition of high-order cumulants, the third-order cumulants of
{x(n)} can be calculated as:

C3x(τ,ρ) = E[x[n]x[n + τ1]x[n + τ2]], (4)

Consequently, the bispectrum of {x[n]} is defined as 2D Fourier transformation of the third-order
cumulants, i.e.,

B(ω1,ω2) =

∫
∞

−∞

∫
∞

−∞

C3x(τ,ρ)e− j(ω1τ1+ω2τ2)dτ1dτ2, (5)

The steps for the estimation of discretized bispectra shown in [13,17] are as follows.
The signal data is split into K sections with M observed samples in each section, denoted as x(i)(1),

x(i)(2), · · · , x(i)(M). Let i = 1, 2, · · · , K, the data between the two adjacent sections can coincide. Then,
calculate the discretized Fourier transformation coefficient for each section of signal data:

X(i)(λ) =
1
M

M∑
n=1

x(i)[n]e− j2π(n−1)λ/M, (6)

where λ = 0, 1, . . . , M/2; then, bispectra for each section of signals can be estimated as:

b̃(i)(λ1,λ2) =
1

∆2

L∑
i1=−L

L∑
i2=−L

X(i)(λ1 + i1)X(i)(λ2 + i2)X(i)∗(−λ1 − λ2 − i1 − i2), (7)

where ∆ = fs/N0, and L and N0 satisfy M = (2L + 1) N0. The bispectra estimation of the whole signal
can be calculated as the mean bispectra of all sections:

B̃(λ1,λ2) =
1
K

K∑
i=1

b̃(i)(λ1,λ2), (8)

Denote the estimated bispectra as B̃(ω1,ω2),

ωi =

(
2π fs
N0

)
λi i = 1, 2 , (9)

where ξ = (ω1, ω2) is a bifrequency, B̃(ξ) = B̃(ω1,ω2).
{
B̃(l)

k (ξ)
}

k=1,2,··· ,Nl

is the set of sample bispectra,

where the superscript l means the lth type of signals; k is the kth group of the lth type of observed
signals, and Nl is the number of observed signals of the lth type.



Appl. Sci. 2020, 10, 3751 4 of 11

Supposing that the prior probabilities of the various signals are equal, a Fisher-like class separability
measure can be defined as [19]:

m(i, j)(ξ) =

∑
l=i, j

[
Ek

(
B̃(l)

k (ξ)
)
− El

[
Ek

(
B̃(l)

k (ξ)
)]]2

∑
l=i, j

p(l)vark

(
B̃(l)

k (ξ)
) , (10)

where Ek

(
B̃(l)

k (ξ)
)

and vark

(
B̃(l)

k (ξ)
)

are the mean and variance of a sample bispectrum of the lth type

of signals at the bifrequency ξ. El

[
Ek

(
B̃(l)

k (ξ)
)]

is the mean sample bispectrum of all types of signals at

bifrequency ξ. It is obtained that the ith and the jth type of signals has stronger separability at the
bifrequency where m(i, j)(ξ) is greater.

Bifrequencies with Q greatest Fisher-like class separability measures are selected as characteristic
parameters of signals, and bispectra at the selected bifrequencies are called selected bispectra. Then,
the selected parameters are used to train the radial basis neural network to separate the received
signals. The steps of the offline training algorithm can be found in [17,20,21].

3. Simulations and Validations

In order to verify the capability of separating UHF signals radiated by different PD sources, UHF
signals simulated by Ansoft HFSS 13.0 are processed using the algorithm with a 3D coordinate system
of the substation space. The simulated antennas used for accepting the signals are located at #1(0.5, 0.5,
1), #2(3.5, 0.5, 1), #3(3.5, 4.5, 1), and #4(0, 4.5, 1) (in meters), while the locations of the three PD sources
are P1(2, 6.5, 3), P2(3, 6, 3), and P3(1, 6, 3). The simulated PD signals are stimulated by Gaussian current
impulses with amplitudes of 1 A, 1.5 A, and 2 A, and time widths of 4 ns, 6 ns, and 2 ns, respectively.
The space for the simulation is shown in Figure 1a. Locations of the simulated antennas and PD sources
are shown in Figure 1b.
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Figure 1. Schematic diagram of the simulated antenna array and partial discharge (PD) sources. (a) 
The simulated substation. (b) The planar diagram of simulated antennas and PD sources. P means the 
simulated PD sources, and # means the antennas. 

In order to verify the effectiveness of the above method in suppressing Gaussian white noises 
and frequency-fixed interference, white noises in different SNRs were added into the UHF signals 
simulated by the software, and interference with amplitude of 0.05 V and frequency of 900 MHz was 
also mixed into the signals. The signals radiated by PD sources mixed with white noises (when SNR 
= 25 dB) and frequency-fixed interference are demonstrated in Figure 2a,c,e, and their bispectra in the 
range of 0–3 GHz are demonstrated in Figure 2b,d,f, respectively. The frequency spectra of the signals 
are demonstrated in Figure 3a–c, respectively. 

Figure 1. Schematic diagram of the simulated antenna array and partial discharge (PD) sources. (a) The
simulated substation. (b) The planar diagram of simulated antennas and PD sources. P means the
simulated PD sources, and # means the antennas.

In order to verify the effectiveness of the above method in suppressing Gaussian white noises
and frequency-fixed interference, white noises in different SNRs were added into the UHF signals
simulated by the software, and interference with amplitude of 0.05 V and frequency of 900 MHz
was also mixed into the signals. The signals radiated by PD sources mixed with white noises (when
SNR = 25 dB) and frequency-fixed interference are demonstrated in Figure 2a,c,e, and their bispectra
in the range of 0–3 GHz are demonstrated in Figure 2b,d,f, respectively. The frequency spectra of the
signals are demonstrated in Figure 3a–c, respectively.
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(10). The separation measure between simulated signals radiated by sources P1 and P2, and that 
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Figure 3. Frequency spectra of the simulated ultrahigh frequency (UHF) signals (a–c): Frequency
spectra of stimulated UHF signal radiated by P1~P3.

Twenty groups of each type of simulated UHF signals, which are mixed with noises are taken as
trained samples, and the Fisher-like class separability measures were calculated using Equation (10).
The separation measure between simulated signals radiated by sources P1 and P2, and that between P1

and P3 are demonstrated in Figure 4a,b, respectively.
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Figure 4. Fisher-like class separability measure of the simulated signals. (a): Separability measures
between signals radiated by P1 and P2. (b): Separability measures between signals radiated by P1

and P3.

Different numbers of bifrequencies at which the Fisher-like class separability measures between
the bispectra of simulated signals achieve their locally maximums can be selected as characteristic
bifrequencies. Then, RBFNNs used for separating different PD sources are trained.

The UHF signals received above are regarded as the observed signals for further analysis. Bispectra
of the simulated signals with noise are calculated. Then, the selected bispectra are substituted to the
trained RBFNNs.

Each PD source in the simulated substation can be obtained by the localization equations
established by the estimated time delays [1,4]. The time delays between two signals can be calculated
with high order cumulants [7]. This algorithm for estimating time delays has been proved to be
insensitive for unknown correlated Gaussian noise [15,16]. The localization results are applied to
compare with the separation result, which are obtained by the proposed method.

With different SNRs, 50 signals radiated by each simulated PD source can be obtained. Table 1
shows the average results of P1, P2, and P3. The separation rate for identifying the signal type when
different characteristic bifrequencies are selected are shown in Table 2. The percent of the signals that
are correctly separated is defined as the separation rate.

Table 1. Location results of simulated PDs under different signal to noise rations (SNRs).

SNR (dB) Localization Result of
P1 (in Meters)

Localization Result of
P2 (in Meters)

Localization Result of
P3 (in Meters)

50 (2.06, 6.54) (2.93, 6.07) (1.04, 5.95)
25 (2.13, 6.67) (2.85, 6.12) (1.07, 6.09)
10 (2.19, 6.73) (2.79, 6.24) (0.87, 6.16)
5 (2.27, 6.84) (2.67, 6.29) (1.25, 6.19 )

Table 2. Separation rate of simulated signals under different SNRs.

SNR (dB) Q = 5 Q = 8 Q = 10 Q = 12 Q = 15 Q = 20

50 92% 94% 95% 95% 95% 95%
25 81% 84% 86% 87% 86% 87%
10 76% 80% 82% 82% 81% 83%
5 73% 76% 79% 80% 80% 80%

It can be inferred from Table 2 that Gaussian noises as well as the periodic narrow-band interference
can be significantly restrained by the application of selected bispectra. Thus, the multiple simulated
PD sources can be effectively separated by the proposed method. The separation rate of signals
will be larger than 80% when SNR > 10 dB and more than 10 characteristic parameters are selected.
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Furthermore, the separation rate of the algorithm based on selected bispectra will be insensitive with
varying number of characteristic parameters when more than 10 characteristic parameters are selected.
Therefore, it is easy to determine how many characteristic parameters to choose.

Traditional methods for separating multiple PD sources are mainly based on correlation of
observed time-domain signals and their power spectra. Therefore, noises of unknown correlation
relationships cannot be efficiently suppressed from signals, and it is difficult to separate the signals
radiated by different sources.

The multiple simulated PD sources were compared with the separation results obtained by the
proposed method. However, when PD sources in a substation are close to each other, they cannot
be identified by the localization results. The exact location of PD sources cannot be obtained by the
algorithms based on time delays if less than four antennas are applied for acquiring signals. In these
cases, the problem of separating the UHF signals radiating from different PD sources can be successfully
resolved by the proposed algorithm.

4. Field Test in a Substation

To verify the effectiveness of the proposed separation method for separating PD sources in a
substation, a field test was performed in a 500 kV power substation. Four omnidirectional antennas
arranged in a planar rectangular were applied for collecting PD UHF signals. A spatial coordinate
system was set with antenna 1 as the coordinate origin. Then, the coordinates of four antennas were
fixed as (0, 0) for #1, (1.58, 0) for #2, (1.58, 1.16) for #3, and (0, 1.16) for #4 in meters, respectively,
as shown in Figure 5a,b. The frequency response of each UHF antenna was same as the bandwidth,
0.2–6 GHz. An oscilloscope was used as a signal acquisition device, the received signals were collected
synchronously with a sampling rate of 5 GHz.
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Planar schematic diagram of the antenna array.

A PD simulator was placed in the substation at planar coordinates (−4, 5.5). The simulator can
simulate PDs of different capacity between needle tips or plates, including 500–16,500 V contacts or air
discharges, with an error of less than 5%. The rise time of the discharge pulse is 0.8 ns with an error of
25% or less. The frequency spectrum of the discharge signal produced is in the range of 0–2 GHz.

Two PD sources were found in the substation. One is an external PD source at the terminal of an
incoming line, which can be measured by an ultraviolet imager, and the other is produced by the PD
simulator. The coordinates of the external discharge source is (−4.4, −7).

Two hundred groups of PD UHF signals in the substation were acquired and analyzed. The first
20 groups of signals were used to determine the number of signal types by Fisher-like class separation
measures described in Equation (9). A flow chart for determining how many signal types are in the
substation is shown in Figure 6. Meanwhile, the signals and bispectra included in each type are stored
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respectively. The signal data and its estimated bispectra are denoted as x( j)
i (n) and B̃( j)

i (ξ), where the
superscript j means the jth type of all signals, and the superscript i means the ith group among the
jth type.
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Figure 6. Flow chart for obtaining the number of signal types.

By the steps shown in Figure 6, two types of signals are deduced—the waveforms and frequency
spectra—and are shown in Figure 7a–d. The result is identical to the detected PD sources in
the substation.
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Figure 7. UHF signals radiated by the PD sources observed in the substation. (a): Waveform of UHF
signals radiated by the PD simulator. (b): Waveform of UHF signals radiated by the extra discharge
(c,d): Frequency spectra of (a,b), respectively.
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From the distribution of the frequency spectrum, it can be determined that PD UHF signals
acquired in the substation are blended with white noises, wireless communication signals of 900 MHz,
and radio signals of 100 MHz, which is similar to the noises simulated in Section 3. The bispectra of
the two kinds of UHF signals are demonstrated in Figure 8a,b.
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From the signals collected in the substation, 20 signals of each type were selected as samples,
and the Fisher-like class separation measures were calculated. The separation measure calculated by
the bispectra is shown in Figure 9. Then, the radial basis neural networks used for separating PD
sources can be trained.
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Figure 9. Separabilities of UHF signals collected in the substation.

The PD sources calculated based on time delays are (−4.55, −6.78) and (−3.83, 5.23) in meters,
respectively, which were identified as the external PD source and the PD simulator applied in
the substation. The two kind of signals were separated with the proposed bispectra method.
The signals’ separation rates are shown in Table 3 with different numbers of bispectra selected
as characteristic parameters.

Table 3. Separation rate of signals collected in the substation with different numbers of selected bispectra.

Q = 5 Q = 8 Q = 10 Q = 12 Q = 15 Q = 20

74% 77% 80% 82% 81% 82%

It can be seen from Table 3 that the separation rate is more than 70% with the proposed algorithm.
Furthermore, the separation rate is more than 80% when more than 10 characteristic parameters
are selected.

5. Conclusions

This paper describes a novel method for separating PD signals based on selected bispectra.
The characteristic parameters are selected from the bispectra of the UHF signals with Fisher-like class
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separation measures. By the application of bispectra, the narrow-band periodical interferences as
well as Gaussian noises blended in the UHF PD signals can be significantly suppressed. The phase
information in the bispectra can be useful for further signal processing.

The proposed method was used to process UHF signals mixed with fixed-frequency interference
and Gaussian white noise with different SNRs. The result showed that signals generated by multiple
PD sources could be effectively separated. When SNR > 10 dB, the signal separation rate can exceed
80%. The separation rate of the algorithm based on the selected bispectra is related to the number of
characteristic parameters. Therefore, it is easy to determine the number of characteristics.

To verify the validity of the proposed method for separating PD sources in a substation, the method
was used to process UHF signals radiated by different discharge sources and received by an antenna
array in a 500 kV substation. The signal separation rate exceeded 80% when more than 10 characteristic
parameters were selected, which verified the effectiveness of the proposed method.
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