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Abstract: Due to the lack of reliable methods, manual fish counting is popular on farms. However,
this approach is time and labor intensive. Using an echosounder and the echo-integration technique
could be a better alternative. The echo-integration method has been widely used in fish abundance
estimation in waterbodies because of its simplicity. However, most of the research is concentrated
on the open ocean, whereas fish count estimation in farming cages has not been explored much.
Using the echo-integration method in a cage offers its own unique sets of problems. Firstly, the echo
signal reflected from the cage boundaries should also be taken into account. Secondly, the fish inside
a cage behave differently with time, as their mobility pattern is highly dependent on sunlight and
water current. In this paper, fish behavior inside an offshore cage over time was extensively studied,
and based on that a real-time fish counter system using a commercial echosounder was developed.
The experiments demonstrate that our method is simple, user-friendly, and has an estimation error of
less than 10%. Since our method accurately estimated fish abundance, the method should be reliable
when making fish management decisions.
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1. Introduction

In fish farming, knowing the exact amount of fish in a cage is of paramount importance, as it
helps to provide the best conditions for the fish under cultivation, thereby guaranteeing the health
and growth of the species [1–4]. As the fish food and other resources are expensive, the knowledge
of the fish individuals is necessary for the optimum utilization of these [3,4]. However, there is
no easy and reliable method to keep track of the exact number of fish in a cage, and hence the
farmer has to use an intelligent guess out of experience or do manual counting for fish management.
Furthermore, no practical solution is available that can be used by third-party companies, such as
insurance companies, to verify the fish count claimed by farmers [5]. Therefore, a portable device or a
method that gives an accurate estimation of fish count in a cage is highly desirable.

Over the years, various techniques and methods have been widely used and proposed for the
fish counting problem. For instance, the acoustics echo-sounding method, the machine vision-based
method, the environmental DNA-based method, and the resistivity counter-based method are some
popular methods that have been used in fish counting [6]. Among these, the acoustic echo-sounding
method is one of the most popular methods to estimate fish abundance because of simplicity and
noninvasive nature [7]. In this technique, echosounder sends an acoustic ping and the reflected echoes
from fish are analyzed to estimate fish abundance. The key idea relies on the detection of reflected
energy produced by the target as the amount of energy is proportional to the number of targets.
The scientific use of acoustics for counting fish has been widespread over the last three decades [8–21].
Modern echosounder and echo processing software implement the echo-integration technique to study
fish and their behavior [12–17]. Even though echo-integration has been widely used in the open sea,
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when used in a cage, it offers a unique set of challenges [18–21]. For instance, the reverberation in the
cage due to the echoes of the acoustical signal from the boundaries needs to be taken into account
when performing echo integration [19,22]. Therefore, some techniques should be used to remove the
cage-boundary signal from the received signal, as discussed in [5]. Another issue that must be taken
into account is the behavior of fish in a cage [23]. The accuracy of echo-integration is dependent on
the transducer’s ability to capture the fish distribution in a cage. Thus, the knowledge of how fish
behave and move in a cage at a particular time is salient for accurate estimation. Another problem
in fish-abundance estimation by acoustics is the shadowing effect, which can seriously affect the fish
count results when dense aggregations of fish are encountered. Compensation for the attenuation
of the echo strength due to the shadowing effect is necessary [24]. However, in the case of low fish
density and random movement, the shadowing effect is minimum [24].

The main objective of this research is to investigate the possibility of using a commercial
echosounder for fish counting in real time. The aim is to develop a practical, portable, and reliable
system to estimate fish numbers in offshore farming cages. For that, firstly, we studied the behavior of
fish in a net cage by monitoring continuously for two months using an echosounder and an underwater
camera. Based on the observation and analysis, an algorithm and the manual for experimentation were
developed. The experimental results verify that when fish counting is performed under the defined
guidelines, the estimation accuracy of the proposed algorithm is high. The finding of this research
could be beneficial to the researchers and the professionals working in fish management, especially in
offshore fish farming.

2. Proposed Fish Counting Algorithm

This section details the fish count algorithm used in the paper. The algorithm employs the
echo-integration technique to count fish in a cage. The algorithm was designed under the assumption
that the cage under investigation contains fish of the same species only, but potentially of variable
length, which is generally the case in fish farming cages. The basic idea of the algorithm is to estimate
the fish count based on the population density (per m2) of a cage, which is calculated by scaling sa

(measured by echosounder) with the average target strength (TS) (measured by sampling) of fish in
the cage. Therefore, the more fish are uniformly distributed in a cage, the higher the accuracy of the
algorithm. The algorithm assumes low fish density and sufficiently random distribution; thus, the
shadowing effect is not considered.

2.1. Theoretical Background

The fundamental principle that is used in the algorithm is explained here.

2.1.1. Target Strength

Target strength (TS) is a measure of the proportion of the incident energy which is backscattered
by the target. TS is used as a scaling factor in biomass estimation [11,25]. TS is expressed in decibels
and is given by

TS = 10log(σbs) (1)

where σbs is acoustic backscattering cross-section reflected by a target.

2.1.2. Backscattering Coefficient

When the individual targets are very small and there are many in the sampled volume, their echoes
combine to form a integrated received signal. However, the echo intensity is still a measure of the
biomass in the water column. The basic acoustic measurement is the volume backscattering coefficient,
sv, given by

sv =
∑ σbs

V
(2)
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where V is the sampled volume occupied by a scattering medium or multiple discrete targets.
Similarly, area backscattering coefficient, sa, is a measure of the energy returned from a layer between
two depths z1 and z2 in the water column. It is defined as the integral of sv with respect to depth
through the layer and is given by

sa =
∫ z2

z1
svdz (3)

2.1.3. Fish Count Estimation

Theoretically, fish density is obtained by diving sa by σbs. However, there can be multiple targets
of different sizes and spices in a water body. Therefore, the mean acoustic backscattering cross section
of targets denoted by <σbs> is used. The target density, ρa, expressed as the number of fish per unit
surface area is given by

ρa =
sa

<σbs>
(4)

Finally, the fish count, N, within an area of A can be calculated as,

N = Aρa (5)

Note that N is the estimation for a layer or a water column only. To estimate fish for a depth
range, a summation of estimation of all the layers between the range is required.

2.2. Algorithm

This section explains how the above theory is used in the algorithm. For each echo ping sent,
a typical echosounder provides sv data measured at each water column (layer) of z m height between
the sampled range interval R1 m and R2 m measured from the top, where R1 is closer to the surface.
The algorithm assumes that R2 is larger than the cage bottom. The algorithm takes sv data as an input.
Additionally, the algorithm requires length frequency key and cage backscattering strength as inputs,
which are explained below.

2.2.1. Length Frequency Key

The average TS of fish in a cage can be estimated by sampling some fish. To calculate <TS> from
the sampled fish, the algorithm takes length frequency key (LFK) as an input. LFK is a table of two
columns that records the number of fish of particular length, as shown in Table 1. Note that the length
in the table is the total length of fish round up to a nearest cm.

Table 1. Length frequency key of fish samples from Cage1.

Total Length (cm) Frequency

24 7
25 14
26 9
27 5

2.2.2. Cage Backscattering Strength

The echosounder data collected from a cage also contain the signal reflected from the cage.
A method needs to be devised to remove the net signal from the received signal. Here, we simply
subtract the expected cage signal from the received signal. For that, data need to be measured
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under an empty cage condition (cage without a fish). Given the empty cage data, the accumulated
back-scattering coefficient of the empty net, Sa_net, for a ping, is calculated as follows:

Sa_net =
R2

∑
r=R1

sv_net(r)× z (6)

where sv_net(r) is sv of the empty net at r m. Note that the value of R2 must be larger than the cage
bottom such that the overall net bottom signal is fully considered.

2.2.3. Fish Counting

Along with sv data, the algorithm takes R1, R2, fish species, <Sa_net> (mean Sa_net), and LFK as
inputs and returns the fish count as the output. At first, based on the LFK table provided, the algorithm
calculates <σbs>. The TS of a fish is well defined in the form as follows:

TSL = Alog(L) + B (7)

where A and B are the standard coefficients for a fish species and L is the length of the fish. The TS
of commonly farmed fish in Korea is shown in Table 2, which is maintained as a lookup table by the
algorithm. Assuming n denotes the number of rows in LFK table, n(L) denotes the number of fish
with length L, <σbs> is calculated as follows:

<σbs> =

n
∑

i=1
(σLi × n(Li))

n
∑

i=1
(n(Li))

(8)

where,

σLi = 10
TSLi

10 (9)

The next step of the algorithm is to sum all the sa values of a ping between R1 and R2.
The algorithm reads sv data of a ping at a time, and calculates accumulated back-scattering coefficient,
Sa_all , as follows,

Sa_all =
R2

∑
r=R1

sv(r)× z (10)

Table 2. Target strength (TS) at 200 KHz of some common fish farmed in Korea.

Scientific Name Common Name TS Value Reference

Sebastes ruberrimus RockFish 20log(L) − 72.80 [26]
Pagrus major Red sea bream 20log(L) − 74.10 [25]

Acanthopagrus schlegelii Black porgy 20log(L) − 66.89 [27]
Planiliza haematocheilus Redlip Mullet 20log(L) − 66.33 [28]

The Sa_all is the accumulated back-scattering coefficient over the sampled range;
therefore, it contains the information about fish abundance in the entire range. However, it also
contains the signal from the cage. Assuming no echo from the sidewalls, one possible way to remove
the net signal is to select R2 just above the net bottom. However, there are two problems with this
approach: (i) the net bottom level changes with sea current; therefore, using a fixed value is not suitable
and (ii) even if the net bottom is stationary, some signal from the fish exactly at the net bottom will be
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discarded because of the range resolution of the echosounder. In this study, an alternative approach is
employed. The average net signal is subtracted from the total signal using the following equation:

Sm =

{
Sa_all −<Sa_net>, if Sa_all > <Sa_net>

0, otherwise
(11)

Finally, the amount of fish (Fc) per ping is estimated as follows:

Fc =
Sm

<σbs>
× A, (12)

where A is the surface area of the net. Since Sm by <σbs> is the number of fish per m2, multiplying it
with the surface area gives the total number of fish in the cage. The process continues to the next ping
and the average fish count over pings is calculated by taking the moving average of Fc. We note that
the algorithm assumes the uniform distribution of fish in the cage in the form of a parallelepiped.

2.3. Fishcounter Software

The final Fishcounter software that implements the above algorithm which acquired data from
the Simrad echosounder was developed using C++ Builder [29]. All the necessary input parameters
required for the algorithm are provided via the graphical user interface. The software is designed to
read raw data directly from the echosounder in real time; therefore, it should operate simultaneously
on the same PC running EK15 software. The software has provision to record <Sa_net> by performing
echo reading over an empty cage. At the end of the reading, pressing the "Empty Cage" button saves
<Sa_net> under the supplied variable name. During operation, EK15 software reads data from the
echosounder and simultaneously writes on the defined port number. Fishcounter reads data from the
port, processes it, and displays the result. A screenshot of Fishcounter software displaying the fish
count result from an experiment performed in Cage1 is shown in Figure 1. Along with the estimated
fish count, the software also displays standard deviation (SD), the minimum count, and the maximum
possible count in the cage. With the help of the software, the fish count in a cage can be estimated in
real time.

Figure 1. Screenshot of Fishcounter software displaying results from one of the experiments in Cage1.

3. Materials and Methods

3.1. Study Area

The experiments were performed on a commercial offshore fish farm located in Wando, Korea.
The farm consists of more than 50 individual cages made on a floating grid each nylon net cage having
dimensions of 7 × 7 × 7 m with an 11 mm square mesh. Note that even though the actual cage height is
7 m, about 0.5 m of the cage is above the water surface, as can be seen in Figure 2. Three cages (named
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Cage1, Cage2, and Cage3 for ease of referencing) were found to be suitable for our experimental
purposes based on their accessibility, the target length, and fish count, and their details are listed in
Table 3. Cage1 and Cage3 consist of Roshfish, whereas Cage3 consists of black porgy. A total of 35
fish were sampled from each cage and recorded in their respective LFK tables. The maximum and
minimum sampled fish length (total length) and the total fish count for each cage are illustrated in
Table 3. At the time of the experiment, the fish in all three cages were two years old. The total count
shown in the table was obtained from the farm’s records.

Transducer laptop

Figure 2. An experiment performed on a cage using Simrad EK15.

Table 3. Details of all the three fish cages used in the experiments.

Cage Net Area Common Name Total Length (cm) Total Count

Cage1 7 m × 7 m Rockfish 24 to 27 cm 5500
Cage2 7 m × 7 m Black porgy 25 to 29 cm 5600
Cage3 7 m × 7 m Rockfish 27 to 30 cm 6000

3.2. Data Acquisition

In all the experiments, Simrad EK15 echosounder and a single down-looking transducer
were used [30]. The echosounder comes with a transducer, a processing unit, and PC software.
The echosounder operates at 200 KHz with a 26° beam width. The transducer was mounted on a
floating panel; therefore, is not free from turbulence due to water current. The transducer was always
placed at the center of a cage, as illustrated in Figure 2. The transducer sends a ping at regular interval
and the received echo is recorded by Simard EK15 software in a ".raw" file. Note that Simrad EK15
records the Sv at each water column in a dB scale, as illustrated by the following equation:

Sv = 10log10(sv) (13)

In the proposed algorithm, sv denotes the implicit conversion of Sv read from the echosounder.
Simard EK15 software can also be configured to simultaneously write recorded Sv on a certain Ethernet
port. This feature was used to develop our fish counting software.

3.3. Experiments Performed

Mainly four types of experiments were carried out: (i) empty net analysis, (ii) long-term
experiments, (iii) net bottom analysis, and (iv) short experiments. In all the experiments, R1 = 1
m and R2 = 7 m were used.

The empty net analysis was performed to estimate < Sm_net >. Using the settings from Table 4,
in total, 5 sets of the experiment were performed over an empty net cage, each lasting for more than
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30 min. The mean < Sm_net > was then calculated. We note that the experiment was performed on a
separate cage but had the same age and material as Cage1, Cage2, and Cage3. The same < Sm_net >

was used for net subtraction by the fish counting algorithm for all experiments.

Table 4. Echosounder parameters used during data collection of short experiments.

Parameter Value

Pulse duration 80 µs
Ping interval 1 s

Experiment duration 5–10 min

The long-term experiments were performed between the period of 6th September 2019 and 25th
October 2019 to study the behavior of fish in the cage over time. A total of four sets of long-term
experiments were performed on Cage1, each lasting for 4 or 5 days. The echosounder was operated
using the setting from Table 5. To minimize the turbulence, experiments were performed starting from
a day with minimal current and the echosounder data were collected continuously for the next 3–4
days; the tidal information was obtained from [31]. The data collection on the remote computer at
the experimental site was closely monitored and managed regularly from the lab using remote access
software (Chrome Remote Desktop [32]). To illustrate the observation from the long-term experiments,
an analysis conducted from a representative experiment of 4 days (92 h to be exact) was demonstrated.
We note that the experiment was chosen randomly for the purpose of demonstration only, but the
pattern was found to be similar for all the experiments.

Table 5. Echosounder parameters used during data collection of long-term experiments.

Parameter Value

Pulse duration 80 µs
Ping interval 1 min

Experiment duration 4–5 days

The results from the long-term experiments suggest that fish count is affected by the position of
the net bottom. Therefore, the net bottom analysis was performed to confirm it. The settings from
Table 4 were used. Two experiments were performed: one on 2019.08.08 on a low current day and the
other on 2019.08.14 on a high current day. Additionally, during the experiment on the low-current day,
the cage was intentionally pulled up two times to see how it affected the fish count.

The experimental results suggested that the accuracy of the proposed algorithm is the highest
during dark hours of the lowest current day at the slack water time. To confirm it, a total of 15 short
experiments were performed, satisfying the fore-mentioned conditions on all the three cages listed
in Table 3. The experiments were performed from the lowest current day 2019.09.07 to 2019.09.09,
for three days, in the evening during slack water [31]. The device settings are shown in Table 4. To save
device setting time, each day a total of 5 sets of experiments, each of 5–10 min were repeated on a
single cage only.

3.4. Data Analysis

The raw files were analyzed using Echoview 10 [33], Octave script (Octave 5.1.0), and our
home-brew echogram viewer software. Echoview and home-brew software were used to visualize the
echogram and analyze the TS and SV values. Echogram along with the captured videos were used to
study fish behavior and movement over time.

In the case of long term data, fish counting was performed using Octave [34]. The fish counting
algorithm was implemented in Octave that takes a ".raw" file as the input and returns the fish count
per ping in a from of a row matrix. The running average of the matrix was calculated to see how the
fish count changes over time.
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Similarly, in the case of short experiments, Fishcounter software (from Figure 1) was used for
counting fish. At the end of an experiment, the fish count displayed by the software was recorded.

4. Experimental Results and Discussion

The echogram of the representative long-term experiment of 92 h is shown in Figure 3. In the
figure, the region above the black horizontal line is from the cage, while the bottom half is from the sea
bed. The color map is displayed at the right of the figure. The red pixel represents a strong signal from
a target such as fish or the sea bed. For the ease of referencing, the first four cycles of days and nights
are labeled in the figure. The red sinusoidal graph in the figure represents the change in water level
over time. The maximum and the minimum water level measured were 10.6 and 7.5 m, respectively.
One interesting pattern that can be observed in the echogram is that the fish tend to stay at the bottom
of the net during the day and start to move upward in the evening. Similarly, after sunrise, the fish
again move to the bottom. The echogram suggests minimum fish activity during the day, evidenced by
the cluster of red pixels at the bottom and mostly blue and white pixels above 3 m. However, at night,
the entire cage is full of red pixels, representing high fish activity. Similar mobility patterns for rockfish
and other fish species have been reported [35–38].

The results of fish count performed on the above long-term experiment are demonstrated in
Figures 4 and 5. Since there is a clear difference in the echogram during days and at nights, the fish
counts are separately shown. The data from 6 am to 6 pm are considered as the day time and the rest
as the night. An echogram and its corresponding fish count result are stacked on top of each other,
and their x-axes are aligned to time. The window size of 30 min (30 pings) was used to calculate the
moving average of the fish count and is shown in the blue graphs. Similarly, the true fish count is
shown by the dashed red lines.

Day Night Day Night

Figure 3. Echogram for the duration of 92 h performed in Cage1.
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(a) Echogram for day 1. (b) Echogram for day 2.

(c) Fish count for day 1. (d) Fish count for day 2.

(e) Echogram for day 3. (f) Echogram for day 4.

(g) Fish count for day 3. (h) Fish count for day 4.

Figure 4. Echogram and fish estimation during day time from the 92 h experiment performed in Cage1.
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(a) Echogram for night 1. (b) Echogram for night 2.

(c) Fish count for night 1. (d) Fish count for night 2.

(e) Echogram for night 3. (f) Echogram for night 4.

(g) Fish count for night 3. (h) Fish count for night 4.

Figure 5. Echogram and fish estimation at night time from the 92 h experiment performed in Cage1.

Figure 4 demonstrates echograms and fish counts for day times. As can be seen from the figures,
the fish count varies sharply over time. The volatility of data is related to the spatiotemporal variability
of the distribution of fish in the cage at different times of the day. However, some pattern in fish count
was observed related to the level of illumination and tidal phenomena. The fish count results illustrate
that during slack tides (at high or low tides), which correspond to peaks and valleys of the sea bed in
the echograms, the estimation is significantly high, whereas at other times the count is significantly



Appl. Sci. 2020, 10, 3720 11 of 14

low. The reason that fish count sharply decreases during high water current is because the fish move
away from the transducer beam region toward the side of the cage wall blown out by the current,
which is evidenced by the echogram, as the thickness of the red pixels in the cage is notably thin
compared to slack tides. Since the center of fish concentration is shifted from the center of the cage to
sides, the estimation is low. Similarly, the reason for relatively high estimation of fish count during
slack tides is because during these periods the current inside the cage is low and fish tend to move
toward the center of the cage, forming a school, as reported in [35,36,38]. Since all or part of the school
is under the transducer beam, the estimation is high.

On the other hand, the fish counts at nights are different from those during the day. As can be seen
in Figure 5, at night, the estimated fish count tends to stay near to the true value and the fluctuation
was significantly lower compared to that in day time. Even though the fish count gradually decreases
as we move from night 1 to night 4, the estimation was consistent for a particular night. We note that a
similar pattern was observed in other long term experiments also. The reason for the consistent result
is that during the dark hours, due to lack of visibility, the fish move on their own without forming any
school. This behavior results in uniform distribution of fish inside the cage, thereby giving consistent
and stable estimation. One interesting pattern observed is that the fish count is the most accurate
during slack water. The reason for relatively high accuracy is because at the slack tide the walls of
the cage are relatively even, and the fish are uniformly distributed in the cage. Another noticeable
observation of fish count variability between nights is that the average estimation decreases slightly as
we move from the first night to the last night. Since the data collection started from the lowest current
day, as time progressed, the water current increased day by day, resulting in higher turbulence on the
floating transducer. This is the main reason for the decrease in the fish estimation, as evidenced by the
decrease in the received signal strength.

The result from the net bottom analysis experiment is shown in Figure 6. The echograms and
their corresponding fish counts are stacked over each other, and their x-axes are aligned. In Figure 6c,d,
the pink graph represents fish count per ping and the red dash line denotes the true count. On the left
echogram, it can be seen that the cage bottom is flat, which corresponds to absence or weak current.
The echogram showed that the net bottom was stable at 6.5 m. The corresponding fish count results
are also comparatively stable. The two spikes in the fish count are the result of cage pulling. The times
of spikes exactly match with the times of the cage pulling. Figure 6b illustrates a high movement
of cage bottom during high water current. The cage bottom fluctuated between 4.5 and 5.5 m most
of the time and in only some instances attended its true depth at 6.5 m. The cage wall was also
observed to be deformed washed toward the direction of current, resembling a parallelogram (side
view). The sharp changes in fish counts verify that the fish count is affected by the position of the cage
bottom. The highly volatile fish count graph suggests that fish counting is not suitable during a high
current.

The fish count result from the short experiments is shown in Table 6. The table shows that the
fish count estimation of the algorithm has a maximum error of ±9.5%. Even though the number of
experiments performed was limited, the results matched well with our established findings. Accuracy
of echo-integration can be affected by TS estimates, TS used for scaling, fish behavior, spatial sampling
error, and analysis techniques and parameters used among other factors [23]. However, the results
suggest that the proposed algorithm estimates fish abundance in an offshore cage with high accuracy
if experiments are performed at night during slack water on the lowest current day.
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(a) Echogram during low current. (b) Echogram during high current.

Cage pulled

(c) Fish count during low current. (d) Fish count during high current.
Figure 6. Echogram and fish estimation from the net bottom analysis experiment.

Table 6. Estimated fish count and the error (%) of all the three cages calculated from the performed
short experiments.

Date Cage Estimated Count Error (%)

2019.09.08 Cage1

5149 −6.38
5072 −7.78
5336 −2.98
5216 −5.16
5112 −7.05

2019.09.09 Cage2

5812 3.78
5376 −4.0
5289 −5.55
5286 −5.6
6132 9.5

2019.09.07 Cage3

5460 −9.0
5754 −4.1
6554 9.23
5667 −5.55
6319 5.31

5. Future Work

There are still some research questions and possible future directions. Firstly, since a floating panel
was used to mount the transducer, the feasibility and efficacy of using gimbals are worth investigating.
Secondly, since in all the experiments a single transducer was used for the cage size of 7 × 7 × 7 m,
the maximum coverage area by a single transducer could be another research direction. Thirdly, since
the experiments were performed on rockfish and black porgy only, more experiments could be carried
out with different fish species.

Furthermore, working on techniques to improve accuracy for day time is another future direction.
For instance, covering the cage with the black curtain from all possible directions could be a way to
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improve accuracy. The degree of efficiency of using the black curtain during the day is required to
be clarified by experiments with a controlled level of illumination in the cage. Another approach to
improve accuracy is to consider the school shape in the algorithm. Since the fish move in a school
during the day and when the school is directly under the transducer, the algorithm overestimates the
number because the algorithm assumes the shape of a cage as a parallelepiped. The estimates can be
improved if an elliptical shape is used in the calculation. This could be another future topic.

6. Conclusions

This work proposes a method to estimates fish abundance in offshore fish farming cages using
an off-the-shelf echosounder. Long-term monitoring of fish in a farming cage was performed using
an echosounder and the echograms were extensively analyzed. Based on the observation and the
interpretation, a fish counting algorithm along with a manual was proposed. The experimental
results demonstrate that the proposed method can achieve an estimation accuracy of more than 90%.
Our method could be used to take fish management decisions on farms.

Author Contributions: Conceptualization, P.S., and K.K.; methodology, P.S., and M.K.; software, P.S.; validation,
P.S., and M.K.; formal analysis, P.S., and K.K.; investigation, P.S., and M.K.; resources, P.S., and M.K.; data curation,
P.S., and M.K.; writing—original draft preparation, P.S.; writing—review and editing, P.S.; visualization, P.S.;
supervision, K.K.; project administration, K.K.; funding acquisition, K.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was a part of the project titled “Development of Automatic Identification Monitoring
System for Fishing Gears”, funded by the Ministry of Oceans and Fisheries, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hernández-Ontiveros, J.M.; Inzunza-González, E.; García-Guerrero, E.E.; López-Bonilla, O.R.;
Infante-Prieto, S.O.; Cárdenas-Valdez, J.R.; Tlelo-Cuautle, E. Development and implementation of a fish
counter by using an embedded system. Comput. Miscs Agric. 2018, 145, 53–62. [CrossRef]

2. Zheng, X.; Zhang, Y. A fish population counting method using fuzzy artificial neural network. In 2010
IEEE International Conference on Progress in Informatics and Computing; IEEE: Shanghai, China, 2010; Volume 1,
pp. 225–228.

3. Bacher, K.; Gordoa, A.; Sagué, O. Feeding activity strongly affects the variability of wild fish aggregations
within fish farms: A sea bream farm as a case study. Aquac. Res. 2015, 46, 552–564. [CrossRef]

4. Zhou, C.; Xu, D.; Lin, K.; Sun, C.; Yang, X. Intelligent feeding control methods in aquaculture with an
emphasis on fish: A review. Rev. Aquac. 2018, 10, 975–993. [CrossRef]

5. Sthapit, P.; Teekaraman, Y.; MinSeok, K.; Kim, K. Algorithm to Estimation Fish Population using
Echosounder in Fish Farming Net. In Proceedings of the 2019 International Conference on Information and
Communication Technology Convergence (ICTC), Jeju Island, Korea, 16–18 October 2019; pp. 587–590.

6. Li, D.; Hao, Y.; Duan, Y. Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish:
A review. Rev. Aquac. 2019. [CrossRef]

7. Mitson, R.B. Fisheries Sonar; Fishing News Books Ltd: Farnham, UK, 1983.
8. Thorne, R.E. An empirical evaluation of the duration-in-beam technique for hydroacoustic estimation. Can.

J. Fish. Aquat. Sci. 1988, 45, 1244–1248. [CrossRef]
9. Ricker, W.E. Linear regressions in fishery research. J. Fish. Board Can. 1973, 30, 409–434. [CrossRef]
10. Sawada, K.; Furusawa, M.; Williamson, N.J. Conditions for the precise measurement of fish target strength

in situ. J. Mar. Acoust. Soc. Jpn. 1993, 20, 73–79. [CrossRef]
11. Simmonds, J.; MacLennan, D. Fisheries Acoustics: Theory and Practice, Second Edition; Blackwell Publishing

Ltd: Oxford, UK, 2005.
12. Thorne, R.E. Investigations into the relation between integrated echo voltage and fish density. J. Fish. Board

Can. 1971, 28, 1269–1273. [CrossRef]
13. Røttingen, I. On the relation between echo intensity and fish density. Fisk. Havforskningsinstitutt. 1976, 9,

301–314.

http://dx.doi.org/10.1016/j.compag.2017.12.023
http://dx.doi.org/10.1111/are.12199
http://dx.doi.org/10.1111/raq.12218
http://dx.doi.org/10.1111/raq.12388
http://dx.doi.org/10.1139/f88-146
http://dx.doi.org/10.1139/f73-072
http://dx.doi.org/10.3135/jmasj.20.73
http://dx.doi.org/10.1139/f71-193


Appl. Sci. 2020, 10, 3720 14 of 14

14. Misund, O.A.; Aglen, A.; Frønæs, E. Mapping the shape, size, and density of fish schools by echo integration
and a high-resolution sonar. ICES J. Mar. Sci. 1995, 52, 11–20. [CrossRef]

15. Lubis, M.Z.; Manik, H.M. Acoustic systems (split beam echo sounder) to determine abundance of fish in
marine fisheries. J. Geosci. Eng. Environ. Technol. 2017, 2, 76–83.

16. Kang, M.; Furusawa, M.; Miyashita, K. Effective and accurate use of difference in mean volume
backscattering strength to identify fish and plankton. ICES J. Mar. Sci. 2002, 59, 794–804.

17. Orúe, B.; Lopez, J.; Moreno, G.; Santiago, J.; Boyra, G.; Soto, M.; Murua, H. Using fishers’ echo-sounder
buoys to estimate biomass of fish species associated with drifting fish aggregating devices in the Indian
Ocean. Rev. Investig. Mar. 2019, 26, 1–12.

18. Espinosa, V.; Soliveres, E.; Estruch, V.D.; Redondo, J.; Ardid, M.; Alba, J.; Escuder, E.; Bou, M. Acoustical
monitoring of open mediterranean sea fish farms: Problems and strategies. In EAA European Symposium On
Hidroacoustics; FAO: Gandia, Spain, 1994; Volume 337, pp. 1–75.

19. Conti, S.G.; Roux, P.; Fauvel, C.; Maurer, B.D.; Demer, D.A. Acoustical monitoring of fish density, behavior,
and growth rate in a tank. Aquaculture 2006, 251, 314–323.

20. Buyukates, Y.; Celikkol, B.; Yigit, M.; DeCew, J.; Bulut, M. Environmental monitoring around an offshore fish
farm with copper alloy mesh pens in the Northern Aegean Sea. Am. J. Environ. Prot. 2017, 6, 50. [CrossRef]

21. Knudsen, F.; Fosseidengen, J.; Oppedal, F.; Karlsen, Ø.; Ona, E. Hydroacoustic monitoring of fish in sea
cages: Target strength (TS) measurements on Atlantic salmon (Salmo salar). Fish. Res. 2004, 69, 205–209.
[CrossRef]

22. Conti, S.G.; Maurer, B.D.; Roux, P.; Fauvel, C.; Demer, D.A.; Waters, K.R. Acoustical monitoring of fish
behavior in a tank. J. Acoust. Soc. Am. 2004, 116, 2489. [CrossRef]

23. Johnson, G.R.; Shoup, D.E.; Boswell, K.M. Accuracy and precision of hydroacoustic estimates of Gizzard
Shad abundance using horizontal beaming. Fish. Res. 2019, 212, 81–86.

24. Zhao, X.; Ona, E. Estimation and compensation models for the shadowing effect in dense fish aggregations.
ICES J. Mar. Sci. 2003, 60, 155–163. [CrossRef]

25. Love, R.H. Target strength of an individual fish at any aspect. J. Acoust. Soc. Am. 1977, 62, 1397–1403.
26. Kang, D.; Hwang, D. Ex situ target strength of rockfish (Sebastes schlegeli) and red sea bream (Pagrus major)

in the Northwest Pacific. ICES J. Mar. Sci. 2003, 60, 538–543. [CrossRef]
27. Choi, J.H.; Oh, W.S.; Yoon, E.; Im, Y.J.; Lee, K. Target Strength According to Tilt Angle and Length of Black

Seabream Acanthopagrus schlegeli at 200 kHz-frequency. Korean J. Fish. Aquat. Sci. 2018, 51, 566–570.
28. Kim, H.; Kang, D.; Cho, S.; Kim, M.; Park, J.; Kim, K. Acoustic target strength measurements for biomass

estimation of aquaculture fish, redlip mullet (chelon haematocheilus). Appl. Sci. 2018, 8, 1536. [CrossRef]
29. C++ Builder. Available online: https://https://www.embarcadero.com/ (accessed on 6 December 2019).
30. Simrad EK15 Echosounder. Available online: https://www.simrad.com/ek15 (accessed on

6 December 2019).
31. Tidal Information Website. Available online: https://www.badatime.com (accessed on 6 December 2019).
32. Chrome Remote Desktop. Available online: https://en.wikipedia.org/wiki/Chrome_Remote_Desktop

(accessed on 5 May 2020).
33. Echoview. Available online: https://www.echoview.com/ (accessed on 6 March 2020).
34. GNU Octave. Available online: https://www.gnu.org/software/octave/ (accessed on 6 December 2019).
35. Hart, T.D.; Clemons, J.E.; Wakefield, W.W.; Heppell, S.S. Day and night abundance, distribution, and activity

patterns of demersal fishes on Heceta Bank, Oregon. Fish. Bull. 2010, 108, 466–477.
36. Parker, S.; Olson, J.; Rankin, P.; Malvitch, J. Patterns in vertical movements of black rockfish Sebastes

melanops. Aquat. Biol. 2008, 2, 57–65.
37. Green, K.M.; Starr, R.M. Movements of small adult black rockfish: Implications for the design of MPAs.

Mar. Ecol. Prog. Ser. 2011, 436, 219–230.
38. Ye, S.; Lian, Y.; Godlewska, M.; Liu, J.; Li, Z. Day-night differences in hydroacoustic estimates of fish

abundance and distribution in Lake L aojianghe, China. J. Appl. Ichthyol. 2013, 29, 1423–1429. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/1054-3139(95)80011-5
http://dx.doi.org/10.11648/j.ajep.20170602.13
http://dx.doi.org/10.1016/j.fishres.2004.05.008
http://dx.doi.org/10.1121/1.4784941
http://dx.doi.org/10.1006/jmsc.2002.1319
http://dx.doi.org/10.1016/S1054-3139(03)00040-7
http://dx.doi.org/10.3390/app8091536
https://https://www.embarcadero.com/
https://www.simrad.com/ek15
https://www.badatime.com
https://en.wikipedia.org/wiki/Chrome_Remote_Desktop
https://www.echoview.com/
https://www.gnu.org/software/octave/
http://dx.doi.org/10.1111/jai.12367
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Fish Counting Algorithm
	Theoretical Background
	Target Strength
	Backscattering Coefficient
	Fish Count Estimation

	Algorithm
	Length Frequency Key
	Cage Backscattering Strength
	Fish Counting

	Fishcounter Software

	Materials and Methods
	Study Area
	Data Acquisition
	Experiments Performed
	Data Analysis

	Experimental Results and Discussion
	Future Work
	Conclusions
	References

