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Abstract: Considering the scouring depth downstream of weirs is a challenging issue due to its 
effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with 
optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive 
weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict 
the maximum depth of scouring based on the different input combinations. Several performance 
indices and graphical evaluators are employed to estimate the prediction accuracy in the training 
and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance 
(RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE = 0.411) 
provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction 
modeling indicate that the input variables variability has a higher impact on the predicted results 
than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective 
method for predicting the scouring depth downstream of weirs. 

Keywords: weirs; scouring depth; adaptive neuro-fuzzy inference systems; optimization algorithms 
 

1. Introduction 

Weirs are the grade-control structures for stabilizing the water level and flow velocity in 
channels and improving the efficiency of fish passages and enhancing river water quality [1,2]. The 
findings reported in the literature confirm the influence of vortex systems, especially horse-shoes 
vorticities on local scouring downstream of hydraulic structures [3–5]. The downflow, horseshoe and 
wake vortices cause the scouring phenomenon for unsubmerged obstacles like bridge piers. In 
contrast, for submerged obstacles like weirs, the size and strength of horseshoe vortex would be 
significantly decreased by increasing the submergence ratio [6]. The outlet jet causes local scouring 
downstream of weirs. Available evidence demonstrates that secondary flows and vortex systems 
caused by hydraulic jump could govern the scour depth downstream of a weir [7–9]. Therefore, a 
precise assessment of scour depth downstream of weirs is essential to provide adequate stability [10–
12]. The depth scouring downstream of weirs is a highly complex phenomenon due to several 
effective factors such as flow depth, flow velocity, tailwater depth and geometry of weirs [1]. Figure 
1 illustrates the graphical description of scour depth downstream of weirs. 
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Figure 1. Sketch of the scouring process downstream of a weir. 

An overview of previous studies shows that the methods used to estimate the scouring depth 
can be divided as; (i) numerical models, (ii) empirical formulas, (iii) soft computing techniques. Scour 
process can be assessed by different types of numerical schemes by solving the combination of 
Navier–Stokes equations and sediment transport formula [9]. Improvement of numerical models 
(e.g., ANSYS-FLUENT, Flow3D) make them the powerful alternative for simulating the scouring 
depth. However, the numerical models are limited because of the high cost of computation in 
complex problems. The empirical formulas have been developed based on laboratory experiments. 
A number of laboratory studies have been carried out in the last three decades using different flow 
conditions and bed properties. [13–18]. Several regression formulas have been obtained based on the 
laboratory investigations to estimate the scouring depth; however, those are associated with 
significant errors due to stochasticity and non-linearity of scouring phenomena [11]. 

Although the empirical formulas have been mostly adopted to predict the scouring depth due 
to its simplicity, the scale limitation causes inadequate accuracy in some cases [19]. Besides, those 
formulas are highly sensitive to the validity of the parameters ranges and the availability of adequate 
experiments. Hence, the application of empirical models for scouring modeling is not satisfactory 
due to its non-linearity and complexity [20]. In contrast, soft computing (SC) techniques offer 
attractive features to simulate complex relationships between input and output variables. SC models 
mimick the target trends based on the observational data to provide an adequate estimation when a 
simple empirical formula may not capture the complexity of scouring process [9,21,22]. Unlike the 
empirical formulas, the prediction modeling is generated automatically and is not dependent on user 
knowledge. These models can detect implicit interactions between attributes, whereas the empirical 
formulas are dependent on explicit information before building models to investigate the relations 
between different parameters. This benefit is one of the primary key strengths of SC models to 
provide cheaper and flexible solutions for analyzing complex problems in comparison with the 
empirical models [7,23]. Despite the capabilities mentioned above, SC models are closed box, and 
thus, it is difficult to determine the attributes of the modelling while it is an easy task in empirical 
formulas. As a consequence, the merits of SC models are significantly outweighed, although they are 
a reliable alternative for predicting the scouring depth. 

The soft computing (SC) techniques provide required adequacy to explore a non-linear relation 
between target and input variables. The SC models are more cost-effective to give authentic 
relationships in comparison with numerical and empirical models. Hence, SC techniques are reliable 
alternatives for estimating the scour depth in hydraulic engineering [24–26]. The potential of SC 
models in predicting the scour depth have been extensively discussed over the previous studies [22]. 
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A number of investigations have been conducted to improve the accuracy of depth scouring 
prediction using SC models such as genetic programming [27–29] support vector machines [10,11,30], 
adaptive neural fuzzy inference systems [31,32] and artificial neural networks [33]. Those techniques 
exhibit accurate performances to predict scour depth downstream of different types of hydraulic 
structures such as spillway, chutes, etc. 

In recent years, the potential of SC models for prediction of scouring depth downstream of weirs 
have been assessed using different models like genetic expression programming, self-adaptive 
extreme learning machine and neuro-fuzzy [7,34–36]. The research findings indicated that the SC 
models provided better performance in comparison with regression formulas. The adequacy 
observed in SC models is originated from evolutionary algorithms and iterative procedures. 
However, the standalone SC models have been recently integrated with meta-heuristic optimizations 
to provide better predictive models [22]. The meta-heuristic algorithms which are inspired from 
nature such as ant colony optimization and particle swarm optimization are efficient tools for 
enhancing standalone models [37]. Jang [38] combined the neural networks with the fuzzy logic 
technique to provide the adaptive neural fuzzy inference systems (ANFIS), which includes the 
benefits of both methods. A number of studies indicated that the ANFIS model is a viable alternative 
to solve hydraulic engineering problems in comparison with the regression technique [32,39–41]. 
However, parameters tuning is a major limitation of ANFIS. To solve this problem, the standalone 
ANFIS has been integrated with meta-heuristic optimization algorithms to tackle this limitation [9]. 

This study aims to develop different hybrid ANFIS models integrated with meta-heuristic 
optimization algorithms for estimating the scour depth downstream of weirs. To the best of the 
authors’ knowledge, meta-heuristic algorithms (e.g., Cultural, BBO, TLBO and IWO) have not been 
combined yet with standalone ANFIS to estimate the scour depth around the different types of 
structures such as bridges, pipelines, dam spillways, grade control structures and piles. The approach 
proposed in the present study enhances the training phase of standalone ANFIS and provides better 
performance in this application of area. 

2. Materials and Methods 

2.1. Laboratory Data for Estimating Scour Depth 

Scour depth downstream of weirs depends on bed material, flow conditions, weir geometry and 
tailwater depth [7,11,42]. Hence, the following relation can be used for the scour depth estimation: 𝑑௦ = 𝑓(𝜌, 𝜈, ℎ଴, 𝑔, ℎ௧, 𝑈଴, 𝜌௦, 𝑑ହ଴, 𝜎௚, 𝑈௖, 𝑏, 𝑧) (1) 
where, 𝜌  is the density of water , 𝜈  stands for kinematic viscosity of fluid , ℎ଴ refers to average 
approach flow depth,  𝑔  is the acceleration of gravity, ℎ௧ embodies tailwater depth , 𝑈଴ refers to 
average approach flow velocity, 𝜌௦ is bed particle density, 𝑑ହ଴ denotes mean bed particle size, 𝜎௚ is 
the standard deviation of bed particle size, 𝑈௖ identifies critical average approach flow velocity, 𝑏 
indicates weir width, 𝑧 stands for weir height and 𝑑௦ is scouring depth. To estimate the scour depth, 
the non-dimensional parameters provide more performance in comparison with dimensional ones 
[43,44]. A number of investigations assessed the impact of the non-dimensional parameters (e.g., 𝒅𝟓𝟎𝒉𝒕 , 𝒛𝒉𝒕 , 𝑼𝟎𝑼𝑪) on scouring depth downstream of weirs. Several studies indicated that the changes in the 

magnitude of approach flow and tailwater have significant impact on scour depth [1,45,46]. Wang et 
al. [2] found that downstream slope and flow intensity have a considerable effect on downstream 
scouring depth. Guan et al. [1] attained that scour depth increased with decreasing tailwater depth 
( 𝒛𝒉𝒕 ) and increasing flow intensity (𝑼𝟎𝑼𝑪 ). Other studies showed that the weir width ( 𝒃𝒉𝒕 ) also has 

significant effect on scouring depth downstream of weirs [7,8]. Hence, the following equation is used 
based in dimensional analysis [1]: 𝑑௦ℎ௧ = 𝑓 ൬𝑑ହ଴ℎ௧ , 𝑧ℎ௧ , 𝑈଴𝑈஼൰ (2) 
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where, ௗఱబ௛೟ , ௎బ௎಴, ௭௛೟, respectively quantify the effect of bed particle size, flow condition, and tailwater 

depth on scouring depth. 
A dataset with 186 experimental data is gathered from four published papers [15,47–49] with 

different conditions of surveys to assess the capability of the new hybrid ANFIS techniques. In the 
following, the summary of gathered datasets is briefly discussed: Veronese [47] experimentally 
examined the scour depth downstream of weirs using a rectangular flume, where the width of weir 
and flume was 0.5 m. In all experimental runs, the difference between flow depth upstream and 
downstream of weir was kept as 1 m. Different bed properties with 𝑑ହ଴  values of 9.1, 14.2, 21 and 
36.2 mm were used. Additionally, the ொ௕  was changed in the range of 0.001 and 0.083 ௠మ௦ . The 
observed scour depths were reported between 0.055 and 0.22 m. Falciai and Giacomin [49] performed 
other laboratory experiments to assess the scour depth downstream of weir. They varied the specific 
discharge between 1.2 and 13.4 ௠మ௦ . Several widths of rectangular channel were considered in the 
range of 0.4 to 3.5 m. The 𝑑ହ଴ values were in the range of 0.019-0.1 m. The scour depth was observed 
within 0.4 –3.5 m. D’agostino [15] conducted laboratory experiments to investigate local scour 
downstream of weirs. They designed two types of weirs with different ௕஻ ratio of 0.3  and 0.6 (𝐵 is the 
flume width). The median diameters of bed particle were in the range 4.1 to 17.6 mm. In all 
experimental runs, discharge values were considered between 0.0167 and 0.167 ௠మ௦  which caused the 
scour depth within 0.045 –0.280 m. Similar investigation has also been carried out by D’Agostino and 
Ferro [48] to assess scour depth downstream of weirs. The ௕஻ values were similar to previous study 
although 𝑑ହ଴ values were in the range of 9.1 to 11.5 mm. 

Guan et al. [1] carried out several experiments in a rectangular flume (12 m long, 0.44 m wide, 
and 0.58 m deep) with the different bed materials (fine and coarse) to assess scouring depth 
downstream of weirs. The 𝑑ହ଴  values were considered to be between 0.26 and 0.85 m. They 
developed the empirical formulas to estimate scour depth downstream of a weir as follows: 𝑑௦ℎ௧ = 17.42 × ( 𝑧ℎ௧)ଵ.ଵ଴(𝑑ହ଴ℎ௧ )଴.଴଻ ൬𝑈଴𝑈௖ − 0.4൰                0.4 < 𝑈଴𝑈௖ < 1 (3) 

𝑑௦ℎ௧ = 4.5 × ( 𝑧ℎ௧)ଵ.ଵ଴(𝑑ହ଴ℎ௧ )଴.଴଻
⎝⎜
⎛൬𝑈଴𝑈௖ − 0.9൰ − 0.23𝑈଴𝑈௖ − 0.9⎠⎟

⎞         1 < 𝑈଴𝑈௖ < 3.65 (4) 

Table 1 shows the range of input and output parameters employed in the present study. 

Table 1. Range of the target and input variables employed in the present study. 

Parameters Training Phase Testing Phase 𝑈଴𝑈஼ 0.0069–0.9197 0.0108–0.866 𝑑ହ଴ℎ௧  0.0096–0.362 0.00945–0.226 𝑧ℎ௧ 0.179–20.28 0.1613–11.344 𝑑௦ℎ௧  0.271–2.444 0.1359–2.222 

2.2. Adaptive Neuro-Fuzzy Inference System 

The adaptive neuro-fuzzy inference system (ANFIS) was first introduced by Jang [38]. The key 
strengths of ANFIS include its potential to estimate non-linear relations and less dependency on user 
knowledge [50]. The non-linear relationships between inputs and outputs are yielded through 
membership functions. Membership functions map each input correspondent to values between 0 
and 1. The appropriate values of the parameters of membership functions and fuzzy rules are the 
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major concerns to obtain a precise learning process using available knowledge and experiences [9]. 
Thus, it is essential to use the meta-heuristic algorithms to tune the ANFIS parameters. The core 
feature of ANFIS is fuzzy logic rules (if-then rules) as major parts of modeling. 

2.3. Description of the Optimization Methods 

To obtain the optimistic value of the ANFIS parameters, several optimization methods, 
including biogeography based optimization (BBO), cultural, invasive weeds optimization (IWO), and 
teaching learning-based optimization (TLBO) algorithms are used. A brief description of the 
optimization methods used in the present study is demonstrated as follows: 

- Biogeography based optimization 

Simon [51] proposed the mathematical expression of migration behavior between species in 
different habitats for solving optimization problems. He employed two indices named Habitat-
Suitability Index (HSI) and Suitability Index Variables (SIV). The HSI denotes the quality of living 
conditions in a suitable habitat. The living condition is related to many factors such as climate 
conditions, natural sources and richness of food sources. The SIV measures the suitability of living in 
a specific habitat utilizing several stated factors. The roulette wheel selection concept is used to 
enhance the quality of habitats with low living conditions. The basis of procedure in Biogeography 
based optimization (BBO) model is iterative computation. In each iteration, the fitness function is 
measured until the best solution with appropriate convergence is achieved, and then the computation 
procedure is terminated. 

- Cultural algorithm 

Reynolds and Chung[52] proposed the cultural algorithm for solving non-linear problems. This 
algorithm includes two main search spaces as (i) population space, and (ii) belief space. The 
population space is similar to genetic algorithm procedure, while belief space depends on the culture 
of a specific population. The belief space simulates the knowledge about the culture of the population. 
In this space, the overall experiences from successful members are saved and will be transferred to 
the next generations. The belief space includes two types of knowledge as: (i) situational knowledge 
and (ii) normative knowledge. The belief and population spaces interact with each other through a 
pre-defined protocol. In this way, a mechanism is adopted to regenerate the population space based 
on cultures governed in belief space. For selecting a group to make belief space, the acceptance 
function is defined to choose the qualified members for new generations. Then, the influence function 
makes the belief of a total population similar to the one for solving the problem. 

- Invasive weeds optimization 

Invasive weeds optimization (IWO) method was introduced by Mehrabian and Lucas [53] for 
solving engineering problems. This method employs the mechanism of generating weeds colonies 
and exploring appropriate position for growth. This method contains four main functions as follows: 

i. Generating primary population function: the seeds which are also named as prime 
solutions are dispersed randomly in search space for finding a fitting solution to tackle 
problems. 

ii. Reproduction function: the IWO employs the minimum and maximum quantity of weeds 
colony objective functions. 

iii. Spatial dispersal function: the primary duty of this function is to provide randomness in 
the model. This function helps to spread the seed around parental plants. In each iteration, 
this function measures the standard deviation of new produced results. 

iv. Competitive exclusion function: the main task of this function is to increase the chance of 
surviving for weak plants which contain a low level of fitness function. In this regard, after 
reaching to maximum number of population, the members of colonies are sorted, and 
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colonies with the highest number of the population are selected for further calculations in 
the next iteration. 

- Teaching Learning Based Optimization 
Rao et al., [54] proposed teaching learning based optimization (TLBO) algorithm based on the 

interaction among learners and teachers in a classroom. This method contains two significant stages: 
“teacher stage” and “learner stage”. In the first stage, the teacher attempts to enhance learner grades. 
In the next stage. The learners cooperate in obtaining higher grades. Teacher stage comprises two 
goals of (i) selecting a qualified person with the most information (such as a teacher) to find the best 
solution to tackle the problem in a classroom and (ii) sharing the information of the teacher to 
improve the student‘s grades. In this way, the average grade of all learners is computed, and the 
difference between teacher and average grade of learners can be determined. In the iterative 
procedure, the existing solution recomputed repeatedly using difference mean. The learner stage 
aims to enhance the grades of all learner with their collaboration. A random learner (𝑋௜) selects 
another learner (𝑋௝) to share their information. In each iteration, a new fitness value is obtained for 
learner (𝑋௜) until the termination criterion is satisfied. 

2.4. Optimizing the ANFIS Parameters 

To tune the ANFIS parameters using the optimization algorithms proposed in the present study, 
the following hybridization process is performed. 

i. Divide the dataset into training and testing data with a portion of 66% and 34%, 
respectively. 

ii. Develop a basic ANFIS. 
iii. Adopt the optimization algorithms for tuning the parameters of membership functions and 

fuzzy logic rules. 
iv. Select the best hybrid ANFIS model with the highest performance for estimating scour 

depth downstream of weirs. 

The procedure of hybridization is shown in Figure 2. 
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Figure 2. The hybridization procedure for providing an optimistic adaptive neural fuzzy inference 

systems (ANFIS) model. 

2.5. Description of Performance Indices 

To evaluate the prediction performance of the hybrid models in forecasting the scouring depth 
downstream of a weir over both training and testing phases, several performance indices such as 
Mean Absolute Error (𝑀𝐴𝐸), Root Mean Square Error (𝑅𝑀𝑆𝐸), Correlation Coefficient (𝐶𝐶) and 
Wilcox Index (WI) are employed as follows [26,55–61]: 𝑀𝐴𝐸 = 1𝑁் ෍ ቤ൬𝑑௦ℎ௧൰ை௕௦,௝ − ൬𝑑௦ℎ௧൰௉௥௘,௝ቤே೅௝ୀଵ  (5) 

𝑅𝑀𝑆𝐸 = ඨ 1𝑁் ෍ ቆ൬𝑑௦ℎ௧൰ை௕௦,௝ − ൬𝑑௦ℎ௧൰௉௥௘,௝ቇଶே೅௝ୀଵ  (6) 

𝐶𝐶 = ∑ ቆቀ𝑑௦ℎ௧ቁை௕௦,௝ − ቀ𝑑௦ℎ௧ቁை௕௦തതതതതതതതതതቇ ቆቀ𝑑௦ℎ௧ቁ௉௥௘,௝ − ቀ𝑑௦ℎ௧ቁ௉௥௘തതതതതതതതതതቇே೅௝ୀଵ
ඨ∑ ቆቀ𝑑௦ℎ௧ቁை௕௦,௝ − ቀ𝑑௦ℎ௧ቁை௕௦തതതതതതതതതതቇଶே೅௝ୀଵ ∑ ቆቀ𝑑௦ℎ௧ቁ௉௥௘,௝ − ቀ𝑑௦ℎ௧ቁ௉௥௘തതതതതതതതതതቇଶே೅௝ୀଵ

 (7) 
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𝑊𝐼 = 1 − ⎣⎢⎢
⎢⎡ ∑ ቆቀ𝑑௦ℎ௧ቁை௕௦,௝ − ቀ𝑑௦ℎ௧ቁ௉௥௘,௝ቇଶே೅௝ୀଵ∑ ቆቤቀ𝑑௦ℎ௧ቁ௉௥௘,௝ − ቀ𝑑௦ℎ௧ቁை௕௦തതതതതതതതതതቤ + ቤቀ𝑑௦ℎ௧ቁை௕௦,௝ − ቀ𝑑௦ℎ௧ቁை௕௦തതതതതതതതതതቤቇଶே೅௝ୀଵ ⎦⎥⎥

⎥⎤
 (8) 

where the ቀௗೞ௛೟ቁை௕௦,௝ and ቀௗೞ௛೟ቁ௉௥௘,௝ are the j-th observed and predicted non-dimensional value of scour 

depth, ቀௗೞ௛೟ቁை௕௦തതതതതതതതത and ቀௗೞ௛೟ቁ௉௥௘തതതതതതതതത shows the corresponding mean value of observed and predicted scour 

depth and NT denotes the dataset number. 

2.6. Uncertainty Analysis 

The uncertainty associated with the input parameters and model structure for estimating the 
scour depth downstream of weir is quantified. The following procedure is used to measure the model 
structure uncertainty: 

i. All of the results obtained by the best estimator models (e.g., ANFIS-BBO, ANFIS-TLBO, ANFIS-
Cultural, ANFIS-IWO) are considered for each computed scouring depth. 

ii. A normal distribution function is assigned to each predicted set. 
iii. To quantify the variability of predicted scouring depth, many samples (1000 generation), 

corresponding each predicted scouring depth, are generated by Monte Carlo simulation using 
the probability density function (PDF) obtained in step ii. 

iv. Using the scouring depths generated in step iii, the 95% confidence interval band, which is the 
interval between the 2.5% and 97.5% percentiles can be obtained. 

v. To quantify the uncertainty associated with the model structure in the prediction of scouring 
depth, the R factor can be computed as follows [62,63]: 

vi.  𝑅 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑋௠𝑋௦  (9) 

In the above relation, 𝑋௦ represents the standard deviation which computed for observed 
scouring depth and 𝑋௠ measured by: 

𝑋𝑚 = ෍(𝑈𝐿௅௜ − 𝐿𝐿௅௜ )/𝑛௡
௜ୀଵ  (10) 

The term n is referred to number of total observed data and 𝑈𝐿௅௜  and 𝐿𝐿௅௜  represent the values 
of the Upper (97.5%) and lower (2.5%) limits of the ith value, respectively. 
To evaluate the input parameters uncertainty, the scour depths measured from different types of 
input combinations through the superior model are utilized for each computed scouring depth. Then, 
the steps ii to v should be applied to measure the uncertainty related to input parameters. 

3. Results and Discussion 

To achieve the best predictive model for estimation of maximum scour depth, some predictive 
models are proposed with different combinations of input variables. In this study, three parameters 
are considered to predict the ௗೞ௛೟ value as follows: 𝑑௦ℎ௧ = 𝑓 ൬𝑑ହ଴ℎ௧ , 𝑧ℎ௧ , 𝑈଴𝑈஼൰ 

(11) 

Table 2 shows the Pearson’s correlation between the ௗೞ௛೟  as target variable and ௗఱబ௛೟ , ௭௛೟ , ௎బ௎಴  as 

predictor parameters. From Table 2, it is evident that ௭௛೟ provides the highest correlation (R = 0.55) 

with the target variable (ௗೞ௛೟) while ௎బ௎಴ offers the lowest. 
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Table 2. Pearson correlation between the predictive variables and scouring depth downstream of 
weirs. 

Parameters 
𝑼𝟎𝑼𝑪 

𝒅𝟓𝟎𝒉𝒕  
𝒛𝒉𝒕 𝒅𝒔𝒉𝒕 𝑈଴𝑈஼ 1    𝑑ହ଴ℎ௧  −0.3604 1   𝑧ℎ௧ −0.4891 0.7218 1  𝑑௦ℎ௧  −0.0532 0.3810 0.5551 1 

Table 3 demonstrates the structure of input combinations proposed in the current study, where 
M1 consists of all three parameters ቀௗఱబ௛೟ , ௭௛೟ , ௎బ௎಴ቁ, M2 removes ௭௛೟ from input variables and M3 uses 

only ௎బ௎಴ as the input variable. 

Table 3. Input parameters combination for prediction of scouring depth downstream of weirs. 

Input Combination 
Non-Dimensional Variables 𝒅𝟓𝟎𝒉𝒕  𝑼𝟎𝑼𝑪 

𝒛𝒉𝒕 
M1    
M2   - 
M3 -  - 

Meanwhile, by considering five ANFIS algorithms and the three combinations, 15 different 
predictive scenarios are proposed to predict maximum scour depth. Table 4 demonstrates the 
outcome of the predictive model performance based on the 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, 𝐶𝐶 and 𝑊𝐼 criteria in the 
training and testing phases for the proposed models. 

Table 4. The performance indices obtained through different predictive models for predicting the 
scouring depth downstream of weirs. 

No 
Predictive 

Model 
Input 

Combination Phase MAE RMSE CC WI 

Model 1 ANFIS-M1 All parameters 
Training 0.092 0.124 0.895 0.942 
Testing 0.133 0.192 0.883 0.916 

Model 2 
ANFIS-

CULTURAL
-M1 

All parameters 
Training 0.100 0.166 0.803 0.873 

Testing 0.151 0.260 0.816 0.800 

Model 3 ANFIS-BBO-
M1 All parameters 

Training 0.125 0.182 0.761 0.836 
Testing 0.167 0.276 0.829 0.735 

Model 4 ANFIS-IWO-
M1 

All parameters 
Training 0.08 0.111 0.916 0.954 
Testing 0.108 0.148 0.932 0.955 

Model 5 
ANFIS-

TLBO-M1 All parameters 
Training 0.120 0.164 0.831 0.863 
Testing 0.153 0.226 0.846 0.866 

Model 6 ANFIS-M2 Without ௭௛೟ Training 0.164 0.234 0.543 0.628 
Testing 0.219 0.353 0.422 0.452 

Model 7 
ANFIS-

CULTURAL
-M2 

Without ௭௛೟ 
Training 0.161 0.240 0.507 0.622 

Testing 0.213 0.366 0.334 0.389 

Model 8 ANFIS-BBO-
M2 

Without ௭௛೟ Training 0.178 0.253 0.414 0.507 
Testing 0.226 0.366 0.355 0.365 
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Model 9 ANFIS-IWO-
M2 

Without ௭௛೟ Training 0.144 0.210 0.656 0. 760 
Testing 0.202 0.340 0.482 0.573 

Model 
10 

ANFIS-
TLBO-M2 

Without ௭௛೟ Training 0.138 0.228 0.574 0.681 
Testing 0.226 0.379 0.251 0.379 

Model 
11 ANFIS-M3 Only ௎బ௎಴ Training 0.153 0.208 0.665 0.775 

Testing 0.679 3.400 0.106 0.052 

Model 
12 

ANFIS-
CULTURAL

-M3 
Only ௎బ௎಴ 

Training 0.179 0.272 0.214 0.242 

Testing 0.236 0.394 0.002 0.226 

Model 
13 

ANFIS-BBO-
M3 

Only ௎బ௎಴ Training 0.180 0.278 0.078 0.023 
Testing 0.234 0.392 0.000 0.214 

Model 
14 

ANFIS-IWO-
M3 

Only ௎బ௎಴ Training 0.162 0.229 0.598 0.625 
Testing 0.239 0.400 0.026 0.260 

Model 
15 

ANFIS-
TLBO-M3 

Only ௎బ௎಴ Training 0.171 0.262 0.343 0.408 
Testing 0.246 0.411 0.000 0.225 

From Table 4, it is clear that the 𝐴𝑁𝐹𝐼𝑆 − 𝐼𝑊𝑂 − 𝑀1 (𝑀𝐴𝐸௧௘௦௧௜௡௚ = 0.108, 𝑅𝑀𝑆𝐸௧௘௦௧௜௡௚ = 0.148), 
which contains all of the input parameters, provides the highest performance prediction compared 
to other models. Moreover, 𝐴𝑁𝐹𝐼𝑆 − 𝑀1 (𝑀𝐴𝐸௧௘௦௧௜௡௚ = 0.133, 𝑅𝑀𝑆𝐸௧௘௦௧௜௡௚ = 0.192) shows very close 
competition with the best model and ranked as the second-best predictive model, while 𝐴𝑁𝐹𝐼𝑆 − 𝑀3 
(𝑀𝐴𝐸௧௘௦௧௜௡௚ = 0.679, 𝑅𝑀𝑆𝐸௧௘௦௧௜௡௚ = 3.400 ) is selected as the worst model to predict the scouring 
depth. 

Considering the aspect of input combination, the prediction accuracy of all five algorithms in 
both the training and testing phase shows a decreasing trend from M1 to M3. At the same time, the 
M1 exhibits absolute superiority over both training and testing phases. 𝐼𝑊𝑂  algorithm with 
performance indices of ( 𝑀𝐴𝐸௧௘௦௧௜௡௚ = 0.108~0.239, 𝑅𝑀𝑆𝐸௧௘௦௧௜௡௚ = 0.148~0.400 ) demonstrates the 
highest performance for three combinations compared to other alternative optimization models. 
Besides, both training and testing outcomes show similar performance behavior. 
For further comparison between the optimization model results, several graphical evaluation 
methods are utilized to investigate prediction performance between the observed and predicted 
values. The scatter plot, which measures the 𝐴𝑁𝐹𝐼𝑆 models’ accuracy by visualizing the proximity 
of predicted and observed scour depth values and the corresponding linear correlation, is adopted in 
Figure 3. 

  
Figure 3. Scatter plots of the predicted values of scour depths against the observed ones: (a) training 
phase, (b) testing phase. 
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Figure 3 indicates that all of the hybrid models provide the acceptable ranges of performance 
prediction in both training and testing phases, where the 𝐴𝑁𝐹𝐼𝑆 − 𝐼𝑊𝑂 − 𝑀1  model offers the 
highest correlation ( 𝐶𝐶௧௥௔௜௡௜௡௚ = 0.917 , 𝐶𝐶௧௘௦௧௜௡௚ = 0.932 ). It can be noted that all the 𝐴𝑁𝐹𝐼𝑆 
algorithms, including standalone and hybrids, have an excellent capability in scour depth prediction, 
as demonstrated by the close proximity of a large portion of the prediction points to the best line. 
As a statistical comparison method, a boxplot (Figure 4) shows the variability of observed and 
predicted scouring depth by measuring their 25%, 50%, 75% quartile values and the interquartile 
range (𝐼𝑄𝑅). 

 

Figure 4. Boxplots of the predicted against observed scouring depth: (a) training phase, (b) testing 
phase. 

From Figure 4a, it can understood that 𝐴𝑁𝐹𝐼𝑆 − 𝑀1 and 𝐴𝑁𝐹𝐼𝑆 − 𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙 − 𝑀1  models (𝐼𝑄𝑅 = 0.18) are closer to the observed values (𝐼𝑄𝑅 = 0.24) in the training phase. Similar results are 
obtained in the testing phase (Figure 4b), where the 𝐴𝑁𝐹𝐼𝑆 − 𝐼𝑊𝑂 − 𝑀1 and 𝐴𝑁𝐹𝐼𝑆 − 𝐶𝑢𝑙𝑡𝑢𝑟𝑎𝑙 −𝑀1  (𝐼𝑄𝑅 = 0.16) exhibit very similar results to the interquartile range of the observed data (𝐼𝑄𝑅 = 0.26). 

As another comprehensive graphical presentation, a Taylor diagram is employed to make a 
further comparison between the observed and predictive values by using three statistical parameters, 
namely the CC (black dot lines), the RMSE (red contours) and the standard deviation (black contours) 
simultaneously (Figure 5). 
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Figure 5. Normalized Taylor diagrams of predicted and observed scour depths values: (a) training 
phase, (b) testing phase. The iso-correlation, iso-RMSE, and iso-normalized standard deviation lines, 
respectively, are the black-dotted, red-solid, and black-solid contours. 

The best model is the one which has less distance to the observed point, which is showed by the 
cyan circle. The results demonstrate that in both training and testing phase 𝐴𝑁𝐹𝐼𝑆 − 𝐼𝑊𝑂 − 𝑀1 is 
the closet point to the observed one which is an indicator of this model’s performance in the 
prediction of scouring depth. The outcome of this diagram also confirms the previous graphical 
methods results which nominated the 𝐴𝑁𝐹𝐼𝑆 − 𝐼𝑊𝑂 − 𝑀1 as a model with the highest accuracy. 
Prediction using AI methods always come with some uncertainties, which their assessment and 
analyzing is a crucial matter and have significant impact on outcome results. In this study, two major 
types of uncertainty which include model structure and input variable are evaluated. 
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To measure the effectiveness of predictive model selection on forecasting the scouring depth, 
the M1 selected in the previous section is chosen as the reference combination. In the next step, five 
ANFIS algorithms predicted values in the nominated combination and are utilized to quantify the 
corresponding uncertainty. As for the uncertainty related to the selection of input parameters, 𝐴𝑁𝐹𝐼𝑆 − 𝐼𝑊𝑂 was the best predictive model employed as the reference algorithm. Figure 6 illustrates 
the generated uncertainty band with the related observed values for both model structure and input 
variable in the testing phase. 

 

 
Figure 6. Generated prediction uncertainty band against observed values of scouring depth 
over testing phase based on (a) model structure and (b) input variables. 

From Figure 6, it can be understood that the uncertainty related to input parameter selection 
(𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 = 1.72) has a higher impact on the outcome of scouring depth prediction than the model 
structure (𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 = 1.15). 

To verify the prediction performance obtained in the present study, the results of the best 
metaheuristic algorithm result (ANFIS-IWO) is compared with those obtained by Guan et al. [1] 
through the empirical formulas presented in Equations (3) and (4). In this way, the error metrics 
obtained by those models are outlined in Table 5. 
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Table 5. Comparison between the prediction performance achieved by the best predictive model in 
the present study and empirical formulas proposed by Guan et al. [1]. 

MAE RMSE Technique 
0.107 0.14755 ANFIS-IWO(testing phase) 
0.3951 0.4465 Guan et al.(2016). 

From Table 5, it is evident that the ANFIS-IWO offers the RMSE of 0.147 and MAE of 0.107, while 
the Guan et al. [1] formula attains the RMSE of 0.447 and MAE of 0.395. Hence, the ANFIS-IWO model 
enhances the RMSE and MAE indices by 67.1% and 72.9%, respectively. 

To demonstrate the mathematical formulation of the best predictive model (ANFIS-IWO), its 
fuzzy if-then rules developed in prediction modeling of the scouring depth downstream of weirs and 
the validity range of each membership function are presented in the Supplementary Materials (Table 
S2 and Figure S1, respectively). 

To make a trade-off between the complexity of the predictive model and accuracy obtained in 
prediction modeling, another version of the ANFIS-IWO with five rules (ANFIS-IWO-5r) is compared 
with that obtained by ten rules (ANFIS-IWO-10r) which is mentioned earlier as the best predictive 
model. The fuzzy if-then rules and validity ranges of the membership functions of the ANFIS-IWO-
5r are presented in the Supplementary Materials (Table S3, and Figure S2, respectively). The results 
indicate that the ANFIS-IWO-5r provides the RMSE of 0.1557, MAE of 0.1, and CC of 0.829 in the 
training phase. Furthermore, this model offers the RMSE of 0.239, MAE of 0.144, and CC of 0.838 in 
the testing phase. In general, the performance prediction is reduced (RMSE: −51%, MAE: −27%, and 
CC: −9.7%) by decreasing the number of membership functions. 

Although numerical, statistical, and artificial intelligence approaches have become more 
common in hydraulic engineering, open questions have remained about the influences of 
experimental conditions on obtained results. These approaches are restricted due to several 
simplifications in geometry properties, and hydraulic conditions which directly affect the flow 
conditions. Besides, most of these approaches use one- or two-dimensional flow properties which 
cause under or overestimation of results [64,65]. Therefore, a deeper understanding of these factors 
on generated results is required. Furthermore, prediction of scouring depth, as a hydraulic sciences 
problem, is limited by several uncertainties, in which the turbulent nature of water as a dynamic fluid 
seems to be the most crucial modelling problem. The imperfection of predictive models, ambiguous 
initial conditions and their important role in describing the phenomena, the unanticipated occurrence 
of external forces and many more issues are the other uncertainty sources. The existence of such 
limitations may result in negative impacts on prediction modeling. 

4. Conclusions 

In the current study, several algorithms consist of standalone ANFIS as well as four hybrid 
models, namely ANFIS-Cultural, ANFIS -BBO, ANFIS-IWO and ANFIS-TLBO are used to predict the 
maximum depth of scouring. Three input parameters consist of ௗఱబ௛೟ , ௭௛೟ and ௎బ௎಴ , extracted from 

Veronese (1937), Falciai and Giacomin (1978) and D’agostino (1994) experimental studies are 
employed to established three corresponding combinations which are noted as 𝑀1  (all input 
parameters included), 𝑀2 (all input parameters without ௭௛೟) and 𝑀3 (only ௎బ௎಴ as input parameters). 

Several statistical indices (namely 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, 𝐶𝐶 and 𝑊𝐼 ) along with graphical performance 
evaluators (namely scatterplot, heat map, Taylor diagram and boxplot) are utilized to measure the 
models’ prediction accuracy in both the training and testing phase. 

Overall, prediction outcomes show the high prediction performance of the 𝐴𝑁𝐹𝐼𝑆 − 𝐼𝑊𝑂 − 𝑀1 
model in both training (𝑅𝑀𝑆𝐸 = 0.111, 𝐶𝐶 = 0.917) and testing (𝑅𝑀𝑆𝐸 = 0.147, 𝐶𝐶 = 0.932) phases 
compared to other models. The 𝐴𝑁𝐹𝐼𝑆 − 𝑀1  results (  𝑅𝑀𝑆𝐸௧௘௦௧௜௡௚ = 0.192,  𝐶𝐶௧௘௦௧௜௡௚ = 0.883) 
correspond to the second rank of accuracy. The M1 input combination which involves all parameters 
is considered as the best combination, while M3 shows the poorest prediction performance. All 
graphical performance assessments also confirm the adequacy of 𝐴𝑁𝐹𝐼𝑆 − 𝐼𝑊𝑂 − 𝑀1 to predict the 
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scouring depth downstream of weirs. Additionally, the uncertainty analysis shows that the selection 
of input parameters with 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 index of 1.72 has a higher impact on predicted results than 
choosing of the predictive model with 𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 of 1.15. In conclusion, the proposed ANFIS model 
hybrid with 𝐼𝑊𝑂 optimization algorithms demonstrates a strong predictive model to measure the 
maximum scour depth. 

To conduct the further investigations for scouring depth downstream of weirs, the authors 
propose the following insights: (i) it is possible to compare the results of optimized ANFIS models 
with either classic AI algorithms such as Artificial Neural Networks and Support vector Machines  
or novel hybrid models. (ii) The other predictive variables such as geometric standard deviation of 
sediment grain size (𝜎௚ ), Reynolds number (𝑅𝑒 ) and densimetric Froude number (𝐹𝑟ௗ ) can be 
included to predict the scouring depth downstream of weirs. (iii) The improvement of modelling 
strategy could be obtained using information theory to determine mostly correlated input variables. 
(iv) Assessing the scouring depth downstream of weirs in compound channels is more complicated 
than simple rectangular channels. The complexity is raised due to site-specific geometry, and 
hydraulic characteristics in compound channels. In future, similar studies can be conducted to 
estimate the scouring depth downstream of weirs in compound channels using artifice intelligence 
models. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-3417/10/11/3714/s1, 
Figure S1: The validity ranges of the ten membership functions of the predictive variables employed in the 
present study, (a) 𝑼𝟎𝑼𝑪, (b) 𝒅𝟓𝟎𝒉𝒕 , and (c) 𝒛𝒉𝒕 , Figure S2: The validity ranges of the five membership functions of the 

predictive variables employed in the present study, (a) 𝑼𝟎𝑼𝑪, (b) 𝒅𝟓𝟎𝒉𝒕 , and (c) 𝒛𝒉𝒕, Table S1: Description of the dataset 

employed in the present study, Table S2: The fuzzy if-then rules obtained based on the ten membership 
functions, Table S3: The fuzzy if-then rules obtained based on the five membership functions. 
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