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Featured Application: Core technology for robust information extraction systems.

Abstract: In well-spaced Korean sentences, morphological analysis is the first step in natural language
processing, in which a Korean sentence is segmented into a sequence of morphemes and the parts
of speech of the segmented morphemes are determined. Named entity recognition is a natural
language processing task carried out to obtain morpheme sequences with specific meanings, such
as person, location, and organization names. Although morphological analysis and named entity
recognition are closely associated with each other, they have been independently studied and have
exhibited the inevitable error propagation problem. Hence, we propose an integrated model based
on label attention networks that simultaneously performs morphological analysis and named entity
recognition. The proposed model comprises two layers of neural network models that are closely
associated with each other. The lower layer performs a morphological analysis, whereas the upper
layer performs a named entity recognition. In our experiments using a public gold-labeled dataset,
the proposed model outperformed previous state-of-the-art models used for morphological analysis
and named entity recognition. Furthermore, the results indicated that the integrated architecture
could alleviate the error propagation problem.

Keywords: morphological analysis; named entity recognition; integrated neural network model

1. Introduction

A morpheme refers to the smallest meaningful word in a phrase. In Korean, morphological
analysis (MA) is generally performed in the order of morpheme segmentation and part-of-speech (POS)
annotation. Based on a Korean sentence, all possible morphemes and their POS tags are suggested
through morpheme segmentation. Subsequently, the most suitable morphemes and their POS tags
are determined through POS annotation. A named entity (NE) refers to morpheme sequences with
specific meanings, such as person, location, and organization names. Named entity recognition
(NER) is a subtask of information extraction that identifies NEs in sentences and classifies them into
predefined classes. Most NEs are composed of a combination of specific POSs, such as a proper noun,
general noun, and number. Therefore, many NER models generally use the results of morphological
analysis as informative clues [1,2]. However, this pipeline architecture causes the well-known error
propagation problem. In other words, errors of MA directly deteriorate the performances of NER
models. MA models for agglutinative languages, such as Korean and Japanese, demonstrate worse
performances than those of isolating languages, which significantly affect the performances of the
corresponding NER models. Moreover, in languages such as Korean and Japanese that do not use
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capitalization, detecting NEs without any morphological information such as morpheme boundaries
and POS tags is difficult. Table 1 shows an example of named entities affected by MA results in Korean.

Table 1. Example of Korean named entities affected by morphological analysis (MA) results (NP, NNG,
JKB, VV, and EF are Korean part-of-speech (POS) tags, and ORG is a Korean named entity (NE) tag).

NLP Step Incorrect Results

MA u-ri/NP + eun-haeng/NNG + e/JKB ga/VV + da/EF
NER N/A

NLP Step Correct Results

MA u-ri-eun-haeng/NNP + e/JKB ga/VV + da/EF
NER u-ri-eun-haeng/ORG

In Table 1, to increase readability, we have romanized Korean characters (so-called Hangeul) and
hyphenated Korean characters (so-called eumjeols). The sentence “u-ri-eun-haeng-e ga-da” means “I
go to Woori bank.” In an incorrect MA result, “u-ri” and “eun-haeng” are incorrectly analyzed as a
pronoun (NP) and a general noun (NNG), respectively. This incorrect result yields an incorrect NER
result, i.e., “not existing (N/A)” instead of “organization (ORG).” To reduce these error propagation
problems, we present an integrated model, in which MA and NER are performed at once.

The remainder of this paper is organized as follows: in Section 2, we summarize previous studies
on MA and NER; we propose the integrated model in Section 3; we explain the experimental setup
and evaluate the proposed model in Section 4; finally, we conclude our study in Section 5.

2. Previous Studies

MA and NER are considered to be sequence-labeling problems, where POS and NE tags are
annotated to a word sequence. For sequence labeling, most previous studies have used statistical-based
machine learning (ML) methods, such as structural support vector machine (SVM) [3] and conditional
random fields (CRFs) [4]. A method for unknown morpheme estimation using SVM and CRF has been
proposed [5]. However, ML models depend on the training corpus size and manually designed features.
To resolve these problems, studies based on deep learning have been conducted. Many MA and NER
studies have used recurrent neural network (RNN) [6,7]. NER was performed using bidirectional long
short-term memory (Bi-LSTM) and CRFs [1]. In another study, an attention mechanism and a gated
recurrent unit (GRU) were used, which reduced the number of gates and time complexity of LSTM [8].
An effective method for reflecting external knowledge (i.e., NE dictionary) into Bi-GRU-CRFs was
proposed [9]. Additionally, RNNs and CRFs have been used in MA studies [10,11]. To alleviate
MA error propagation, an integrated model that simultaneously performs MA and NER has also
been studied, which used two layers of Bi-GRU-CRFs [12]. Güngör et al. [13] proposed a model
which alleviates morphological ambiguity by jointly learning NER and morphological disambiguation
taggers using Bi-LSTM-CRFs for Turkish. As mentioned above, many ML models have used CRFs to
obtain optimal paths among all possible label sequences. However, these models did not always yield
good performances. Bi-LSTM-Softmax [14] demonstrated better performance than Bi-LSTM-CRFs for
POS tagging. To obtain optimal label paths better than those obtained with CRFs, a label attention
network (LAN) was proposed, which captured the potential long-term label dependency by providing
incrementally refined label distributions with hierarchical attention to each word. Therefore, we
adopted this LAN in our integrated model.

3. Integrated Model for MA and NER

For n characters, C1,n, in a sentence S, let M1,n and NE1,n denote a morpheme tag sequence and
an NE tag sequence in S, respectively. Table 2 shows morpheme tags and NE tags that are defined
according to the character-level BIO (beginner–inner–outer) tagging scheme.
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Table 2. Morpheme tags and NE tags.

Morpheme Tag Descriptions

B-(NOUN|ADJ|ADV| . . . ) Beginner of a morpheme with the POS following “B-”
I-(NOUN|ADJ|ADV| . . . ) Inner of a morpheme with the POS following “I-”

O Outer of any morphemes

NE Tag Descriptions

B-(PER|LOC|ORG) Beginner of an NE with the category following “B-”
I-(PER|LOC|ORG) Inner of an NE with the category following “I-”

O Outer of any NEs

The integrated model, known as (MANE), can then be formally expressed using the
following equation:

MANE(S)
de f
= arg

M1,n,NE1,n

maxP(M1,n, NE1,n|C1,n) (1)

According to the chain rule, (1) can be rewritten as the following equation:

MANE(S)
de f
= arg

M1,n,NE1,n

maxP(M1,n|C1,n)P(NE1,n|C1,n, M1,n) (2)

To obtain the sequence labels M1,n and E1,n that maximize (2), we adopted a bidirectional long
short-term memory with a label attention network (Bi-LSTM-LAN), as shown in Figure 1.
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Figure 1. Overall architecture of MANE.

MANE comprises two layers of Bi-LSTM-LAN: an MA layer, shown on the left, and an NER layer,
shown on the right. The input unit of the MA layer is a character, and each character is represented by
a concatenation of three types of embeddings: character, alphabet, and feature embeddings, as shown
in Figure 2.

In Figure 2, Ci is the i-th character in a sentence, and Ec(Ci) is a character embedding of
Ci. Each character embedding is represented by a randomly initialized n-dimensional vector and
fine-tuned during training. To render MANE robust to typographical errors, we additionally represent
each character through an alphabet embedding. A Korean character consists of a first consonant
called chosung, a vowel called joongsung, and a final consonant called jongsung that can be omitted.
For example, in the word “hak-kyo (school)”, the first character “hak” comprises three alphabets; “h”
called chosung, “a” called joongsung, and “k” called jongsung. On the other hand, the second character
“kyo” comprises two alphabets; “k” called chosung and “yo” called joongsung. In Figure 2, Ea

(
C j

i

)
is

an alphabet embedding of the j-th alphabet in Ci that comprises the maximum of three alphabets in
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Korean, and each alphabet embedding is represented in the same manner as the character embeddings.
The maximum three alphabet embeddings are passed into a convolutional neural network (CNN)
with 100 filters (filter widths: 1, 2, and 3) [15]. In NER, dictionary look-up features— which are used
to check whether there is an input word in a preconstructed NE dictionary—significantly affect the
performance. Based on Kim’s study [9], in which effective dictionary look-up features have been
proposed for Korean NER, we adopted the same dictionary look-up features in MANE. In Figure 2,
E f (Ci) is a feature embedding of Ci based on looking up a predefined NE dictionary. Subsequently,
the character, alphabet, and feature embeddings are concatenated into the input embedding E(Ci),
as shown in Figure 1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 10 
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In the MA layer, the input embeddings E(C) =
{
E(C1), E(C2), . . . , E(Cn)

}
of the n characters

in a sentence are fed into a Bi-LSTM to yield a sequence of forward-hidden and backward-hidden
states, respectively. Subsequently, these two states are concatenated to reflect bidirectional contextual
information, as shown in the following equation:

→

h i = LSTM
{
E(Ci),

→

h i−1

}
,

↼
h i = LSTM

{
E(Ci),

↼
h i−1

}
,

↔

h i =
[
→

h i;
↼
h i

]
,

↔

H =
{
↔

h 1 ,
↔

h 2 , . . . ,
↔

h n

}
,

(3)

where
[
→

h i;
↼
h i

]
is the concatenation of forward hidden state

→

h i and backward hidden state
↼
h i of the i-th

character in a sentence. Next, the degrees of association between the contextualized input embeddings
↔

H =
{
↔

h 1 ,
↔

h 2, . . .
↔

h n

}
and the morpheme tag embeddings E(M) =

{
E(M1), E(M2), . . . , E(Mm)

}
are

calculated based on a multihead attention mechanism [14], as shown in the following equation:

head j = attention
{
QWQ

j , KWK
j , VWV

j

}
= α j ∗VWV

j , where Q =
↔

H, K = V = E(M),

α j = so f tmax

QWQ
j ∗

(
KWK

j

)T

√
dh

,

A(Ci) = head1
⊕

head2
⊕
· · ·

⊕
headk,

(4)
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where WQ
j , WK

j , and WV
j are the weighting parameters of the j-th parameter among k heads to be

learned during training. The morpheme tag embeddings E(M) represent the embedding vectors of the
m morpheme tags that are randomly initialized and fine-tuned during training. The attention score α j
is calculated using a scaled-dot product, where dh is a normalization factor and denotes that the hidden
size of Bi-LSTM is the same as the dimension of the morpheme tag embeddings. The attention score

vector A(Ci) represents the degrees of association between the contextualized input embedding
↔

h i of
the i-th input character and each morpheme tag. In other words, it can be considered as a potential
distribution of morpheme tags associated with an input character. In the prediction phase, the MA
layer outputs the morpheme tags, as shown in the following equation:

Mi = argmax
(
Â1

i , Â2
i , . . . , Âm

i

)
, (5)

where Â j
i denotes the j-th one among m attention scores in the trained attention vector Âi.

In the NER layer, the i-th input embedding E(Ci) is concatenated to the embedding of the
morpheme tag with a maximum attention score, E(Mi). Subsequently, the concatenated vectors are fed
into a Bi-LSTM in the same manner that is used for the MA layer, as shown in the following equation:

→

h i = LSTM
{
[E(Ci); E(Mi)],

→

h i−1

}
,

↼
h i = LSTM

{
[E(Ci); E(Mi)],

↼
h i−1

}
,

↔

h i =
[
→

h i;
↼
h i

]
,

↔

H =
{
↔

h 1 ,
↔

h 2 , . . .
↔

h n

} (6)

Next, the attention scores between the contextualized input embeddings
↔

H =
{
↔

h 1 ,
↔

h 2, . . .
↔

h n

}
and the NE tag embeddings E(NE) =

{
E(NE1), E(NE2), . . . , E(NEl)

}
are calculated using the same

multihead attention mechanism as the MA layer. The attention score vector A(Ci) represents the

degrees of association between the contextualized input embedding
↔

h i and each NE tag.
Generally, open datasets for training MA models are larger than those for training NER models.

Thus, we use a two-phase training scheme in order to optimize the hyperparameters of MANE using
different sizes of training data; large POS-tagged data and small NE-tagged data. We first train the MA
layer based on the cross-entropy between the correct POS tags, Mi, and the outputs of the MA layer,
M̂i, as shown in the following equation:

HM̂(M) = −
∑

i

M̂i log(Mi) (7)

In other words, the outputs of the NER layer do not take part in the first training phase.
Subsequently, we train all layers based on the cross-entropy between the correct NE tags, NEi, and the
outputs of the NER layer,

>
NEi, as shown in the following equation:

H >
NE

(NE) = −
∑

i

>
NEi log(NEi) (8)

The outputs of the MA layer do not take part in the second training phase. We expect the
hyperparameters in the MA layer to be fine-tuned to the values associated with the correct NE tags in
the second training phase.
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4. Evaluation

4.1. Datasets and Experimental Setups

For our experiments, we used two gold-labeled corpora: one for evaluating MA models, and the
other for evaluating NER models. The first corpus was the 21st century Sejong POS-tagged corpus [16],
as shown in Table 3.

Table 3. Summary of the 21st century Sejong corpus.

Description Numbers

Sentences 833,386
Morphemes 21,034,232

Tags 46

The second corpus was the public NE-tagged corpus (5000 sentences) used in the 2016 Korean
Information Processing System Competition [17], as shown in Table 4.

Table 4. Summary of the public NE-tagged corpus.

Description Numbers

Person 3416
Location 2611

Organization 4010
Date 2688
Time 388

We converted the POS-tagged and NE-tagged corpora into a morpheme dataset and an NE
dataset, in which the characters were annotated with morpheme tags and NE tags, as shown in Table 2.
Subsequently, we divided the morpheme datasets and the NE datasets into training datasets and
test datasets, respectively, at a ratio of 9:1. Finally, we evaluated MANE in terms of the following
evaluation measures:

Accuracy =
# o f correct morpheme tags or NE tags

# o f morpheme tags or NE tags returned by a system
(9)

Precision =
# o f correct morpheme or NE

# o f morpheme or NE returned by a system
(10)

Recall =
# o f correct morpheme or NE returned by a system

# o f correct morpheme or NE in a test data
(11)

F1− score =
2 ∗ Precision ∗Recall
Precision + Recall

(12)

4.2. Implementation

We implemented MANE using PyTorch 0.3.1. Training and prediction were performed on a
per-sentence level. We set the sizes of the character, morpheme tag, and NE tag embeddings to 50,
128, and 128, respectively. Subsequently, we randomly initialized and fine-tuned these embeddings.
For alphabet embedding, we set the number and sizes of the CNN filters to 100 and 1, 2, 3, respectively.
Next, we set the number of attention heads to 4. The training required 100 epochs and was performed
by mini-batch stochastic gradient descent, based on the Adam optimizer, with a fixed learning rate of
0.001. Each mini-batch comprised 32 sentences due to our hardware limitation. The length of each
sentence was fixed to 200 which was the maximum length of a sentence in the training data. For short
sentences, the remainder of the input units were filled with padding.
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4.3. Experimental Results

Our first experiment was to compare the MA performances of MANE with those of the previous
state-of-the-art MA models, as shown in Table 5.

Table 5. Performance comparison on morphological analysis.

Model Accuracy F1-Score

Structural SVMs [18] 0.9802 0.9803
Bi-LSTM-CRFs-MA [10] 0.9780 0.9877 (0.9750)

Stacked Bi-GRU-CRFs-MA [19] 0.9840 (0.9590) -
Seq2Seq [11] - 0.9793
MANE-MA 0.9793 0.9789

MANE 0.9886 0.9880

In Table 5, MANE-MA is an independent model with the same architecture as that of the MA
layer in Figure 1. Structural SVMs [18] constitute an integrated model for automatic word spacing
and morphological analysis in Korean. Bi-LSTM-CRFs-MA [10] and stacked Bi-GRU-CRFs-MA [19]
are integrated deep learning models for the task described in [18]. For a fair comparison, we used
correctly spaced input sentences in these previous integrated models. In addition, we showed the
performances of a modified Bi-LSTM-CRFs-MA [10] and a modified stacked Bi-GRU-CRFs-MA [19] in
which additional linguistic features, such as morpheme dictionary look-ups and pre-analysis dictionary
look-ups, were excluded. The parenthesized scores denote the performances of the modified versions
reported in their papers [10,19]. Seq2Seq [11] is a generative MA model based on a sequence-to-sequence
network. As shown in Table 5, MANE outperformed all the comparison models. When MANE
was compared to the modified versions, the performance differences were even larger. To verify the
performance differences between MANE and the comparison models, we repeated a performance
evaluation of MANE five times. In the repeated evaluations on MA, the performance variations of
MANE were ±0.0003 in accuracies and ±0.0001 in F1-scores. As a result, MANE always showed higher
performances than all of the previous MA models. The p-values of F1-scores between MANE and the
comparison models were from 5.19 × 10−9 to 0.00537. This implies that the performance differences are
statistically significant at the 0.05 level. Moreover, it showed higher performances than MANE-MA.
This reveals that the NER layer can be useful in improving the performance of the MA layer.

In our second experiment, we compared the NER performances of MANE with those of the
previous state-of-the-art NER models, as shown in Table 6.

Table 6. Performance comparison on named entity recognition.

Model F1-Score

Bi-GRU-CRFs-NE [20] 0.8022
Bi-LSTM-CRFs-NE [1] 0.8549

Stacked Bi-GRU-CRFs-NE [9] 0.8576
MorpheNE [12] (MA and NER integrated) 0.8566

Attention-CRFs [8] 0.8188
MANE-NE 0.8583

MANE 0.8597

In Table 6, MANE-NE is an independent model with the same architecture as that of the NE layer
in Figure 1. MANE-NE uses a pretrained MA layer for POS information. Subsequently, the parameter
of the MA layer is frozen to block tuning when training the NE layer. Bi-GRU-CRFs-NE [20] constitutes
a baseline NER model based on GRUs with a CRF layer. Bi-LSTM-CRFs-NE [1] represents an NER
model, in which a word representation is expanded using word, POS, and syllable embeddings, as well
as dictionary look-up features. Stacked Bi-GRU-CRFs-NE [9] constitutes an NER model with two layers
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of Bi-GRU-CRFs, in which effective dictionary look-up features were used. Attention-CRFs [8] perform
NER based on the attention mechanism and the CRFs. MANE-NE is the independent NER model in
Table 5. Therefore, correctly POS-tagged sentences were used as input. In Table 6, MorpheNE [12]
is an integrated model for MA and NER based on Bi-GRU-CRFs. MorpheNE did not use correctly
POS-tagged sentences as inputs. As shown in Table 6, the performances of Bi-GRU-CRFs-NE [20]
and attention-CRFs [8] are inferior to those of others because these models did not use any dictionary
look-up features. This reveals that the dictionary look-up features have a significant effect on the
improvement of NER performances in Korean. As shown in Table 6, MANE outperformed all of the
comparison models, although it did not use correctly POS-tagged sentences as inputs. In the five
repeated evaluations of NER, the performance variations of MANE were ±0.0012 in F1-scores. As a
result, MANE always showed higher F1-scores than all of the previous NER models. The p-values of
F1-scores between MANE and the comparison models were from 1.67 × 10−8 to 0.007594. This implies
that the performance differences are statistically significant at the 0.05 level. In particular, MANE
performed better than MorpheNE. Moreover, MANE greatly outperformed MorpheNE in memory
consumption and prediction time, as shown in Table 7.

Table 7. Comparisons of memory consumption and prediction time.

Model Average Memory Usage
(Megabyte)

Average Prediction Time
(Millisecond)

MANE 4276 4.8
MorpheNE 4946 8.0

This indicates that the LAN of MANE is more effective and efficient than the CRF of MorpheNE
in alleviating error propagation problems. In addition, MANE demonstrated higher performances
than MANE-NE. This reveals that the proposed architecture may be a good solution to the error
propagation problem.

The last experiment demonstrated the effectiveness of pretraining the MA layer using different
training data sizes, as shown in Table 8.

Table 8. Performances of NER according to different training data sizes.

Size of Dataset Parameters F1-Score

50% of the morpheme dataset + the NE dataset Static 0.8476
Fine-tuned 0.8497

70% of the morpheme dataset + the NE dataset Static 0.8531
Fine-tuned 0.8554

90% of the morpheme dataset + the NE dataset Static 0.8583
Fine-tuned 0.8597

In Table 8, “static” means that the parameters in the MA layer were frozen after pretraining using
the morpheme dataset, and “fine-tuned” means that the parameters in the MA layer were fine-tuned
during the second training phase, in which the MA and NER layers were trained using the NE dataset.
As shown in Table 8, the more training data learned in the MA layer, the better the performance was in
the NE layer. In addition, Table 7 shows that the second training phase affected the improvement in
the NER performances.

5. Conclusions

We proposed an integrated model based on label attention networks that simultaneously performed
MA and NER. The proposed model comprised two layers of Bi-LSTM-LAN that were closely associated
with each other. The lower layer performed MA, whereas the upper layer performed NER. To optimize
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the weighting parameters of the proposed model, we used a two-phase training scheme: in the first
phase, the lower layer was trained for MA, whereas in the second phase, all layers were trained for
NER. In our experiments using public datasets, the proposed model outperformed all of the previous
state-of-the-art models in Korean. Moreover, the proposed integrated model demonstrated greater
performances than the independent MA (i.e., the lower layer) and the independent NER models
(i.e., the upper layer). Based on these experiments, we conclude that the proposed model can effectively
reduce the error propagation problem caused by a pipeline architecture. Moreover, we conclude that
the proposed model can provide important feedback information from the upper layer (the NER
model) to the lower layer (the MA model).
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