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Abstract: Considering the scouring depth downstream of weirs is a challenging issue due to its
effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with
optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive
weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict
the maximum depth of scouring based on the different input combinations. Several performance
indices and graphical evaluators are employed to estimate the prediction accuracy in the training
and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance
(RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE =

0.411) provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction
modeling indicate that the input variables variability has a higher impact on the predicted results
than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective
method for predicting the scouring depth downstream of weirs.

Keywords: weirs; scouring depth; adaptive neuro-fuzzy inference systems; optimization algorithms

1. Introduction

Weirs are the grade-control structures for stabilizing the water level and flow velocity in channels
and improving the efficiency of fish passages and enhancing river water quality [1,2]. The findings
reported in the literature confirm the influence of vortex systems, especially horse-shoes vorticities
on local scouring downstream of hydraulic structures [3–5]. The downflow, horseshoe and wake
vortices cause the scouring phenomenon for unsubmerged obstacles like bridge piers. In contrast,
for submerged obstacles like weirs, the size and strength of horseshoe vortex would be significantly
decreased by increasing the submergence ratio [6]. The outlet jet causes local scouring downstream of
weirs. Available evidence demonstrates that secondary flows and vortex systems caused by hydraulic
jump could govern the scour depth downstream of a weir [7–9]. Therefore, a precise assessment of
scour depth downstream of weirs is essential to provide adequate stability [10–12]. The depth scouring
downstream of weirs is a highly complex phenomenon due to several effective factors such as flow

Appl. Sci. 2020, 10, 3714; doi:10.3390/app10113714 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2042-6645
https://orcid.org/0000-0002-6790-2653
https://orcid.org/0000-0003-3647-7137
http://dx.doi.org/10.3390/app10113714
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/11/3714?type=check_update&version=3


Appl. Sci. 2020, 10, 3714 2 of 18

depth, flow velocity, tailwater depth and geometry of weirs [1]. Figure 1 illustrates the graphical
description of scour depth downstream of weirs.Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 18 

 

Figure 1. Sketch of the scouring process downstream of a weir. 

An overview of previous studies shows that the methods used to estimate the scouring depth 

can be divided as; (i) numerical models, (ii) empirical formulas, (iii) soft computing techniques. Scour 

process can be assessed by different types of numerical schemes by solving the combination of 

Navier–Stokes equations and sediment transport formula [9]. Improvement of numerical models 

(e.g., ANSYS-FLUENT, Flow3D) make them the powerful alternative for simulating the scouring 

depth. However, the numerical models are limited because of the high cost of computation in 

complex problems. The empirical formulas have been developed based on laboratory experiments. 

A number of laboratory studies have been carried out in the last three decades using different flow 

conditions and bed properties. [13–18]. Several regression formulas have been obtained based on the 

laboratory investigations to estimate the scouring depth; however, those are associated with 

significant errors due to stochasticity and non-linearity of scouring phenomena [11]. 

Although the empirical formulas have been mostly adopted to predict the scouring depth due 

to its simplicity, the scale limitation causes inadequate accuracy in some cases [19]. Besides, those 

formulas are highly sensitive to the validity of the parameters ranges and the availability of adequate 

experiments. Hence, the application of empirical models for scouring modeling is not satisfactory 

due to its non-linearity and complexity [20]. In contrast, soft computing (SC) techniques offer 

attractive features to simulate complex relationships between input and output variables. SC models 

mimick the target trends based on the observational data to provide an adequate estimation when a 

simple empirical formula may not capture the complexity of scouring process [9,21,22]. Unlike the 

empirical formulas, the prediction modeling is generated automatically and is not dependent on user 

knowledge. These models can detect implicit interactions between attributes, whereas the empirical 

formulas are dependent on explicit information before building models to investigate the relations 

between different parameters. This benefit is one of the primary key strengths of SC models to 

provide cheaper and flexible solutions for analyzing complex problems in comparison with the 

empirical models [7,23]. Despite the capabilities mentioned above, SC models are closed box, and 

thus, it is difficult to determine the attributes of the modelling while it is an easy task in empirical 

formulas. As a consequence, the merits of SC models are significantly outweighed, although they are 

a reliable alternative for predicting the scouring depth. 

The soft computing (SC) techniques provide required adequacy to explore a non-linear relation 

between target and input variables. The SC models are more cost-effective to give authentic 

relationships in comparison with numerical and empirical models. Hence, SC techniques are reliable 

alternatives for estimating the scour depth in hydraulic engineering [24–26]. The potential of SC 

models in predicting the scour depth have been extensively discussed over the previous studies [22]. 

Figure 1. Sketch of the scouring process downstream of a weir.

An overview of previous studies shows that the methods used to estimate the scouring depth
can be divided as; (i) numerical models, (ii) empirical formulas, (iii) soft computing techniques.
Scour process can be assessed by different types of numerical schemes by solving the combination
of Navier–Stokes equations and sediment transport formula [9]. Improvement of numerical models
(e.g., ANSYS-FLUENT, Flow3D) make them the powerful alternative for simulating the scouring
depth. However, the numerical models are limited because of the high cost of computation in complex
problems. The empirical formulas have been developed based on laboratory experiments. A number
of laboratory studies have been carried out in the last three decades using different flow conditions
and bed properties. [13–18]. Several regression formulas have been obtained based on the laboratory
investigations to estimate the scouring depth; however, those are associated with significant errors due
to stochasticity and non-linearity of scouring phenomena [11].

Although the empirical formulas have been mostly adopted to predict the scouring depth due
to its simplicity, the scale limitation causes inadequate accuracy in some cases [19]. Besides, those
formulas are highly sensitive to the validity of the parameters ranges and the availability of adequate
experiments. Hence, the application of empirical models for scouring modeling is not satisfactory due
to its non-linearity and complexity [20]. In contrast, soft computing (SC) techniques offer attractive
features to simulate complex relationships between input and output variables. SC models mimick
the target trends based on the observational data to provide an adequate estimation when a simple
empirical formula may not capture the complexity of scouring process [9,21,22]. Unlike the empirical
formulas, the prediction modeling is generated automatically and is not dependent on user knowledge.
These models can detect implicit interactions between attributes, whereas the empirical formulas are
dependent on explicit information before building models to investigate the relations between different
parameters. This benefit is one of the primary key strengths of SC models to provide cheaper and
flexible solutions for analyzing complex problems in comparison with the empirical models [7,23].
Despite the capabilities mentioned above, SC models are closed box, and thus, it is difficult to determine
the attributes of the modelling while it is an easy task in empirical formulas. As a consequence,
the merits of SC models are significantly outweighed, although they are a reliable alternative for
predicting the scouring depth.
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The soft computing (SC) techniques provide required adequacy to explore a non-linear relation
between target and input variables. The SC models are more cost-effective to give authentic relationships
in comparison with numerical and empirical models. Hence, SC techniques are reliable alternatives
for estimating the scour depth in hydraulic engineering [24–26]. The potential of SC models in
predicting the scour depth have been extensively discussed over the previous studies [22]. A number
of investigations have been conducted to improve the accuracy of depth scouring prediction using
SC models such as genetic programming [27–29] support vector machines [10,11,30], adaptive neural
fuzzy inference systems [31,32] and artificial neural networks [33]. Those techniques exhibit accurate
performances to predict scour depth downstream of different types of hydraulic structures such as
spillway, chutes, etc.

In recent years, the potential of SC models for prediction of scouring depth downstream of weirs
have been assessed using different models like genetic expression programming, self-adaptive extreme
learning machine and neuro-fuzzy [7,34–36]. The research findings indicated that the SC models
provided better performance in comparison with regression formulas. The adequacy observed in SC
models is originated from evolutionary algorithms and iterative procedures. However, the standalone
SC models have been recently integrated with meta-heuristic optimizations to provide better predictive
models [22]. The meta-heuristic algorithms which are inspired from nature such as ant colony
optimization and particle swarm optimization are efficient tools for enhancing standalone models [37].
Jang [38] combined the neural networks with the fuzzy logic technique to provide the adaptive neural
fuzzy inference systems (ANFIS), which includes the benefits of both methods. A number of studies
indicated that the ANFIS model is a viable alternative to solve hydraulic engineering problems in
comparison with the regression technique [32,39–41]. However, parameters tuning is a major limitation
of ANFIS. To solve this problem, the standalone ANFIS has been integrated with meta-heuristic
optimization algorithms to tackle this limitation [9].

This study aims to develop different hybrid ANFIS models integrated with meta-heuristic
optimization algorithms for estimating the scour depth downstream of weirs. To the best of the authors’
knowledge, meta-heuristic algorithms (e.g., Cultural, BBO, TLBO and IWO) have not been combined
yet with standalone ANFIS to estimate the scour depth around the different types of structures such
as bridges, pipelines, dam spillways, grade control structures and piles. The approach proposed in
the present study enhances the training phase of standalone ANFIS and provides better performance
in this application of area.

2. Materials and Methods

2.1. Laboratory Data for Estimating Scour Depth

Scour depth downstream of weirs depends on bed material, flow conditions, weir geometry and
tailwater depth [7,11,42]. Hence, the following relation can be used for the scour depth estimation:

ds = f
(
ρ, ν, h0, g, ht, U0,ρs, d50, σg, Uc, b, z

)
(1)

where, ρ is the density of water, ν stands for kinematic viscosity of fluid, h0 refers to average approach
flow depth, g is the acceleration of gravity, ht embodies tailwater depth, U0 refers to average approach
flow velocity, ρs is bed particle density, d50 denotes mean bed particle size, σg is the standard deviation
of bed particle size, Uc identifies critical average approach flow velocity, b indicates weir width, z stands
for weir height and ds is scouring depth. To estimate the scour depth, the non-dimensional parameters
provide more performance in comparison with dimensional ones [43,44]. A number of investigations
assessed the impact of the non-dimensional parameters (e.g., d50

ht
, z

ht
, U0

UC
) on scouring depth downstream

of weirs. Several studies indicated that the changes in the magnitude of approach flow and tailwater
have significant impact on scour depth [1,45,46]. Wang et al. [2] found that downstream slope and
flow intensity have a considerable effect on downstream scouring depth. Guan et al. [1] attained that
scour depth increased with decreasing tailwater depth ( z

ht
) and increasing flow intensity ( U0

UC
). Other
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studies showed that the weir width ( b
ht

) also has significant effect on scouring depth downstream of
weirs [7,8]. Hence, the following equation is used based in dimensional analysis [1]:

ds

ht
= f

(
d50

ht
,

z
ht

,
U0

UC

)
(2)

where, d50
ht

, U0
UC

, z
ht

, respectively quantify the effect of bed particle size, flow condition, and tailwater
depth on scouring depth.

A dataset with 186 experimental data is gathered from four published papers [15,47–49] with
different conditions of surveys to assess the capability of the new hybrid ANFIS techniques. In
the following, the summary of gathered datasets is briefly discussed: Veronese [47] experimentally
examined the scour depth downstream of weirs using a rectangular flume, where the width of weir and
flume was 0.5 m. In all experimental runs, the difference between flow depth upstream and downstream
of weir was kept as 1 m. Different bed properties with d50 values of 9.1, 14.2, 21 and 36.2 mm were used.
Additionally, the Q

b was changed in the range of 0.001 and 0.083 m2

s . The observed scour depths were
reported between 0.055 and 0.22 m. Falciai and Giacomin [49] performed other laboratory experiments
to assess the scour depth downstream of weir. They varied the specific discharge between 1.2 and 13.4
m2

s . Several widths of rectangular channel were considered in the range of 0.4 to 3.5 m. The d50 values
were in the range of 0.019–0.1 m. The scour depth was observed within 0.4–3.5 m. D’agostino [15]
conducted laboratory experiments to investigate local scour downstream of weirs. They designed two
types of weirs with different b

B ratio of 0.3 and 0.6 (B is the flume width). The median diameters of bed
particle were in the range 4.1 to 17.6 mm. In all experimental runs, discharge values were considered
between 0.0167 and 0.167 m2

s which caused the scour depth within 0.045–0.280 m. Similar investigation
has also been carried out by D’Agostino and Ferro [48] to assess scour depth downstream of weirs.
The b

B values were similar to previous study although d50 values were in the range of 9.1 to 11.5 mm.
Guan et al. [1] carried out several experiments in a rectangular flume (12 m long, 0.44 m wide, and

0.58 m deep) with the different bed materials (fine and coarse) to assess scouring depth downstream of
weirs. The d50 values were considered to be between 0.26 and 0.85 m. They developed the empirical
formulas to estimate scour depth downstream of a weir as follows:

ds
ht

= 17.42× ( z
ht
)1.10( d50

ht
)

0.07(U0
Uc
− 0.4

)
0.4 < U0

Uc
< 1 (3)

ds
ht

= 4.5× ( z
ht
)1.10( d50

ht
)

0.07
((U0

Uc
− 0.9

)
−

0.23
U0
Uc −0.9

)
1 < U0

Uc
< 3.65 (4)

Table 1 shows the range of input and output parameters employed in the present study.

Table 1. Range of the target and input variables employed in the present study.

Parameters Training Phase Testing Phase
U0
UC

0.0069–0.9197 0.0108–0.866

d50
ht

0.0096–0.362 0.00945–0.226

z
ht

0.179–20.28 0.1613–11.344

ds
ht

0.271–2.444 0.1359–2.222

2.2. Adaptive Neuro-Fuzzy Inference System

The adaptive neuro-fuzzy inference system (ANFIS) was first introduced by Jang [38]. The key
strengths of ANFIS include its potential to estimate non-linear relations and less dependency on
user knowledge [50]. The non-linear relationships between inputs and outputs are yielded through
membership functions. Membership functions map each input correspondent to values between 0 and
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1. The appropriate values of the parameters of membership functions and fuzzy rules are the major
concerns to obtain a precise learning process using available knowledge and experiences [9]. Thus, it
is essential to use the meta-heuristic algorithms to tune the ANFIS parameters. The core feature of
ANFIS is fuzzy logic rules (if-then rules) as major parts of modeling.

2.3. Description of the Optimization Methods

To obtain the optimistic value of the ANFIS parameters, several optimization methods, including
biogeography based optimization (BBO), cultural, invasive weeds optimization (IWO), and teaching
learning-based optimization (TLBO) algorithms are used. A brief description of the optimization
methods used in the present study is demonstrated as follows:

- Biogeography based optimization

Simon [51] proposed the mathematical expression of migration behavior between species
in different habitats for solving optimization problems. He employed two indices named
Habitat-Suitability Index (HSI) and Suitability Index Variables (SIV). The HSI denotes the quality of
living conditions in a suitable habitat. The living condition is related to many factors such as climate
conditions, natural sources and richness of food sources. The SIV measures the suitability of living
in a specific habitat utilizing several stated factors. The roulette wheel selection concept is used to
enhance the quality of habitats with low living conditions. The basis of procedure in Biogeography
based optimization (BBO) model is iterative computation. In each iteration, the fitness function is
measured until the best solution with appropriate convergence is achieved, and then the computation
procedure is terminated.

- Cultural algorithm

Reynolds and Chung [52] proposed the cultural algorithm for solving non-linear problems. This
algorithm includes two main search spaces as (i) population space, and (ii) belief space. The population
space is similar to genetic algorithm procedure, while belief space depends on the culture of a specific
population. The belief space simulates the knowledge about the culture of the population. In this
space, the overall experiences from successful members are saved and will be transferred to the next
generations. The belief space includes two types of knowledge as: (i) situational knowledge and (ii)
normative knowledge. The belief and population spaces interact with each other through a pre-defined
protocol. In this way, a mechanism is adopted to regenerate the population space based on cultures
governed in belief space. For selecting a group to make belief space, the acceptance function is defined
to choose the qualified members for new generations. Then, the influence function makes the belief of
a total population similar to the one for solving the problem.

- Invasive weeds optimization

Invasive weeds optimization (IWO) method was introduced by Mehrabian and Lucas [53] for
solving engineering problems. This method employs the mechanism of generating weeds colonies and
exploring appropriate position for growth. This method contains four main functions as follows:

i. Generating primary population function: the seeds which are also named as prime solutions are
dispersed randomly in search space for finding a fitting solution to tackle problems.

ii. Reproduction function: the IWO employs the minimum and maximum quantity of weeds colony
objective functions.

iii. Spatial dispersal function: the primary duty of this function is to provide randomness in the model.
This function helps to spread the seed around parental plants. In each iteration, this function
measures the standard deviation of new produced results.



Appl. Sci. 2020, 10, 3714 6 of 18

iv. Competitive exclusion function: the main task of this function is to increase the chance of
surviving for weak plants which contain a low level of fitness function. In this regard, after
reaching to maximum number of population, the members of colonies are sorted, and colonies
with the highest number of the population are selected for further calculations in the next iteration.

- Teaching Learning Based Optimization

Rao et al., [54] proposed teaching learning based optimization (TLBO) algorithm based on
the interaction among learners and teachers in a classroom. This method contains two significant
stages: “teacher stage” and “learner stage”. In the first stage, the teacher attempts to enhance learner
grades. In the next stage. The learners cooperate in obtaining higher grades. Teacher stage comprises
two goals of (i) selecting a qualified person with the most information (such as a teacher) to find
the best solution to tackle the problem in a classroom and (ii) sharing the information of the teacher
to improve the student‘s grades. In this way, the average grade of all learners is computed, and
the difference between teacher and average grade of learners can be determined. In the iterative
procedure, the existing solution recomputed repeatedly using difference mean. The learner stage aims
to enhance the grades of all learner with their collaboration. A random learner (Xi) selects another
learner (Xj) to share their information. In each iteration, a new fitness value is obtained for learner (Xi)
until the termination criterion is satisfied.

2.4. Optimizing the ANFIS Parameters

To tune the ANFIS parameters using the optimization algorithms proposed in the present study,
the following hybridization process is performed.

i. Divide the dataset into training and testing data with a portion of 66% and 34%, respectively.
ii. Develop a basic ANFIS.
iii. Adopt the optimization algorithms for tuning the parameters of membership functions and fuzzy

logic rules.
iv. Select the best hybrid ANFIS model with the highest performance for estimating scour depth

downstream of weirs.

The procedure of hybridization is shown in Figure 2.
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Figure 2. The hybridization procedure for providing an optimistic adaptive neural fuzzy inference
systems (ANFIS) model.

2.5. Description of Performance Indices

To evaluate the prediction performance of the hybrid models in forecasting the scouring depth
downstream of a weir over both training and testing phases, several performance indices such as Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), Correlation Coefficient (CC) and Wilcox Index
(WI) are employed as follows [26,55–61]:

MAE =
1

NT

∑NT

j=1

∣∣∣∣∣∣∣
(

ds

ht

)
Obs, j

−

(
ds

ht

)
Pre, j

∣∣∣∣∣∣∣ (5)

RMSE =

√√
1

NT

∑NT

j=1

(ds

ht

)
Obs, j

−

(
ds

ht

)
Pre, j

2

(6)

CC =

∑NT
j=1

((
ds
ht

)
Obs, j

−

(
ds
ht

)
Obs

)((
ds
ht

)
Pre, j

−

(
ds
ht

)
Pre

)
√∑NT

j=1

((
ds
ht

)
Obs, j

−

(
ds
ht

)
Obs

)2 ∑NT
j=1

((
ds
ht

)
Pre, j

−

(
ds
ht

)
Pre

)2
(7)
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WI = 1−


∑NT

j=1

((
ds
ht

)
Obs, j

−

(
ds
ht

)
Pre, j

)2

∑NT
j=1

(∣∣∣∣∣( ds
ht

)
Pre, j

−

(
ds
ht

)
Obs

∣∣∣∣∣+ ∣∣∣∣∣( ds
ht

)
Obs, j

−

(
ds
ht

)
Obs

∣∣∣∣∣)2

 (8)

where the
(

ds
ht

)
Obs, j

and
(

ds
ht

)
Pre, j

are the j-th observed and predicted non-dimensional value of scour

depth,
(

ds
ht

)
Obs

and
(

ds
ht

)
Pre

shows the corresponding mean value of observed and predicted scour depth
and NT denotes the dataset number.

2.6. Uncertainty Analysis

The uncertainty associated with the input parameters and model structure for estimating the scour
depth downstream of weir is quantified. The following procedure is used to measure the model
structure uncertainty:

i. All of the results obtained by the best estimator models (e.g., ANFIS-BBO, ANFIS-TLBO,
ANFIS-Cultural, ANFIS-IWO) are considered for each computed scouring depth.

ii. A normal distribution function is assigned to each predicted set.
iii. To quantify the variability of predicted scouring depth, many samples (1000 generation),

corresponding each predicted scouring depth, are generated by Monte Carlo simulation using
the probability density function (PDF) obtained in step ii.

iv. Using the scouring depths generated in step iii, the 95% confidence interval band, which is
the interval between the 2.5% and 97.5% percentiles can be obtained.

v. To quantify the uncertainty associated with the model structure in the prediction of scouring
depth, the R factor can be computed as follows [62,63]:

vi.

R f actor =
Xm

Xs
(9)

In the above relation, Xs represents the standard deviation which computed for observed scouring
depth and Xm measured by:

Xm =
n∑

i=1

(
ULi

L − LLi
L

)
/n (10)

The term n is referred to number of total observed data and ULi
L and LLi

L represent the values of
the Upper (97.5%) and lower (2.5%) limits of the ith value, respectively.

To evaluate the input parameters uncertainty, the scour depths measured from different types of
input combinations through the superior model are utilized for each computed scouring depth. Then,
the steps ii to v should be applied to measure the uncertainty related to input parameters.

3. Results and Discussion

To achieve the best predictive model for estimation of maximum scour depth, some predictive
models are proposed with different combinations of input variables. In this study, three parameters are
considered to predict the ds

ht
value as follows:

ds

ht
= f

(
d50

ht
,

z
ht

,
U0

UC

)
(11)

Table 2 shows the Pearson’s correlation between the ds
ht

as target variable and d50
ht

, z
ht

, U0
UC

as predictor
parameters. From Table 2, it is evident that z

ht
provides the highest correlation (R = 0.55) with the target

variable ( ds
ht

) while U0
UC

offers the lowest.
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Table 2. Pearson correlation between the predictive variables and scouring depth downstream of weirs.

Parameters U0
UC

d50
ht

z
ht

ds
ht

U0
UC

1
d50
ht

−0.3604 1
z
ht

−0.4891 0.7218 1
ds
ht

−0.0532 0.3810 0.5551 1

Table 3 demonstrates the structure of input combinations proposed in the current study, where
M1 consists of all three parameters

( d50
ht

, z
ht

, U0
UC

)
, M2 removes z

ht
from input variables and M3 uses only

U0
UC

as the input variable.

Table 3. Input parameters combination for prediction of scouring depth downstream of weirs.

Input Combination Non-Dimensional Variables
d50
ht

U0
UC

z
ht

M1 X X X
M2 X X -
M3 - X -

Meanwhile, by considering five ANFIS algorithms and the three combinations, 15 different
predictive scenarios are proposed to predict maximum scour depth. Table 4 demonstrates the outcome
of the predictive model performance based on the RMSE, MAE, CC and WI criteria in the training
and testing phases for the proposed models.

Table 4. The performance indices obtained through different predictive models for predicting
the scouring depth downstream of weirs.

No Predictive Model Input
Combination Phase MAE RMSE CC WI

Model 1 ANFIS-M1
All

parameters
Training 0.092 0.124 0.895 0.942

Testing 0.133 0.192 0.883 0.916

Model 2 ANFIS-
CULTURAL-M1

All
parameters

Training 0.100 0.166 0.803 0.873

Testing 0.151 0.260 0.816 0.800

Model 3 ANFIS-BBO-M1
All

parameters
Training 0.125 0.182 0.761 0.836

Testing 0.167 0.276 0.829 0.735

Model 4 ANFIS-IWO-M1
All

parameters
Training 0.08 0.111 0.916 0.954

Testing 0.108 0.148 0.932 0.955

Model 5 ANFIS-TLBO-M1
All

parameters
Training 0.120 0.164 0.831 0.863

Testing 0.153 0.226 0.846 0.866

Model 6 ANFIS-M2 Without z
ht

Training 0.164 0.234 0.543 0.628

Testing 0.219 0.353 0.422 0.452

Model 7 ANFIS-
CULTURAL-M2

Without z
ht

Training 0.161 0.240 0.507 0.622

Testing 0.213 0.366 0.334 0.389

Model 8 ANFIS-BBO-M2 Without z
ht

Training 0.178 0.253 0.414 0.507

Testing 0.226 0.366 0.355 0.365
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Table 4. Cont.

No Predictive Model Input
Combination Phase MAE RMSE CC WI

Model 9 ANFIS-IWO-M2 Without z
ht

Training 0.144 0.210 0.656 0. 760

Testing 0.202 0.340 0.482 0.573

Model 10 ANFIS-TLBO-M2 Without z
ht

Training 0.138 0.228 0.574 0.681

Testing 0.226 0.379 0.251 0.379

Model 11 ANFIS-M3 Only U0
UC

Training 0.153 0.208 0.665 0.775

Testing 0.679 3.400 0.106 0.052

Model 12 ANFIS-
CULTURAL-M3

Only U0
UC

Training 0.179 0.272 0.214 0.242

Testing 0.236 0.394 0.002 0.226

Model 13 ANFIS-BBO-M3 Only U0
UC

Training 0.180 0.278 0.078 0.023

Testing 0.234 0.392 0.000 0.214

Model 14 ANFIS-IWO-M3 Only U0
UC

Training 0.162 0.229 0.598 0.625

Testing 0.239 0.400 0.026 0.260

Model 15 ANFIS-TLBO-M3 Only U0
UC

Training 0.171 0.262 0.343 0.408

Testing 0.246 0.411 0.000 0.225

From Table 4, it is clear that the ANFIS − IWO−M1 (MAEtesting = 0.108, RMSEtesting = 0.148),
which contains all of the input parameters, provides the highest performance prediction compared
to other models. Moreover, ANFIS−M1 (MAEtesting = 0.133, RMSEtesting = 0.192) shows very close
competition with the best model and ranked as the second-best predictive model, while ANFIS−M3
(MAEtesting = 0.679, RMSEtesting = 3.400) is selected as the worst model to predict the scouring depth.

Considering the aspect of input combination, the prediction accuracy of all five algorithms
in both the training and testing phase shows a decreasing trend from M1 to M3. At the same
time, the M1 exhibits absolute superiority over both training and testing phases. IWO algorithm
with performance indices of (MAEtesting = 0.108 ∼ 0.239, RMSEtesting = 0.148 ∼ 0.400) demonstrates
the highest performance for three combinations compared to other alternative optimization models.
Besides, both training and testing outcomes show similar performance behavior.

For further comparison between the optimization model results, several graphical evaluation
methods are utilized to investigate prediction performance between the observed and predicted values.
The scatter plot, which measures the ANFIS models’ accuracy by visualizing the proximity of predicted
and observed scour depth values and the corresponding linear correlation, is adopted in Figure 3.

Figure 3 indicates that all of the hybrid models provide the acceptable ranges of performance
prediction in both training and testing phases, where the ANFIS− IWO−M1 model offers the highest
correlation (CCtraining = 0.917, CCtesting = 0.932). It can be noted that all the ANFIS algorithms, including
standalone and hybrids, have an excellent capability in scour depth prediction, as demonstrated by
the close proximity of a large portion of the prediction points to the best line.
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Figure 3. Scatter plots of the predicted values of scour depths against the observed ones: (a) training
phase, (b) testing phase.

As a statistical comparison method, a boxplot (Figure 4) shows the variability of observed and
predicted scouring depth by measuring their 25%, 50%, 75% quartile values and the interquartile range
(IQR).
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Figure 4. Boxplots of the predicted against observed scouring depth: (a) training phase, (b) testing phase.
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From Figure 4a, it can understood that ANFIS−M1 and ANFIS−Cultural−M1 models (IQR = 0.18)
are closer to the observed values (IQR = 0.24) in the training phase. Similar results are obtained in
the testing phase (Figure 4b), where the ANFIS− IWO−M1 and ANFIS−Cultural−M1 (IQR = 0.16)
exhibit very similar results to the interquartile range of the observed data (IQR = 0.26).

As another comprehensive graphical presentation, a Taylor diagram is employed to make a further
comparison between the observed and predictive values by using three statistical parameters, namely
the CC (black dot lines), the RMSE (red contours) and the standard deviation (black contours)
simultaneously (Figure 5).Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 18 
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The best model is the one which has less distance to the observed point, which is showed by
the cyan circle. The results demonstrate that in both training and testing phase ANFIS− IWO−M1 is
the closet point to the observed one which is an indicator of this model’s performance in the prediction
of scouring depth. The outcome of this diagram also confirms the previous graphical methods results
which nominated the ANFIS− IWO−M1 as a model with the highest accuracy.

Prediction using AI methods always come with some uncertainties, which their assessment and
analyzing is a crucial matter and have significant impact on outcome results. In this study, two major
types of uncertainty which include model structure and input variable are evaluated.

To measure the effectiveness of predictive model selection on forecasting the scouring depth,
the M1 selected in the previous section is chosen as the reference combination. In the next step,
five ANFIS algorithms predicted values in the nominated combination and are utilized to quantify
the corresponding uncertainty. As for the uncertainty related to the selection of input parameters,
ANFIS− IWO was the best predictive model employed as the reference algorithm. Figure 6 illustrates
the generated uncertainty band with the related observed values for both model structure and input
variable in the testing phase.

 

 
 

Figure 6. Generated prediction uncertainty band against observed values of scouring depth over
testing phase based on (a) model structure and (b) input variables.
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From Figure 6, it can be understood that the uncertainty related to input parameter selection
(R– f actor = 1.72) has a higher impact on the outcome of scouring depth prediction than the model
structure (R– f actor = 1.15).

To verify the prediction performance obtained in the present study, the results of the best
metaheuristic algorithm result (ANFIS-IWO) is compared with those obtained by Guan et al. [1]
through the empirical formulas presented in Equations (3) and (4). In this way, the error metrics
obtained by those models are outlined in Table 5.

Table 5. Comparison between the prediction performance achieved by the best predictive model in
the present study and empirical formulas proposed by Guan et al. [1].

Technique RMSE MAE

ANFIS-IWO (testing phase) 0.14755 0.107
Guan et al. (2016). 0.4465 0.3951

From Table 5, it is evident that the ANFIS-IWO offers the RMSE of 0.147 and MAE of 0.107, while
the Guan et al. [1] formula attains the RMSE of 0.447 and MAE of 0.395. Hence, the ANFIS-IWO model
enhances the RMSE and MAE indices by 67.1% and 72.9%, respectively.

To demonstrate the mathematical formulation of the best predictive model (ANFIS-IWO), its
fuzzy if-then rules developed in prediction modeling of the scouring depth downstream of weirs and
the validity range of each membership function are presented in the Supplementary Materials (Table
S2 and Figure S1, respectively).

To make a trade-off between the complexity of the predictive model and accuracy obtained in
prediction modeling, another version of the ANFIS-IWO with five rules (ANFIS-IWO-5r) is compared
with that obtained by ten rules (ANFIS-IWO-10r) which is mentioned earlier as the best predictive
model. The fuzzy if-then rules and validity ranges of the membership functions of the ANFIS-IWO-5r
are presented in the Supplementary Materials (Table S3, and Figure S2, respectively). The results
indicate that the ANFIS-IWO-5r provides the RMSE of 0.1557, MAE of 0.1, and CC of 0.829 in the training
phase. Furthermore, this model offers the RMSE of 0.239, MAE of 0.144, and CC of 0.838 in the testing
phase. In general, the performance prediction is reduced (RMSE: −51%, MAE: −27%, and CC: −9.7%)
by decreasing the number of membership functions.

Although numerical, statistical, and artificial intelligence approaches have become more common
in hydraulic engineering, open questions have remained about the influences of experimental conditions
on obtained results. These approaches are restricted due to several simplifications in geometry
properties, and hydraulic conditions which directly affect the flow conditions. Besides, most of these
approaches use one- or two-dimensional flow properties which cause under or overestimation of
results [64,65]. Therefore, a deeper understanding of these factors on generated results is required.
Furthermore, prediction of scouring depth, as a hydraulic sciences problem, is limited by several
uncertainties, in which the turbulent nature of water as a dynamic fluid seems to be the most crucial
modelling problem. The imperfection of predictive models, ambiguous initial conditions and their
important role in describing the phenomena, the unanticipated occurrence of external forces and many
more issues are the other uncertainty sources. The existence of such limitations may result in negative
impacts on prediction modeling.

4. Conclusions

In the current study, several algorithms consist of standalone ANFIS as well as four hybrid models,
namely ANFIS-Cultural, ANFIS -BBO, ANFIS-IWO and ANFIS-TLBO are used to predict the maximum
depth of scouring. Three input parameters consist of d50

ht
, z

ht
and U0

UC
, extracted from Veronese (1937),

Falciai and Giacomin (1978) and D’agostino (1994) experimental studies are employed to established
three corresponding combinations which are noted as M1 (all input parameters included), M2 (all
input parameters without z

ht
) and M3 (only U0

UC
as input parameters). Several statistical indices (namely
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MAE, RMSE, CC and WI) along with graphical performance evaluators (namely scatterplot, heat
map, Taylor diagram and boxplot) are utilized to measure the models’ prediction accuracy in both
the training and testing phase.

Overall, prediction outcomes show the high prediction performance of the ANFIS − IWO−M1
model in both training (RMSE = 0.111, CC = 0.917) and testing (RMSE = 0.147, CC = 0.932)
phases compared to other models. The ANFIS−M1 results (RMSEtesting = 0.192, CCtesting = 0.883)
correspond to the second rank of accuracy. The M1 input combination which involves all parameters is
considered as the best combination, while M3 shows the poorest prediction performance. All graphical
performance assessments also confirm the adequacy of ANFIS − IWO−M1 to predict the scouring
depth downstream of weirs. Additionally, the uncertainty analysis shows that the selection of input
parameters with R– f actor index of 1.72 has a higher impact on predicted results than choosing of
the predictive model with R– f actor of 1.15. In conclusion, the proposed ANFIS model hybrid with IWO
optimization algorithms demonstrates a strong predictive model to measure the maximum scour depth.

To conduct the further investigations for scouring depth downstream of weirs, the authors propose
the following insights: (i) it is possible to compare the results of optimized ANFIS models with either
classic AI algorithms such as Artificial Neural Networks and Support vector Machines or novel hybrid
models. (ii) The other predictive variables such as geometric standard deviation of sediment grain
size (σg), Reynolds number (Re) and densimetric Froude number (Frd) can be included to predict
the scouring depth downstream of weirs. (iii) The improvement of modelling strategy could be obtained
using information theory to determine mostly correlated input variables. (iv) Assessing the scouring
depth downstream of weirs in compound channels is more complicated than simple rectangular
channels. The complexity is raised due to site-specific geometry, and hydraulic characteristics in
compound channels. In future, similar studies can be conducted to estimate the scouring depth
downstream of weirs in compound channels using artifice intelligence models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/11/3714/s1,
Figure S1: The validity ranges of the ten membership functions of the predictive variables employed in the present
study, (a) U0

UC
, (b) d50

ht
, and (c) z

ht
, Figure S2: The validity ranges of the five membership functions of the predictive

variables employed in the present study, (a) U0
UC

, (b) d50
ht

, and (c) z
ht

, Table S1: Description of the dataset employed
in the present study, Table S2: The fuzzy if-then rules obtained based on the ten membership functions, Table S3:
The fuzzy if-then rules obtained based on the five membership functions.
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