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Abstract: Regarding the sequence learning of neural networks, there exists a problem of how to
capture long-term dependencies and alleviate the gradient vanishing phenomenon. To manage
this problem, we proposed a neural network with random connections via a scheme of a neural
architecture search. First, a dense network was designed and trained to construct a search space,
and then another network was generated by random sampling in the space, whose skip connections
could transmit information directly over multiple periods and capture long-term dependencies more
efficiently. Moreover, we devised a novel cell structure that required less memory and computational
power than the structures of long short-term memories (LSTMs), and finally, we performed a special
initialization scheme on the cell parameters, which could permit unhindered gradient propagation
on the time axis at the beginning of training. In the experiments, we evaluated four sequential
tasks: adding, copying, frequency discrimination, and image classification; we also adopted several
state-of-the-art methods for comparison. The experimental results demonstrated that our proposed
model achieved the best performance.

Keywords: neural architecture search; recurrent neural networks; temporal dependency;
vanishing gradient

1. Introduction

Sequence learning is a promising field for modeling sequential data [1] and is widely used in
time-series predictions, video analysis, information retrieval, etc., where models must learn from
sequences, such as those found in speech, documents, videos, etc. Using a recurrent neural network
(RNN) has become the standard approach for processing sequential data. Although RNNs have shown
remarkable performances in many areas, long-term sequence learning remains challenging due to the
gradient vanishing problem. Hence, many improved cell structures have been proposed to manage
this problem, such as long short-term memory (LSTM) [2], gated recurrent units (GRUs) [3], and the
Just Another Network (JANET) [4]. Others focus on the networks’ architectures, such as, the skip
RNN [5], dilated RNNs [6] and hierarchical multi-scale RNNs [7]. However, these networks depend
on human design, which demands a lot of expert knowledge and it is usually hard to obtain ideal
frameworks. The neural architecture search has emerged for solving this problem, which aims to find
good architectures using a controller network, such as an RNN. Investigating neural architecture search
(NAS) [8,9] methods has become an important research direction nowadays, which comprises three
parts: a search space, a search strategy, and a performance estimation strategy. A search space defines
which architecture can be discovered in principle, such as chain-structured neural networks [10]; many
different search strategies are used to explore the search space, including random search, evolutionary
methods, reinforcement learning, etc.; while performance estimation is used as a feedback to the search
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strategy. In this paper, we propose to utilize a neural architecture search for managing long-term
dependencies in sequential data. First, we designed a dense neural network to construct the search
space, which was composed of a novel resource-saving cell structure, and then we selected a network
architecture with skip connections via random sampling on the generated probabilities. Next, the
architecture was chrono-initialized and trained. The network’s high efficiency lay in three aspects:
(1) the remote skip connections directly capture long-term dependencies and can shorten the path length
of information propagation; (2) the cell structure demands minimum computational and memory
resources compared with other algorithms like JANET; and (3) chrono-initialization can alleviate the
gradient vanishing problem along the propagation path.

This paper is organized as follows. Section 2 presents related work. In Section 3, the first part
illustrates our proposed method of architecture generation, while the second part presents a special
initialization scheme that can capture the dependencies more effectively and alleviate the gradient
vanishing problem. Section 4 analyzes the advantages of our network in terms of memory and
computational power consumption, and then provides the experimental results. Section 5 gives
concluding remarks and prospects for future work.

2. Related Work

For modeling the long-term memory, numerous approaches have been proposed. As mentioned
above, some utilize new cell structures, such as the GRU and JANET, which both employ
information-latching to alleviate the gradient vanishing problem. Additionally, JANET has achieved
good performances by using the least parameters so far. In a JANET cell, only one forgetting gate is
preserved and the input gate relies on the forgetting gate, which can save half of the parameters.

Some try to exploit an appropriate initialization scheme of parameters; for instance, Tallec et al. [11]
proposed a chrono-initializer that can make the characteristic forgetting time of models lie in
approximately the same range as the dependencies in the data sequences, thus the long-term information
is much easier to be memorized using a more appropriate initial setting. The chrono-initializer is
also adopted in JANET, where the authors demonstrated that the initializing scheme can promote
performance when used in their own designed cell structures.

Others adopt alternative neural architectures to shorten the recurrent length [6] and then improve
the memory capacity. For instance, a hierarchical recurrent neural network [7] was designed to extract
temporal dependencies from multiple time scales by assuming that the dependencies are structured
hierarchically; a dilated recurrent neural network [6] was designed to utilize multi-resolution skip
connections to learn dependencies in different scales; a phased LSTM [12] applied a time gate controlled
by oscillations to update its cell states; and a skip RNN [5] learned to skip state updates at certain times,
in which binary gates were trained as an indicator for updating. The former two networks in this
category rely on multilayers to capture dependencies at different scales, which tends to incorporate
too many parameters, which requires a large amount of memory; the third model produces rhythmic
updates of the cell and the last one performs updating on arbitrary time steps, but neither of them
can connect the dependencies over remote distances. Thus, in this paper, we propose a neural
architecture with remote random connections and provide an optimization scheme based on a neural
architecture search.

3. A Highly Efficient Network with Random Skip Connections

3.1. Architecture Generation via a Neural Architecture Search

Skip connections across multiple timestamps have been demonstrated to be beneficial for solving
the gradient vanishing problem [13,14], but too many remote connections would slow the network’s
execution speed down sharply, and unfortunately, it is difficult to select them by hand. Hence, we
used a neural architecture search to manage this problem. First, we proposed a dense network that
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can provide a selection space for the skip connections, where the cell structure is based on that of the
standard LSTM [15], which is defined as:

ft = σ(W f ht + U f yt−1 + b f )

it = σ(Wiht + Uiyt−1 + bi)

gt = σ(Wght + Ugyt−1 + bg)

ot = σ(Woht + Uoyt−1 + bo)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1)

where {f, i, o}t denote the forget, input, and output gates at time t, respectively; σ denotes the sigmoid
function; ct represents the cell state; and ht indicates the output of the hidden layer. Taking the standard
meaning, our cell structure can be formulated as:

ft = σ(W f xt + b f )

it = σ(Wixt + bi)

ct = ft �
(

t−1∑
i=1

ωici

)
+ it � tanh(Wcxt + bc)

ht = ct,

(2)

where σ represents the sigmoid function, xt is an input vector at t-th time step and ωi is a combination
coefficient. In the cell structure, the forget gate ft only depends on the inputs at the current timestamp
and the input gate it only depends on the previous hidden vector, which is different from the standard
LSTM; the benefit of this difference is analyzed in Section 4. Moreover, each cell receives state vectors
from all of its counterparts at previous timestamps; this architecture consequently forms a dense
network. A linear combination of coefficients can be obtained via network training until convergence,
where a larger value of ωi indicates a stronger remote dependency associated with the corresponding
skip connection. Thus, it is reasonable to sample one connection and construct a new network. The
probabilities of sampling are generated using softmax({ωi|i = 1, 2, · · · , t− 2}), where the timestamp
t− 1 is excluded since its corresponding cell will be used in the constructed network.

The framework of this process is depicted in Figure 1 and the auto-generated network is given as:

ft = σ(W f ht + b f )

it = σ(Uiyt−1 + bi)

ct = ft � (ω1ct−1 + (1−ω1)cs) + it � tanh(Wcxt + bc)

ht = ct,

(3)

where ct means a sampled state vector. Using this method, the network establishes one remote
connection for each cell and is capable of shortening the path length of long-term dependencies. Note
that when training the dense network, we can use a small number of hidden units to decrease the
dimensions and accelerate the speed because only the dependency relationship needs to be explored.
Then, we can use the proper number of hidden units to train the constructed network, which is
concentrated on performance improvement.

3.2. Initialization of the Auto-Generated Network

The networks are trained using a gradient backpropagation algorithm to effectively capture the
dependencies that Tallec et al. [11] proposed, which use a chrono-initializer in LSTM and GRU cell
structures. Here, we adopted the initializer in our designed cell and demonstrate two aspects of
theoretical advantages: capturing dependencies and unhindered gradient propagation. We took the
auto-generated network as an example, where the coefficients were initialized as ω1 = 1 such that the
cell structure became:

ct = ft � ct−1 + it � tanh(Wcxt + bc), (4)
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which was then considered to be a leaky RNN [12]:

ct = (1− α) � ct−1 + α� tanh(Wcxt + bc), (5)

where 1− α and α represent combination coefficents and should be learned with ft and it, respectively.
By taking the first-order Taylor expansion [4], we have:

dc(t)
dt

= −α� c(t) + α� tanh(Wcxt + bc), (6)

with the inputs xt and hidden vectors centered around zero, and bc initialized to be 0, we have:

dc(t)
dt = −α� c(t)∫ t

t0

1
c(t)dc(t) = −α

∫ t
t0

dt

c(t) = c(t0)exp(−α(t− t0)),

(7)

c(t) will decrease to e−1c(t) over a time of 1
α , which is called the forgetting time and is symbolized

as T. Then, the forget and input gates in the auto-generated network should approximate 1− 1
T and 1

T ,
respectively. As T cannot be known previously, we set:

b f ∼ log(µ([1, Tmax − 1], bi = −b f (8)

where µ represents a uniform distribution. Under the conditions of zero-centered inputs and hidden
layers, we have σ(W f xt + b f ) = σ(b f ) ≈ 1 − 1

T and σ(Uiht−1 + bi) = σ(bi) ≈
1
T . This means that the

forgetting time of our network can lie in approximately the same range as the dependencies of the
sequential data.
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Moreover, the gradient used for updating one parameter can be formulated as:

∂J
∂Ui

= ∂J
∂cT

∂cT
∂Ui

+ ∂J
∂cT

∂cT
∂cT−1

∂cT−1
∂Ui

+ · · ·+ ∂J
∂cT

T∏
k=2

[
∂ck
∂ck−1

]
∂c1
∂Ui

∂ct
∂ct−1

= σ(W f xt + b f ) + Uiσ
′(Uiht−1 + bi) � tanh(Wcxt + bc),

(9)

where J symbolizes the objective function, σ(W f xt + b f ) approaches 1 when the dependency length

T is large, and other items will approximate 0. Thus, we have ∂ck
∂ck−1

≈ 1. In this case, the vanishing
gradient can be prevented remarkably well as the multiplication effect is dramatically eliminated;
meanwhile, the long-term gradient propagation can be retained.
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4. Experimental Results

In this section, we analyze the advantages of our proposed model in terms of memory and
computational power first, and then evaluate two kinds of datasets: (1) synthesized data, such as
sinusoids and sequences for adding or copying; and (2) public databases, such as the digit dataset of
MNIST, which is commonly tested in sequence learning. For the evaluation part, we selected several
methods, including those that are the state of the art, for comparison; for instance, the RNN, standard
LSTM (abbreviated as sLSTM) [15], JANET [4], Skip GRU [5], Recurrent Neural Network using rectified
linear units (iRNN) [16] and Unitary evolution Recurrent Neural Network (uRNN) [17], etc. We cite
the results directly if they were presented in the original papers. For the methods run by us, training
was performed with an Adam [18] optimizer, a batch size of 200, a learning rate of 0.001, and a gradient
clipping [19] threshold of 1. In our model, the dense network was set to have eight units in its hidden
layers in all the experiments below since the purpose of this network was to capture the dependencies
in the training data and provide a search space; therefore, a limited unit number was sufficient and
could guarantee a satisfactory training speed. The unit numbers adopted in the generated network
were different and are shown in the testing tasks.

4.1. Benefits Regarding Memory and Computational Power

The use of less computational resources is an important performance criterion for a network. We
compared our auto-generated network with the standard LSTM [15] and JANET, which comprises
only one forgetting gate and can save resources remarkably well. Assuming the standard LSTM
has n1 inputs and n2 hidden units, as declared in Westhuizen and Lasenby [4], the total number of
parameters with the LSTM and JANET were 4(n1n2 + n2

2 + n2) and 2(n1n2 + n2
2 + n2), respectively. In

our network (see Equation (3)), the numbers were as follows: ft: n1n2 + n2, it: n2
2 + n2, and others:

1 + n1n2 + n2; therefore, the total number was n2
2+2n1n2 + 3n2. Typically, the values are dominated

by the n2
2 term since the hidden units number n2 is usually much larger than the input size n1. The

memory requirements lie in approximately the same range as the parameter numbers [4]. As for
the computational power, Adolf et al. [20] demonstrated that the LSTM matrix and element-wise
multiplication occupy roughly half of the computation, and JANET requires roughly 5

6 of the amount
of LSTM. In our network, there are no matrix nor element-wise multiplication operations with the
output gate, hence the ratio to the LSTM is about

( n1
n1+n2

×
1
4 + 2n2

n1+n2
×

1
4

)
×

1
2 + 2

3 ×
1
2 = n1+2n2

8(n1+n2)
+ 1

3 ;

if n1 is small enough compared to n2, and hence ignorable, the ratio equals 3.5
6 , and if n1 ≈ n2, it roughly

equals 3.1
6 . In both cases, a large amount of computational power is saved.

4.2. Adding Task

In the adding task, the networks were fed with sequences of (value, marker) tuples with the
aim of outputting the addition of the two values marked with 1 while ignoring others with 0. The
generated sequential data included 50,000 sequences of length 120, where the values were drawn from
µ[−0.5, 0.5], where µ symbolizes a uniform distribution; the first markers were randomly placed in the
first 10% of the sequences’ length, while the second markers were placed among the ninth 10% length.
Using this method, the useful information distributed in the sequences had intervals of at least 80% of
the total length, which is beneficial for the testing of long-term memory. In the sequential data, 70%
was used as the training set, 10% for validation, and the last 20% for testing. The networks applied in
this task were trained with a single layer of 16 hidden units and 100 epochs.

The mean squared error (MSE) test results between the output and the ground truth over five
independent runs are presented in Table 1, and the corresponding mean values and standard deviations
(Std) are also presented. Our method produced the smallest MSE on average and achieved the most
stable performance due to the minimum standard deviation. Moreover, we selected the Skip GRU
from the work of Campos et al. [5] for comparison since it has been demonstrated to behave better than
others, such as the Skip LSTM. However, it still performed worse than our model when facing this task.
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Table 1. The experimental results of the adding task.

Model RNN sLSTM JANET Skip GRU Ours

MSE

4.37 × 10−4 6.43 × 10−5 6.03 × 10−5 1.11 × 10−4 3.44 × 10−5

8.55 × 10−2 9.03 × 10−5 3.91 × 10−5 4.76 × 10−3 2.83 × 10−5

3.40 × 10−3 1.23 × 10−4 3.12 × 10−5 4.44 × 10−4 2.77 × 10−5

4.79 × 10−4 1.90 × 10−4 6.64 × 10−5 3.14 × 10−4 4.93 × 10−5

2.62 × 10−3 2.41 × 10−5 4.97 × 10−5 5.20 × 10−4 4.08 × 10−5

Mean 1.85 × 10−2 9.83 × 10−5 4.93 × 10−5 1.23 × 10−3 3.61 × 10−5

Std 3.75 × 10−2 6.27 × 10−5 1.45 × 10−5 1.98 × 10−3 9.09 × 10−6

4.3. Copy Task

In the copy task, 50,000 sequences were generated and divided into training, validation, and
testing sets using the same proportion as in the adding task. The sequence included I+21 items, where
each of them indicated a category selected from {ai}

9
i=0. The first 10 items were sampled uniformly

from {ai}
8
i=0 and were intended to be copied by networks, while the following I items were filled with

zeros; the item located at I+11 was set to a9, which acted as a delimiter telling the network to start
copying; the last 10 items were also filled with zeros. Consequently, the ground truth contained I+11
items of zeros and ten items copied from the head of the input sequence. The networks aimed to
minimize the average cross-entropy of the category predictions. The results of the cross-entropy are
presented in Table 2.

Table 2. Experimental results of the copy and frequency discrimination tasks.

Model Task Copy (len = 120) Frequency (len = 120)

RNN 0.1475 86.4%

sLSTM 0.1263 81.2%

JANET 0.0886 89.8%

Skip GRU 0.1147 90.4%

Ours 0.0829 91.2%

4.4. Frequency Discrimination

The goal of the frequency discrimination task was to discriminate between sinusoids with two
kinds of periods. Different from the experimental setting in Campos Camunez et al. [5], which
generated data on the fly, our constructed dataset had 50,000 sequences drawn from sinusoids, in which
half of the sinusoids had periods P in the range of µ(1, 2) milliseconds and the other half had periods
in the range of {µ(0, 1)∪ µ(2, 3)}milliseconds [12]. Moreover, each sequence had a random phase shift
drawn from µ(0, P). As a sinusoid is a continuous signal, the amplitudes were sampled and saved
at intervals of 1.0 milliseconds, and we utilized sequences of length 120 for the discrimination. The
results of the accuracy as percentages are shown in Table 2.

4.5. Classification Using MNIST and Permuted MNIST

In this section, we evaluate the methods considered on two publicly available datasets: the MNIST
and the permuted MNIST (pMNIST) [17]. The MNIST comprises 55,000 images for training, 5000
for verification, and 10,000 for testing, where each of them is flattened from a size of 28 × 28 into
784-dimensional. The pMNIST is generated by permuting the image pixels in the MNIST and intends
to create longer-term dependencies [17].
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The means and standard deviations of the testing accuracy are presented in Table 3, where the
values are displayed in percentage form. We produced the results of our model and the results of Skip
GRU on the datasets over five independent runs, and following the experimental setup in JANET [4],
we utilized two hidden layers with 128 units for the MNIST and a single layer with the same units
for the pMNIST. Then, as for the other results, we cited the presented results directly and the total
number of layers or runs have been declared in their works; for instance, RNN, sLSTM, and JANET all
utilized two layers on the MNIST and performed ten runs independently. From Table 3, we can see
that our model achieved the best accuracy and had the most stable performance due to its minimum
standard deviations.

Table 3. Results of the testing accuracy.

Model Dataset Accuracy on MNIST Accuracy on pMNIST

RNN 10.8 ± 0.689 67.8 ± 20.18

sLSTM 98.5 ± 0.183 91.0 ± 0.518

JANET 99.0 ± 0.120 92.5 ± 0.767

Skip GRU 98.9 ± 0.099 92.7 ± 0.738

Ours 99.1 ± 0.093 93.2 ± 0.483

iRNN [16] 97.0 82.0

uRNN [17] 95.1 91.4

TANH-RNN [16] 35.0 –

LSTM [15] 98.9 –

BN-LSTM [15] 99.0 –

The test accuracies on two datasets over the epochs of training are depicted in Figure 2a,b. We
executed the programs of all the comparative methods and obtained the average results over five
runs. Regarding the results using the MNIST set, which are presented in Figure 2a, all the methods
behaved well, except for the RNN, and the Skip GRU converged the quickest in the beginning stage,
whereas our method eventually achieved the best accuracy. Figure 2b depicts the accuracy curves for
the methods used on pMNIST, which was more challenging than the MNIST; all the methods had a
slower ascent to reaching their highest accuracies. Our method obtained the best accuracy compared
with others, although its ascent curve was not the steepest. We also present the curves of different
runs in Figure 2c, from which we can see that the curves differed from each other in the ascent stage
but reached similar final maximum values. The sampled skip connections in our network partly
contributed to this phenomenon as proper connections could accelerate the network’s convergence.
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5. Conclusions

In this paper, we propose a neural network with random skip connections based on a neural
architecture search scheme. A dense network is used for the construction of the search space, and then
skip connections are generated via random sampling. To make the network computation efficient,
we designed a novel cell structure that requires less memory and computational power; moreover,
a special initialization scheme was utilized for parameter setting. In the experiments, we evaluated
the models in four kinds of tasks. Several state-of-the-art methods were adopted for comparison and
different criteria were used for evaluation. The experimental results demonstrated that our model
behaved better than the other methods used for comparison in terms of different criteria. In the
future, we plan to use reinforcement learning to search for the optimal architecture and compare the
performance with our proposed method.
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