
applied
sciences

Article

Optimizing Extreme Learning Machines Using
Chains of Salps for Efficient Android
Ransomware Detection

Hossam Faris 1,*, Maria Habib 1, Iman Almomani 2,3 , Mohammed Eshtay 4 and
Ibrahim Aljarah 1

1 King Abdullah II School for Information Technology, The University of Jordan, Amman 11942, Jordan;
mar8160671@fgs.ju.edu.jo (M.H.); i.aljarah@ju.edu.jo (I.A.)

2 Computer Science Department, Prince Sultan University, Riyadh 11586, Saudi Arabia; imomani@psu.edu.sa
3 Computer Science Department, The University of Jordan, Amman 11942, Jordan
4 Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa 13132, Jordan;

meshtay@zu.edu.jo
* Correspondence: hossam.faris@ju.edu.jo

Received: 17 April 2020; Accepted: 19 May 2020; Published: 27 May 2020
����������
�������

Abstract: Nowadays, smartphones are an essential part of people’s lives and a sign of a contemporary
world. Even that smartphones bring numerous facilities, but they form a wide gate into personal
and financial information. In recent years, a substantial increasing rate of malicious efforts to
attack smartphone vulnerabilities has been noticed. A serious common threat is the ransomware
attack, which locks the system or users’ data and demands a ransom for the purpose of decrypting
or unlocking them. In this article, a framework based on metaheuristic and machine learning is
proposed for the detection of Android ransomware. Raw sequences of the applications API calls and
permissions were extracted to capture the ransomware pattern of behaviors and build the detection
framework. Then, a hybrid of the Salp Swarm Algorithm (SSA) and Kernel Extreme Learning Machine
(KELM) is modeled, where the SSA is used to search for the best subset of features and optimize
the KELM hyperparameters. Meanwhile, the KELM algorithm is utilized for the identification and
classification of the apps into benign or ransomware. The performance of the proposed (SSA-KELM)
exhibits noteworthy advantages based on several evaluation measures, including accuracy, recall,
true negative rate, precision, g-mean, and area under the curve of a value of 98%, and a ratio of 2%
of false positive rate. In addition, it has a competitive convergence ability. Hence, the proposed
SSA-KELM algorithm represents a promising approach for efficient ransomware detection.

Keywords: Kernel Extreme Learning Machine; Salp Swarm; swarm intelligence; Android;
ransomware; machine classification

1. Introduction

Day by day the number of mobile users exceptionally increases and approximately surpasses
the 2.5 billion users worldwide [1]. Android is an operating system manufactured using a Linux-based
kernel for cellular phones. Recently, it has been considerably popular for smartphones and the Internet
of things devices. Even that, it constitutes a favorable environment for malicious applications to
disseminate. Malware is a malicious software accesses and hijacks computer or mobile systems, which
eventually could damage, steal, encrypt, or disable the system files or data. Malware software comes
in different forms such as spyware, ransomware, trojans, worms, viruses, or others. In [2], it had been
reported that a single family of mobile ransomware had a negative effect on one million Android users
in one month. Ransomware is a kind of malware software that hinders the user with the infected

Appl. Sci. 2020, 10, 3706; doi:10.3390/app10113706 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4639-516X
https://orcid.org/0000-0002-9265-9819
http://dx.doi.org/10.3390/app10113706
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/11/3706?type=check_update&version=2

Appl. Sci. 2020, 10, 3706 2 of 25

mobile from accessing their data due to either data encryption or device locking, while the attacker
waits for a ransom to decrypt the data or unlock the cellular device. Even that its source code is
available online but safeguarding against it is hard [3]. Indeed, it is a requirement to design an effective
ransomware detection approach.

In the literature, the research community developed different solutions to combat ransomware,
such as the use of honeypots, or the use of statistical methods. These approaches are facing challenges
such as the high false positive rates, or a limited capacity to detect complex, persistently-evolved
ransomware attacks [4,5] ideally before the files are encrypted or the system is damaged. Artificial
intelligence, machine learning, and deep learning tools have been elucidating very efficient abilities
in capturing hidden patterns of information and inferring useful knowledge that would be capable
of unraveling intricate attacks. Machine learning approaches that are devoted to malware detection
rely on utilizing a learning algorithm that learns discriminating characteristics of a malicious
application and successfully classifies it into a malware application or a benign application. However,
the constantly increasing number of mobile applications as well as the rapid growth of malware
families, in particular, the ransomware; have led to the requirement of developing a more resilient and
robust detection algorithm.

The performance of machine learning algorithms is significantly affected by various factors; such
as the settings of the hyperparameters or the presence of irrelevant, redundant features. Thereby,
developing an efficient malware detection algorithm requires handling the variable, high-dimensional
attributes of malwares, while setting the hyperparameters properly. A fundamental preprocessing step
during modeling a machine learning algorithm is the feature selection. Feature selection is concerned
with removing the irrelevant redundant features which deteriorate the performance of a learning
algorithm. Three major approaches are identified for performing feature selection; filter-based,
wrapper-based, and embedded-based approaches. Filter methods assess and rank the features
independently from the learning algorithm like the correlation filter. Whereas, the wrapper methods
depend on a learning algorithm to evaluate potential subsets of features and score the best one that has
the highest prediction power. Embedded approaches search for the best features during the training
procedure as in the genetic programming algorithm [6].

Feature selection is a discrete optimization problem that attempts to find an optimal value
(“optimum”) of an objective function based on the optimal subset of features. Primarily, optimization
problems can optimize the respective set of features, as well as searching for the best values of
the hyperparameters. A well-regarded type of optimization algorithms is the metaheuristic algorithms
which demonstrated an eminent ability in finding feasible solutions in a reasonable amount of time [7].

Metaheuristic algorithms are a kind of random and global search algorithms that evolved to
tackle hard-optimization problems in a feasible amount of time. For example, feature selection in
classification problems is a typical optimization problem where the objective is to find the minimal
best set of features as well as to maximize the classification performance. In other words, given
a dataset with (n) number of features yields a large search space of 2n potential features subsets,
which increases the complexity of the search process, yet becomes more challenging. Remarkably,
metaheuristics had shown prominent capacity in approaching hard-optimization problems due to
the capability of performing stochastically local and global searches, interchangeably [8–10]. Owing to
their random natural behavior, they can traverse various areas in the search space, which promotes
solutions diversity and quality. An efficient metaheuristic strategy can regularize evenly between
searching globally which is known as exploration or diversification, and locally that is referred to as
exploitation or intensification. The Exploration and exploitation search schemes are two principal
components of metaheuristic algorithms. Exploration corresponds to producing more diversified
solutions that reside in less-visited regions in the search space, as well as it avoids the trapping in
a local best solution during the search of global optima. Whereas, exploitation implies to search at
the local regions that potentially can create good solutions [7].

Appl. Sci. 2020, 10, 3706 3 of 25

Nature-inspired algorithms are a type of metaheuristics that are inspired by several natural
phenomena including the evolution and natural selection, the cooperative foraging behaviors, or
physical and chemical observations in ecological systems. Typically, nature-inspired algorithms
are widely used to solve optimization, modeling, and simulation problems in various fields of
science. Generally, they are grouped into two taxonomies; the population-based or the trajectory-based.
Population-based evolutionary algorithms are more common for performing exploration and search at
a global scale, which is contrary to the trajectory-based algorithms that are more suitable for exploiting
the current region and search at a local scale. In consequence, the Salp Swarm Algorithm (SSA) is
a relatively new population-based algorithm that is inspired by the foraging behavior of salps in
deep oceans [11]. SSA algorithm has proved efficacy in dealing with feature selection problems and
hyperparameter tuning [12,13].

In this work, we propose a hybrid machine learning model that combines a modified recent
swarm intelligent algorithm which is the SSA algorithm with Kernel Extreme Learning Machine
(KELM) for Android ransomware detection. The SSA is modified at the level of the swarm structure
and the binarization level. The SSA is used to optimize the hyperparameters of the KELM and feature
selection, simultaneously. The proposed model is developed for the task of Android ransomware
detection based on features that are extracted from 1000 Android applications’ permissions and API
calls. The goal is to detect Android ransomware with high prediction power with the minimum
possible number of features.

This paper is structured into six major sections, as follows: the next Section 2 reviews recent works
in the area of ransomware detection methods and techniques. Section 3 briefly describes the algorithms
used in the proposed detection model. Section 4 presents the proposed classification framework
covering an architectural overview, dataset description, the proposed SSA-KELM classification system,
and the evaluation measures. The experiments and results are discussed in Section 5. Finally, the main
findings and conclusion of this work are given in Section 6.

2. Related Works

In recent years, the ransomware attacks of mobile devices have grown dramatically, which lead to
a significant need for developing efficient protective and defensive solutions. However, in the literature,
several research studies have concerned with tackling the problem of ransomware detection over
cellular or mobile networks and in particular over Android mobile networks. This section discusses
thoroughly the recently proposed solutions for the detection of such a serious problem.

One of the early implementations of Android ransomware recognition is HelDroid that developed
by Andronio et al. [14]. HelDroid used three criteria for the detection of ransomware, where one of
them is a text classification technique to detect either ransomware or scareware, However, HelDroid
is an offline detection method that is computationally expensive. While in [15], implemented
a ransomware detection called GreatEatlon, which consists of multiple detection modules like the text
analysis and encryption detection methods. Even that GreatEatlon showed improved and faster
identification of Android ransomware, but it is computationally demanding and relies heavily on
the text classifier that might be broken by string encryption. Nonetheless, Song et al. [16] implemented
a system to identify ransomware and goodware by observing continuously the conducted processes.
While interestingly in [17], Gharib and Ghorbani designed a hybrid of static-based and dynamic-based
environment for the detection of ransomware on Android, which is called Dna-Droid. The static part of
the system depended on the classification of texts and images, as well as, analyzing the APIs calls and
permissions. On the other hand, the dynamic part used a deep learning approach (autoencoder neural
network) to detect the presence of ransomware by analyzing and classifying system call sequences.
However, the Dna-Droid was not tested on real ransomware samples as well as did not consider
the scalability issues. The process of scanning Android apps to conduct both static and dynamic
analysis was detailed in [18,19]. Nonetheless, Chen et al. [20] deployed a ransomware detection
system (RansomProper) that observes the execution of applications and the usage of user interface

Appl. Sci. 2020, 10, 3706 4 of 25

(UI) widgets to extract valuable features and perform real-time detection. Although, RansomProper
showed a high-performance ability in detecting the malicious encryption of files but failed to achieve
relatively low execution time.

Furthermore, [21], Canfora et al. [21] introduced the use of Hidden Markov Models (HMM) and
structural entropy for the detection of Android malware. The integration of HMM is for the recognition
of the malware application, while the structural entropy is for identifying the malware family.
Additionally, Chen et al. [22] designed StormDroid system which is a machine learning-oriented
approach for the detection of Android malware. StormDroid extracted four types of features; sequences
and dynamic features, as well as API calls and permissions. However, the authors did not consider
the influence of the number of collected features in the performance of the proposed approach.

In [23], Ahmadi et al. [23] proposed IntelliAV that is an anti-malware system for Android.
IntelliAV stands mainly on extracting a set of features (e.g. permissions, APIs, intents, and statistical
features), which then are used by a TensorForest algorithm to differentiate the malware class from
the benign class. However, the authors stated some limitations of the proposed system as the inability to
detect malware that uses javascript. Moreover, Garcia et al. [24] proposed a machine learning approach
for Android malware detection (RevealDroid). RevealDroid extracts the features from applications’
binaries and APIs, which then used by the support vector machines (SVMs) for the recognition of
the malware. Meanwhile, the classification and regression trees (CART) algorithm was used for
the identification of the malware family. Markedly, RevealDroid achieved high performance in terms
of accuracy, efficiency, and resilience. However, since this work collected a high-dimensional dataset;
studying the effect of features on the algorithm performance will be of great importance. In [25],
Cimitile et al. [25] proposed TALOS, which is a ransomware detector for Android based on formal
detection methods. TALOS used logical rules to spot the ransomware. Even though it obtained
high detection accuracy, it requires long execution time. Su et al. [26] designed an approach for
the detection of Android locker-ransomware. Where Su et al. [26] extracted six sets of discriminating
features including background behaviors like the permissions and system calls, as well as text features.
The model was trained by using an ensemble of classical machine learning algorithms, which showed
efficient performance capability.

Sharma et al. [27] created a RansomwareElite android application for the detection of ransomware.
It monitors the device for any malicious textual codes, or permissions using the natural language
processing toolkit (NLTK). However, the authors did not perform real experiments with reliable
performance results. In essence, a more recent study [28] has proposed a multi-stage framework for
android ransomware detection. The designed approach used natural language processing techniques
and machine learning to extract multiple types of features, and then detect the ransomware. In which,
the logistic regression classifier with the term frequency-inverse document frequency for feature
representation achieved the best detection accuracy. Even the authors relied only on the accuracy
measure to compare the algorithms, but other evaluation measures, as well as the time requirements,
are essential.

In [29], Scalas et al. proposed a learning-based approach for the detection of ransomware for
Android devices. In which, the proposed approach relied on the application programming interface
(APIs) information to recognize ransomware attacks and the generic malware. An R-PackDroid
package is implemented which showed competitive results in comparison with previously suggested
solutions. Even that it merely depends on the APIs information, which might affect its reliability in
case of large-scale and online detection frameworks. Remarkably, Alzahrani and Alghazzawi [30]
performed a survey of deep learning techniques for the detection of Android ransomware. The authors
stated that there are very few research studies concerned with the deployment of deep learning during
the period (2014-2019). In addition, most of the used deep learning models were based on autoencoders
and deep belief networks. However, roughly speaking, most of them have long execution time which
makes them impractical. Alsoghyer and Almomani [31,32] conducted a machine learning approach
for Android ransomware detection. Mainly, the features extracted statistically (API calls, permissions,

Appl. Sci. 2020, 10, 3706 5 of 25

operation code) and dynamically (user interaction and phone events). Using several evaluation metrics
to assess the used machine learning methods; the results showed very effective accuracy (96.5%) in
comparison with state-of-the-art methods.

Since ransomware attacks are exponentially growing with various characteristics; a more resilient
approach is a demand to overcome their variable signatures. In [33], a two-level system is implemented
for the detection of Android ransomware. The first level tracks Windows API calls sequences to build
a Marcov model that captures the attributes of ransomwares. Whereas, the second level is a random
forest classifier to detect the ransomware. Impressively, the proposed approach achieved promising
results regarding the false positive rate and the false negative rate. However, the authors did not report
how much the proposed approach is demanding, where the resources and time requirements are
fundamental for automatic ransomware detection. In [34], Abdullah et al. proposed a machine learning
approach for dynamically capturing the features and detecting Android ransomware. The features
were dynamically extracted and analyzed using systems calls, where the results exhibited a very low
false positive rate.

3. Preliminaries

3.1. Salp Swarm Algorithm

The SSA algorithm is a stochastic swarm intelligence algorithm developed by Mirjalili et al.
in [11]. Essentially, the SSA algorithm inspired by the foraging behavior of salps and their structural
spiral-chains in deep oceans. Salps are barrel-shaped marine organisms that return to the family of
Salpidae. They gather in a chain like a spiral or a wheel, swim synchronously, and cooperate to find
the food. Figure 1 shows an example of a chain of salps. The striking insight of the SSA algorithm is
the collective and foraging behavior of salps swarm in the sea.

Figure 1. A representation of the SSA algorithm, which shows the leader and follower salps.

Typically, the SSA is a metaheuristic and global optimizer that capable of handling complex,
constrained, and unconstrained problems. As well as, it showed promising performance in various
fields, such as feature selection [12,13,35–37], optimization problems in engineering [9,11], and other
applications [10,38]. A salp’s chain consists of a leader salp and follower salps. The leader salp is
responsible for searching for a food source, while the follower salps, progressively, follow the leading
salp for the sake of reaching a food source.

The SSA algorithm is a search and population-based metaheuristic algorithm. Certainly, search
algorithms have a known search space, a search criterion, and an evaluation function. Hence, the SSA
algorithm has a population of salps (individuals) that represent potential random solutions and belong
to a predefined search space. A population of salps (X) is composed of a leader salp and (N − 1)

Appl. Sci. 2020, 10, 3706 6 of 25

follower salps, which is expressed by a 2-dimensional matrix as in Equation (1). (N) is the number of
salps in the swarm, and (d) is the dimension of a salp.

Xi =

x1

1 x1
2 . . . x1

d
x2

1 x2
2 . . . x2

d
...

... . . .
...

xN
1 xN

2 . . . xN
d

 (1)

The objective of the salps is to find the optimal source food (F). In order to formulate
the mathematical model of salps chain; each salp is characterized by a position vector. Thus, the leader
salp (x1

j) is illustrated by Equation (2), where (Fj) is the position of the source food in the jth dimension,
(c2) and (c3) are two random numerical values in the range [0,1], and (ubj, lbj) are the upper and lower
bounds of the dimension, respectively.

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
c3 ≥ 0.5

Fj − c1
((

ubj − lbj
)

c2 + lbj
)

c3 < 0.5
(2)

whereas, (c1) is a controlling coefficient and decreases over the course of iterations. Typically, (c1) plays
a crucial role in balancing between diversification and intensification, which hinders the algorithm
from trapping in local optima or experiencing a premature convergence. Equation (3) describes
the behavior of (c1) parameter, in which, (l) is the current iteration, and (L) is the predefined total
number of iterations.

c1 = 2e−(
4l
L)2

(3)

The follower salps adjust their positions iteratively as expressed in Equation (4), where i ≥ 2.
Algorithm 1 presents the pseudo-code of the SSA algorithm.

xi
j =

1
2
(xi

j + xi−1
j) (4)

The SSA algorithm initializes the population by the randomly generated salps. Thereby, each salp
in the chain is assessed based on an objective (or fitness) criterion. The procedure of the algorithm,
in an iterative way, modify the positions of all salps (Equation (4)), evaluate them, and assign the fittest
salp as the source food (F). At each iteration, the parameter (c1) is modified, while each dimension of
the leader salp is adjusted regarding Equation (2). Eventually, the algorithm stops when a terminating
condition is satisfied.

Appl. Sci. 2020, 10, 3706 7 of 25

Algorithm 1 Pseudo-code of the SSA algorithm

Create an initial population of salps xi(i = 1, 2, . . . , N)
while (Stopping condition is not satisfied) do

Measure the fitness values of all salps
Set the food source F
Update c1 using Equation (3)
for (each salp (xi)) do

if (i == 1) then
Adjust the leader by Equation (2)

else if then
Adjust the followers by Equation (4)

end if
end for
Update each salp to obey the ubj and lbj bounds
Remove the salps that are out of the search space.

end while
Return F

3.2. Kernel Extreme Learning Machine

The KELM was proposed by Huang et al. [39] as a type of the classical Extreme Learning Machine
(ELM) [40]. The main motivation for ELM was to overcome the drawbacks of traditional gradient
descent methods for training feedforward neural networks (FFNN). ELM incorporates three steps
to train the FFNN algorithm. It starts by initially assigning the input weights and the hidden biases
of the FFNN randomly, then it calculates the hidden layer output matrix and finally, in one step it
determines the output weights using Moore–Penrose (MP) generalized inverse. Recently, there have
been studies that utilized other approaches such as evolutionary computing for training ELMs and
optimizing their structures. In the KELM algorithm, Huang et al. utilized the idea of the kernel
function in ELM.

The output of ELM with L hidden neurons can be given as shown in Equation (5), knowing that
we have a training sample set (xi, ti), i = 1, 2, · · · , N.

fK(x) =
L

∑
j=1

β jhj(x, wj, bj) = h(x)β = Hβ (5)

where β = [β1, β2, · · · , βL]
T is the output weight vectors that connect the hidden layer to the output

layer. (wj) is the weights vector that connects the (jth) hidden node to the input layer, and (bj) is
the bias of the (jth) node. (h(x)) is the output matrix of the hidden layer with respect to the input
(x). ELM algorithm tries to minimize the training error and at the same time minimizes the norm of
the output weights β. The optimization function of ELM can be expressed as follows.

Minimize : ‖β‖c1
p + C ‖Hβ− T‖c2

q (6)

In which, (c1, c2) > 0, (p, q) = 1, 2, · · · , ∞. (C) is the factor that controls the trade-off between
the training error and the norm of the output weights. While, (H) is the matrix of the hidden
layer (Equation (7)).

H =

 h(x1)
...

h(xN)

 =

 h1(x1) . . . hK(x1))
...

...
h1(xN) . . . hK(xN))

 (7)

Appl. Sci. 2020, 10, 3706 8 of 25

whereas, T = [t1, t2, · · · , tN]
T is the target matrix of the training data. The output of ELM based

on N (number of training samples) and L (the number of hidden neurons) is defined as presented
in Equation (8).

f (x) =

{
βHT(I

C + HHT)−1T, when N ≤ L
β(I

C + HT H)−1HTT when N > L
(8)

In the case that the user does not know the feature mapping matrix (H), a kernel matrix of ELM,
which is called kernel function mapping can be used by applying Equations (9–10).

ΩELM = HHT : ΩELMi,j = h(xi).h(xj) = K(xi, xj) (9)

where K(xi, xj) is the kernel function. By applying Equations (8) and (9), Equation (5) can be written as
in (Equation (10)).

f (x) = Hβ = HHT(HHT +
I
C
)−1T =

K(x, x1)
...

K(x, xN)

(Ω +
I
C

)−1
T (10)

The kernel function that is commonly used in the KELM is the radial basis function (RBF), also known
as the Gaussian kernel function. RBF is defined as follows:

K(x, y) = exp(−γ ‖x− y‖2), γ > 0 (11)

The two crucial parameters are the regularization factor C and the kernel parameter γ. C is used
to get better adjustment between the error minimization and the model complexity to enhance
the generalization performance. γ is used to define the mapping from the input space to the high
dimensional feature space.

The general structure of the KELM is shown in Figure 2

f(x)

x1

x2

x3

xN

K(x1,x)

K(x2,x)

K(xL,x)

Output Neuron

Hidden Neuron

Input Neuron

Output LayerHidden LayerInput Layer

Figure 2. A structural representation of the KELM algorithm.

4. Proposed Framework for Android Ransomware Detection

This section exhibits the developed classification framework that targets ransomware over
Android devices. The section introduces a general architecture for ransomware detection, describes
the collected dataset, presents the design issues of the proposed classification approach (SSA-KELM),
as well as its procedure. In addition, it points out to the utilized evaluation measures.

Appl. Sci. 2020, 10, 3706 9 of 25

4.1. Overview

Providing ransomware detection service to Android devices is one of the main stages of the overall
ransomware detection system. However, this research focuses on building an efficient predictive model
to detect ransomware apps with high accuracy. Building the predictive model is a core component
of any ransomware detection system. In this work, building a smart predictive model (SSA-KELM)
will be executed over the cloud, not on the local Android devices. Only the app info (such as
the application’s hash) will be sent from the mobile to the Ransomware detection system in order to
classify the respective app as benign or ransomware. In case the app was tested before by our detection
system, then its classification result will be found and sent immediately to the Android device. But
if this is the first time this app is tested, then it will be decompiled and parsed to extract its features
and pass them to the proposed classifier which is the role of our proposal in this paper. The result
of detection will be sent to the Android device and at the same time will be logged in the system’s
classification database for future use by other users’ requests. Therefore, the detection service will be
lightweight as it is only called by the Android mobile devices as shown in Figure 3.

App ID Class
57ba23b78c1fd7c8ac4bf325f6f40d9a
40483bc4bde173d62b7955a53d1e2693

Benign
Ransomware

...

Classification Database

App classification
request

Classification
results

SSA-KELM
classifier

Decompiling

Parsing

Features Extraction
(APIs calls, Android

permissions)

Preprocessing

Training
Dataset

Figure 3. An illustration of an intelligent Android ransomware detection system.

4.2. Datasets Description and Preparation

Primarily, the constructed dataset encompasses features of the application permissions and API
calls that were obtained by a reverse engineering procedure. Executable mobile applications come
in the Android package kit (.apk) extended file, which is a package file that is used by end-users
to install mobile applications on the Android operating system. Mainly, it contains all the needed
files during development including classes, resources, assets, certificates, libraries, and the manifest
file. Two essential types of files are needed to extract the features of permissions and the API
calls; which are the (AndroidManifest.xml) and (“.smali”) files. The (AndroidManifest.xml) file is
a fundamental file that consists of all the permissions that were used by the corresponding application.
Whereas, the (“.smali”) files acquired by disassembling (baksmaling) the binary executable files
(“.dex”). The Apktool software is a tool that automates the process of unpacking the APK files and
attains the manifest and Smali files [41].

The creation of the dataset was performed by collecting 1000 (.apk) files from benign and
ransomware mobile applications. The benign applications were downloaded from the Google Play
store, whereas, the ransomware apps were collected from HelDroid project, RansomProper project,
Virus Total, and Koodous tools [14,20,42,43]. In order to unpack the AndroidManifest files and Smali
files from all used applications; the Apktool (version = 2.3.1) was employed. Afterward, regarding
the permissions features, the extracted files were scanned to report the presence of 131 types of
permissions. The objective of the Android permissions is to inform the user and to have an acceptance

Appl. Sci. 2020, 10, 3706 10 of 25

to use sensitive data from the user’s mobile or access some system features (such as the camera).
Typically, by default, the applications do not have permission to execute actions that might have
a negative effect on the user, the system, or the installed mobile applications. Such permissions
prevent the applications from accessing a user’s emails, keeping the device awake, or writing on
the files of other applications. All the permissions which are (131) were scanned from the thousand
AndroidManifest files and documented for further analysis. However, (16) permission features were
removed from the original dataset since they are not used by the benign or ransomware classes.

Regarding the features from the API calls, they were considered from the Oreo Android release
(Android API 27), which contains (199) API packages. All the respective applications were decompiled
using the Apktool and the files with (“.smali”) extension were extracted. The “.smali” files were
scanned to find the occurrences rate of API calls from both benign and ransomware applications; hence
to be handled as distinguishing features. For instance, examples of used features of the API calls
are Android Animation and Android Content. In consequence, the total dataset accounts for (1000)
applications; where (500) are benign and (500) are ransomware. The total number of features is (314) of
both the permissions and the API calls.

Frequency analysis is performed on the extracted features to indicate the occurrences of features
with regard to the benign and ransomware classes, Figure 4 shows the frequency of permission
features in benign and ransomware applications, where the features with a frequency less than or
equal to 2% were eliminated. Obviously, the top four features observed by benign applications
were the access_network_state, Internet, wake_lock, and write_external_storage, even that they were
highly witnessed by the ransomware apps, too. On the other hand, the receive_boot_completed,
and the read_phone_state were considerably occurred by the ransomware applications. Nonetheless,
the figure shows (6) features used slightly just by the benign apps, while (12) features used only by
the ransomware.

Figure 5 presents the frequency of the API features in benign and ransomware applications.
In which, the features with frequency less than or equal to 30% were removed. Notably,
android-app, android-content, android-os, java-io, and java-lang were the most frequent features
in ransomware apps.

Appl. Sci. 2020, 10, 3706 11 of 25

Figure 4. A bar chart depicts the permission features occurrences in the benign and ransomware classes.
The features with less than 2% occurrences were discarded.

Appl. Sci. 2020, 10, 3706 12 of 25

Figure 5. A bar chart shows the API features occurrences in the benign and ransomware classes.
The features with less than 30% occurrences were discarded.

4.3. SSA-KELM Classifier

4.3.1. Design Issues

In this subsection, three main issues related to the design of the proposed SSA-KELM
are discussed, which are the representation of the salps (solutions), the fitness function, and
the binarization mechanism.

Appl. Sci. 2020, 10, 3706 13 of 25

• Salp representation: each salp chain is represented as a binary vector. The length of this vector is
d + 16 elements, where d is the number of features in the training data. The 16 additional elements
are used to encode the values of the hyperparameters of the KELM; C and γ, where 8 elements
are used for each hyperparameter. Five elements are allocated for the whole number part and
three elements are allocated for the fractional part. Figure 6 depicts an example of a salp’s vector.

 	8f1 f2 fn

The dataset features Cost Gamma

f3 	1C2C1 C8 	2

Figure 6. A vector representation of an individual salp that encompasses the features of the dataset,
the hyperparameters of the KELM algorithm (C, γ). (n) is the total number of features, (C1 − C8)
represent the digits of the cost value, and (γ1 − γ8) are the digits of the γ value.

• Fitness function: to evaluate the effectiveness of the salps, the elements of each salp are decoded as
described previously and a KELM algorithm is built based on the selected features and the values
of the hyperparameters obtained by the decoding process. The resulted KELM is trained on
the training folds from the training dataset, then the accuracy rate which is the ratio of the correctly
classified instances to the total number of instances in the training data is calculated. The accuracy
rate is combined with the number of the selected features as shown in Equation (12) and returned
to main procedure of the SSA as the fitness of the salp. SF in Equation (12) is the selected number
of features, while F is the total number of features.

Fitness = α · (1− Accuracy) + (1− α) · SF
F

(12)

• Binarization mechanism: In the proposed approach, we utilize a sigmoidal s-shaped function
to covert the SSA to a binary optimization algorithm. The s-shaped function is one of
the most successful variants of transfer functions used in the literature in binary optimization
algorithms [44]. The conversion process by the transfer functions is based on the probability
assigned by them for each element in the solution vector. When the probability is greater than
one, the element is rounded to 1, and vice versa as given in Equation (13). This process was first
described by Kennedy and Eberhart [45] to convert the classical Particle Swarm Optimization to
a binary optimizer.

T(xi
j(t)) =

1

1 + exp−xi
j(t)

(13)

where xi
j is the j− th element in x solution in the j− th dimension, and t is the current iteration.

The rounding process of the elements of the solution vector x is made as given in Equation (14).

xd
i (t + 1) =

{
0 If rand < T(xd

i (t))

1 If rand ≥ T(xd
i (t))

(14)

where Xd
i (t + 1) is the i− th element at dth dimension in X solution, T(xd

i (t)) is the probability
given in Equation (13).

4.3.2. Procedure

The main procedure of the SSA-KELM can be summarized in the following steps:

1. Initialize a random swarm of N binary salps.

Appl. Sci. 2020, 10, 3706 14 of 25

2. Evaluate the fitness of each salp as described in the previous subsection by relying on the fitness
achieved by the KELM.

3. Modify the position of the leading salp as in Equation (2).
4. Modify the position of the followers as in Equation (4).
5. Guarantee that all salps located inside the search space specified by the upper and lower bounds.
6. Return to step (2) if the termination criterion is not satisfied. Otherwise, return the best solution

that encompasses the optimal subset of features and the best hyperparameters values.

Figure 7 describes the steps of the proposed approach.

Apply binarization mechanism
using transfer

function

Initialize a random population
of salps

Evaluate the fitness of salps

Update the position of the
leader salp

 MaxIts?
Yes

Update the positions of the
followers salps

NO

KELM

SSA algorithm

Training
Data

Parameters initialization Decode salps

0 1 1 1 0 10

Features Cost Gamma

Training Data
with selected
set of features

10 folds
cross-
validation

Return
Fitness
(Eq.11)

Return the best salp [best set
of features, and optimal C,]

convert from binary
to real numbers

0.5
x

y

Figure 7. A structural representation of the methodology flow that describes the process of searching
for the optimal set of features and the best hyperparameters.

4.4. Model Evaluation Metrics

Algorithm evaluation is a significant aspect of developing a successful classification model.
Relying on one evaluation criterion might indicate a very good model, while in terms of another,
it might reflect a deterioration in the algorithm performance capability. Typically, to properly measure
the performance of the algorithms in handling the variable characteristics of the data, and for a fair
comparison, as well; several evaluation metrics were considered.

Herein, assessing the algorithm’s ability in distinguishing between benign data or malware,
generally, depends on a set of metrics derived from the confusion matrix. The confusion matrix
reveals the potential of the algorithm in truly classifying the data with respect to its actual labels.
It is expressed by four types of counts (given a binary classification problem); the true positive (TP),
the true negative (TN), the false positive (FP), and the false negative (FN), as represented by Table 1.
Therefore, this paper incorporates the accuracy, recall, false positive rate, specificity, precision, g-mean,
and the area under the curve (AUC) for measuring the performance of the proposed algorithms.
Mainly, those metrics are defined as follows by considering that the positive class is the class of interest,
which is the Ransomware class.

The accuracy is the ratio of the total number of classifications that were correctly labeled, it is
shown by Equation (15).

Accuracy =
TN + TP

TN + TP + FN + FP
(15)

Appl. Sci. 2020, 10, 3706 15 of 25

Table 1. Confusion matrix.

Actual

Ransomware Benign

Predicted Ransomware TP FP
Predicted Benign FN TN

Recall expresses the true positive rate, and formulated by the percentage of the relevant instances
that have been identified over the total number of relevant instances. It is presented by Equation (16)

Recall =
TP

TP + FN
(16)

False positive rate (FPR) also known as the false alarm rate, which is the ratio of classifying
the benign instances as ransomware instances (Equation (17)).

FPR =
FP

FP + TN
(17)

True negative rate (TNR) or the specificity, it exhibits the strength of the classifier in distinguishing
the negatively classified instances of data (benign) from the positively labeled (ransomware) instances.
The TNR is defined as in (Equation (18)).

TNR =
TN

TN + FP
(18)

Precision is the proportion of the relevant data instances over the retrieved instances. It is
mathematical description is given by Equation (19).

Precision =
TP

TP + FP
(19)

The geometric mean (G-mean) represents the mean of the recalls in case of the multiple classes, or
the mean of the recall and specificity in case of the of binary classification, it is defined by Equation (20).

G−mean =

√
TP

TP + FN
× TN

TN + FP
(20)

The area under the curve (AUC) is defined as the area under the receiver operating characteristic
(ROC) curve. AUC is deemed as a metric for evaluating the ability of the classifier in discriminating
between the respective classes. Thereby, obtaining a high value of AUC is an indication of the power
of the model in differentiating between the ransomware and the benign classes. Whereas, in the case
of low AUC value that is approaching (0,) it means that the classifier identifies the benign data
as ransomware, and counterintuitively, the ransomware as benign. The AUC is described by
Equation (21).

AUC =
(1− FPR)× (1 + Recall)

2
+

FPR× Recall
2

(21)

5. Experiments and Results

The performed experiments consist mainly of two parts; analysis of the influence of leaders’ salps
percentage, and the analysis of the SSA’s swarm size. Thereby, the best SSA variant with the KELM
was employed for the ransomware detection and compared with conventional machine learning
algorithms. In addition, a feature importance analysis has been applied to reinforce the distinguishing
features of the ransomware applications. The best-obtained results in subsequent sections are marked
with a bold typeface.

Appl. Sci. 2020, 10, 3706 16 of 25

5.1. Experiments Setup

This sub-section presents the environmental and experimental settings for all conducted
experiments. Where they were implemented using the Matlab R2016b platform over Windows
server 2012. In which, the random-access memory (RAM) is 64 GB, the processor is Intel(R) Xeon(R)
CPU E5-2609 v4, while the speed of the two processors is 1.70 GHz.

Initially, the proposed approach is evaluated using 10 folds cross-validation. Since the adopted
SSA algorithm is used as wrapper-based feature selection; it used the KELM as a learning algorithm
where its hyperparameters (C and γ) were optimized using SSA. The KELM is responsible for assessing
the fitness of solutions; therefore, it returns the weighted-sum of (1-accuracy) and the ratio of features,
as given by Equation (12).

The SSA algorithm is a stochastic swarm-based algorithm as mentioned before; hence, diminishing
the randomness effect of the algorithm requires executing it multiple times. Herein, (10) independent
runs were performed with the maximum number of iterations is 50. In essence, the population size
and the number of leaders are controlling parameters of the SSA that play a vital role in escalating
the performance of the algorithm or degrade it if not set properly. The following subsections present
a sensitivity analysis for selecting the best values of the leaders’ ratio and the population size.

5.2. Effect of Leaders Ratio

In this experiment, we study the effect of the ratio of the number of leaders to the swarm
size on the performance of the proposed SSA-KELM. Tables 2 and 3 show the evaluation results of
the SSA-KELM at different ratios of leaders. From the results, it can be seen that the best results in terms
of most evaluation measures are obtained at a ratio of 50%. Remarkably, it can be noticed that all ratios
achieved approximately a high reduction rate which is around (44%), while the difference between
the reduction rates is slight. For instance, when the leaders’ ratio is (20%), the algorithm obtained
the maximal reduction rate of 49%, where the number of features was 160 out of 314. However, there
is no obvious relation between the reduction rate and the number of leaders; this is demonstrated
at the ratio (80%) where the reduction rate was 44.8%. In contrast, at leaders’ ratio (50%), even that
the algorithm achieved the minimal reduction rate, but it markedly exhibited the best performance as
it is shown by Table 3.

Table 2. The effect of the ratio of leaders on the reduction rate and the average number of
selected features.

Ratio of Leaders Number of Leaders Reduction Rate Average No. of Features

80% 40 44.8% 173.3

66% 33 45.2% 177.2

50% 25 29.9% 220.3

32% 16 45.8% 170.1

24% 12 46.4% 168.2

20% 10 49.0% 160.0

In this table, average accuracy, recall, FPR, TNR, Precision, G-mean, and AUC were reported at
different ratios of leaders. At 50% of leaders’ ratio, the SSA performed the best results and gained
superior results in terms of accuracy, TNR, precision, g-mean, and AUC, which was (98%), which is
reinforced by reasonable standard deviation values. Additionally, in regards to the FPR, SSAL=50%
accomplished the minimal false positive rate (0.020), whereas at the other ratios from the highest to
the lowest, they were 0.032, 0.032, 0.034, 0.024, and 0.028, respectively. Notably, regarding the recall, at
all ratios, the recall was relatively close, while ratio (80%) achieved the highest recall value (98.4%).
Overall, the SSA algorithm performed the best in terms of all evaluation metrics when the proportion

Appl. Sci. 2020, 10, 3706 17 of 25

of leaders was half the swarm. As the number of leaders has tested next is to study the influence of
the SSA population size.

Table 3. The performance evaluation of the SSA algorithm at different ratios of leaders, in terms of
average accuracy, recall, FPR, TNR, precision, g-mean, and AUC.

Ratio of Leaders Accuracy Recall FPR TNR Precision G-mean AUC

avg ± std avg ± std avg ± std avg ± std avg ± std avg ± std avg ± std

80 % 0.976 ± 0.018 0.984 ± 0.021 0.032 ± 0.023 0.968 ± 0.023 0.969 ± 0.023 0.976 ± 0.018 0.976 ± 0.018

66 % 0.969 ± 0.018 0.970 ± 0.019 0.032 ± 0.036 0.968 ± 0.036 0.969 ± 0.032 0.969 ± 0.018 0.969 ± 0.018

50 % 0.980 ± 0.022 0.980 ± 0.021 0.020 ± 0.028 0.980 ± 0.028 0.980 ± 0.027 0.980 ± 0.022 0.980 ± 0.022

32 % 0.972 ± 0.015 0.978 ± 0.018 0.034 ± 0.025 0.966 ± 0.025 0.967 ± 0.024 0.972 ± 0.016 0.972 ± 0.015

24 % 0.971 ± 0.016 0.966 ± 0.025 0.024 ± 0.021 0.976 ± 0.021 0.976 ± 0.020 0.971 ± 0.016 0.971 ± 0.016

20 % 0.976 ± 0.016 0.980 ± 0.016 0.028 ± 0.029 0.972 ± 0.029 0.973 ± 0.027 0.976 ± 0.017 0.976 ± 0.016

Figure 8 shows a box plot presentation of the error rate of the SSA algorithm at the six different
ratios of leaders. Obviously, when the ratio (L) is 50%, the algorithm obtained the minimal error rate.

SSAL=80% SSAL=66% SSAL=50% SSAL=32% SSAL=24% SSAL=20%

��������

����

����

����

����

����

����

����

���	

��
��
���
��

Figure 8. Box plots presentation of the SSA algorithm at different ratios of leaders.

In terms of the convergence rate, Figure 9 presents the convergence plot by depicting the obtained
fitness value of the SSA algorithm at each iteration of the algorithm and at six ratios of the leaders.
In which, the y-axis is the fitness, and the x-axis is the iterations. It is clear from the plot that when
(L=20%), the algorithm experiences a premature convergence rate, that converges very fast to the best
fitness value at the eleventh iteration and then remains constant over the rest of iterations. Whereas,
the other variants of leaders’ ratios exhibited different trends of convergence over the course of
iterations reaching relatively optimal minimal fitness values.

Appl. Sci. 2020, 10, 3706 18 of 25

Figure 9. Convergence curves of the SSA algorithm at different ratios of leaders.

5.3. Effect of Swarm Size

It has been long argued that population-based metaheuristic algorithms can achieve reasonable
good results compared to other search algorithms if they have a good-enough large population size
with enough time. However, the swarm or the population size parameter has a considerable influence
on the performance of evolutionary algorithms whether in promoting or degrading it. This experiment
is conducted to study and substantiate the effect of the swarm size on the performance of the proposed
SSA-KELM. Hence, the swarm size of the SSA has been investigated at different values; 50, 60, 70, 80, 90,
and 100, as discussed in Tables 4 and 5. Table 4 illustrates the effect of the population size on the features
reduction rate. It is clear from the table that increasing the population size not necessarily results in
a better reduction rate. To illustrate, when the population size is 50, the obtained average number of
features was 220.3 which yields nearly a 30% reduction in the features. However, at the swarm size
of 100, it is obvious that the number of features dramatically decreased with the best-accomplished
reduction rate that is 52%. On the other hand, when the swarm size was 60, 70, 80, and 90, the average
number of features was higher than what is obtained by the swarm size of 100. For example, at
the swarm size of (80), the average number of features was 172.3 and the reduction rate was 49.5%.
Even that at all experimented swarm sizes, the SSA algorithm has decreased the number of features
relatively efficiently that justified with a prominent performance results as represented by Table 5.

Table 4. The influence of several population sizes of the SSA algorithm in terms of reduction rate and
average number of features.

Population Size Reduction Rate Average No. of Features

50 29.9% 220.3

60 46.7% 167.3

70 51.0% 153.8

80 45.1% 172.3

90 49.5% 158.7

100 52.0% 150.7

Appl. Sci. 2020, 10, 3706 19 of 25

Table 5 compares the average performance of the SSA algorithm at different population sizes
regarding the accuracy, recall, FPR, TNR, precision, g-mean, and AUC with the average standard
deviation values. It is obvious from the table that the superior performance obtained when the swarm
size was 50. At which, the accuracy, TNR, precision, g-mean, and AUC were 98%, while the FPR
was the minimal that accounted for 0.020 with standard deviation (0.028). Examining the accuracy
results, when the swarm size is greater than 50, the algorithms achieved high results with the slight
difference among all, where they accomplished 97.3%, 97.0%, 96.7%, 97.5%, and 97.4%, in ascending
order. Regarding the recall, even that the SSA algorithm at the size (50) achieved 98%, but at sizes (90,
100) the SSA algorithm could perform 98.2%, while in contrast, the SSA at (90, 100) performed worst
in terms of FPR. For instance, when the size=90, the FPR=0.032, and when it was 100, the FPR=0.034,
however, at 50, the FPR=0.020. Nonetheless, regarding the TNR, the SSA at (50, 60, 70, 80, 90, and
100) achieved 98%, 96.8%, 97%, 96%, 96.8%, and 96.6%, respectively. Similarly, at the precision, at
50, the algorithm achieved the best (98%), whereas, at 80, it achieved the minimal precision (96.1%).
Additionally, at both g-mean and AUC, the best performance attained at swarm size of (50) with
a performance of (98%) and with feasible standard deviation, however, (80) achieved the minimum,
which is (96.7%). To sum up, the SSA algorithm accomplished striking results with a considerable
feature reduction ratio. To support the superiority of the proposed SSA-KELM, it has been compared
with well-known classical machine learning algorithms as given by the following sub-section.

Table 5. The performance evaluation of the SSA at (50%) of the ratio of leaders at different population
sizes, in terms of average accuracy, recall, FPR, TNR, precision, g-mean, and AUC.

Population Size Accuracy Recall FPR TNR Precision G-Mean AUC

avg ± std avg ± std avg ± std avg ± std avg ± std avg ± std avg ± std

50 0.980 ± 0.022 0.980 ± 0.021 0.020 ± 0.028 0.980 ± 0.028 0.980 ± 0.027 0.980 ± 0.022 0.980 ± 0.022

60 0.973 ± 0.015 0.978 ± 0.018 0.032 ± 0.027 0.968 ± 0.027 0.969 ± 0.026 0.973 ± 0.015 0.973 ± 0.015

70 0.970 ± 0.012 0.970 ± 0.014 0.030 ± 0.030 0.970 ± 0.030 0.971 ± 0.029 0.970 ± 0.013 0.970 ± 0.012

80 0.967 ± 0.016 0.974 ± 0.019 0.040 ± 0.016 0.960 ± 0.016 0.961 ± 0.016 0.967 ± 0.016 0.967 ± 0.016

90 0.975 ± 0.007 0.982 ± 0.022 0.032 ± 0.010 0.968 ± 0.010 0.969 ± 0.009 0.975 ± 0.007 0.975 ± 0.007

100 0.974 ± 0.018 0.982 ± 0.018 0.034 ± 0.034 0.966 ± 0.034 0.968 ± 0.032 0.974 ± 0.019 0.974 ± 0.018

Figure 10 describes the error rate at various swarm sizes of SSA. Markedly, when the swarm
size (P) is 50, the SSA(P=50) outperformed the other variants and attained the best error rate results,
while when (P = 80), the algorithm performed the worst performance regarding the error rate.

SSAP=50 SSAP=60 SSAP=70 SSAP=80 SSAP=90 SSAP=100

��������

����

����

����

����

����

����

����

���	

��
��
���
��

Figure 10. Box plots presentation of the SSA algorithm at different population sizes.

Appl. Sci. 2020, 10, 3706 20 of 25

Nonetheless, Figure 11 shows the convergence plots of the SSA algorithm at various population
sizes. It can be noticed that at all the experimented population sizes, the SSA algorithm exhibits
similar, good convergence rates that eventually could reach such best fitness values. For instance,
SSA(P=50) at iteration (22), it reached a minimal fitness of (0.00059), while at SSA(P=100), the algorithm
optimally minimized the fitness to (0.00045). Generally speaking, the SSA algorithm has a successful
convergence trend toward optimal solutions over the course of iterations with slight difference in
relation to the population size effect.

Figure 11. Convergence curves of the SSA algorithm at different population sizes.

5.4. Sensitivity Analysis of Fitness Parameters

Table 6 presents a sensitivity analysis of the (α) parameter of the fitness function of the SSA
algorithm. In Equation (12), the fitness constitutes a weighted-sum of the accuracy and the ratio of
the selected subset of features. The weighted-sum approach is a classical methodology to handle
a multi-objective optimization problem as a single-objective problem. Where the aim is to optimize
the weighted-sum of the utilized objectives. Herein, two objectives were considered; the accuracy, and
the ratio of the selected features. In which, the accuracy is weighted by the (α) parameter, and the ratio
of selected features was weighted by the multiplier (1-α). The coefficient (α) has a controlling behavior
for selecting the optimal salp solution, which quantifies the importance of the corresponding objectives.
However, there is no guarantee that the randomly chosen value of (α) will produce the optimal solution;
therefore, tuning the (α) parameter is imperative.

Table 6. The effect of alpha parameter on the fitness of the SSA algorithm.

Evaluation Metrics α

0.001 0.01 0.05 0.1 0.2

Accuracy 0.980 0.972 0.972 0.971 0.970

Recall 0.980 0.980 0.974 0.980 0.980

FPR 0.020 0.036 0.030 0.038 0.040

TNR 0.980 0.964 0.970 0.962 0.960

Precision 0.980 0.965 0.970 0.963 0.962

G-mean 0.980 0.972 0.972 0.971 0.970

AUC 0.980 0.972 0.972 0.971 0.970

Average No. of features 220.3 224 154.9 154.9 143.1

Reduction rate 29.9% 28.7% 50.7% 50.7% 54.4%

Appl. Sci. 2020, 10, 3706 21 of 25

Table 6 shows performance of the SSA algorithm at five different values of (α), where it belongs to
{0.001, 0.01, 0.05, 0.1, 0.2}. It is clear from the table that when α = 0.001, it obtained the best results in
terms of accuracy, recall, TNR, precision, g-mean, and AUC, which all attained (98.0%). The minimal
FPR value was obtained at a percentage of (2%). Although, when α = 0.001, the algorithm could
achieve drastically better performance. In contrast, in terms of the reduction rate of features, when
α equals 0.2, the algorithm achieved extremely better. So, the best reduction rate is obtained when
(α = 0.2) with percentage of 54.4%. Whereas, when (α = 0.001, 0.01), it achieved a reduction rate of
29.9%, and 28.7%, respectively.

5.5. Comparison Results

In this subsection, the performance of the SSA-KELM is compared with the performance of
a set of well-known classifiers; which are Naive Bayes (NB), Decision Tree C4.5 (J48), very powerful
ensemble classifiers which are Random Forests (RF), AdaBoost, Bagging, and XGBoost. In addition,
it is compared with another well-established swarm intelligence algorithm which is the particle swarm
optimization (PSO). For which the inertia weight (w = [0.2, 0.9]), the constraints (c1, c2) are set to value
(2), and the maximum velocity is (6). The hyperparameters of XGBoost are optimized using a grid
search algorithm, which determines a range of values (search space) for each hyperparameter. The grid
search is used to optimize a five hyperparameters of XGBoost; which are the minimum-child-weight:
[2, 5, 8], gamma: [0.1, 1, 1.5], number-of-estimators: [50, 120, 323], learning-rate: [0.3, 0.5, 0.9], and the
maximum-depth: [6, 10, 15]. The XGBoost-Grid is evaluated based on 10-folds cross-validation,
where the best results obtained at gamma = 0.1, min-child-weight = 2, number-of-estimators = 50,
learning-rate = 0.9, and the maximum-depth = 6. Mainly, all classifiers evaluated using 10-folds
cross-validation and implemented using Weka workbench [46].

The results of this comparison are shown in Table 7. The evaluation results show that
the SSA-KELM outperforms all the other classifiers and swarm intelligence methods regarding
the majority of the measures. Although some classifiers like Bagging and AdaBoosting showed
very competitive results, they used the full set of features without any reduction like in the SSA-KELM.
Moreover, the SSA-KELM outperformed the PSO-KELM in terms of all evaluation measures indicating
its powerful capability. Therefore, the SSA-KELM has merits over conventional machine learning
classifiers, where it exhibited efficacy in performance and in minimizing the selected subset of features.

Table 7. Comparison of the performance of the SSA-KELM with conventional machine learning
algorithms in terms of various evaluation metrics.

Algorithm Evaluation Measures

Accuracy Recall FPR TNR Precision G-Mean AUC

SSA-KELM 0.980 0.980 0.020 0.980 0.980 0.980 0.980

PSO-KELM 0.972 0.978 0.034 0.966 0.967 0.972 0.972

NB 0.942 0.926 0.042 0.958 0.957 0.942 0.942

J48 0.967 0.976 0.042 0.958 0.959 0.967 0.967

RF 0.974 0.984 0.036 0.964 0.965 0.974 0.974

Adaboost 0.972 0.976 0.032 0.968 0.968 0.972 0.972

Bagging 0.974 0.990 0.042 0.958 0.959 0.974 0.974

XGBoost-Grid 0.965 0.971 0.029 0.971 0.961 0.965 0.971

Features Importance

Feature importance analysis has a fundamental role in identifying to what extent the features
play a part in the predictive power of the model. In this regard, the frequencies of selected subsets of

Appl. Sci. 2020, 10, 3706 22 of 25

features generated by the SSA algorithm were utilized to investigate the importance of features. In
other words, as the SSA algorithm generates a new subset of features at each iteration; the frequency of
the feature selection for all features is calculated over the number of iterations. Hence, the importance
(FI) of a feature (i) is given by Equation (22), where L is the maximum number of iterations.

FI(i) =
∑L

l=1 occurrences(i)
L

(22)

Figure 12 presents the most important features of the API calls and permissions while training
the SSA-KELM at the ratio of leaders (L=50%), and swarm size (P=50). In sub-figure (a), the plot shows
the most and least occurred permissions features. In which, the most important features were reported
when the importance > 0.25, while the least important, were reported when the importance < 0.1. It is
obvious from sub-figure (a) that WAKE_LOCK, BODY_SENSORS, and the SET_PROCESS_LIMIT were
the most important features. These permissions allow the ransomware attackers to stop the processors
and screens from sleeping, or to grant them access for collecting personal data such as the sensors’
readings. Such information could be targeted by ransomwares to be encrypted or locked as they are
considered private and important. Additionally, as ransomware runs processes behind the scene, it
might modify the state of the SET_PROCESS_LIMIT permission to change the maximum number of
concurrently running processes. Whereas, sub-figure (b) represents the most important API features.
Where org-xml-sax, java-util-prefs, java-util-jar, android-telephony, and android-system were the most
contributed features to the prediction efficacy. These API calls allow the attacker to read user-related
data that existed in different formats including the Extensible Markup Language (XML) format,
and the Java Archive format (Zip format). Also, they allow ransomwares to monitor basic phone
information including network type, connection state, and manipulating phone number strings which
could be an indication of invasion [31]. Moreover, “andorid.system” API can grant the attackers access
to low-level system functionalities, which makes them more powerful due to the ability to access
the underlying primitives used to implement high-level APIs.

Frequency Frequency

0 0 0 0 0 0 0 0 0 p p 0 p 0

0 0 � � "' "' w 0 0 � � ;._, "'

0 (JI 0 (JI 0 (JI 0 0 (JI 0 (JI 0 (JI 0

CHANGE_ WIFI_ STATE org-xmlpull-v1-sax2

INTERNET
org-xml-sax

REQUEST_DELETE_PACKAGES
javax-security-auth-callback

javax-crypto-spec
WAKE_LOCK java-util-prefs

READ_CALENDAR java-util-jar

GET _ACCOUNTS java-util

RECORD_AUDIO java-sql

ADD_ VOICE MAIL
java-nio-file

USE_SIP
java-nio-charset

java-nio
BODY_ SENSORS java-lang-annotation

RECEIVE_MMS java-awt-font

CAPTURE_AUDIO_OUTPUT com-android-internal-util

CAPTURE_ VIDEO_ OUTPUT android-view-animation

MASTER_CLEAR
android-text-style

android-test
REBOOT

android-telephony

SET_ANIMATION_SCALE android-system

SET _PROCESS_LIMIT android-service-dreams

STATUS_BAR android-os

UPDATE_DEVICE_STATS
android-net-rip

android-media-session -
WRITE_APN_ SETTINGS

android-hardware-usb
BIND_INPUT_METHOD android-bluetooth

BIND_ VOICE_INTERACTION android-appwidget

BIND_WALLPAPER android-a pp-assist

android-app-admin

(a) (b)

Figure 12. A representation of the most important features at SSA(L=50%),(P=50). The reported features
are attained when the importance (>0.25) and (<0.10). Sub-figure (a) shows the importance of
the permission features, while sub-figure (b) depicts the importance of the API features.

Appl. Sci. 2020, 10, 3706 23 of 25

6. Conclusions and Future Works

In recent years, we have been witnessing the emergence of a dangerous threat attacking
the computer and mobile systems, which is the ransomware. Since ransomware results in serious
damage for the users’ files and system; developing a robust ransomware detection approach is
imperative. A hybrid swarm-intelligent machine learning approach is proposed in this work
for Android ransomware detection based on two types of features: application permissions and
API packages’ calls. In the proposed hybrid approach, Salp Swarm Algorithm is utilized for
optimizing the hyperparameters of Kernel Extreme Learning Machine and performing feature
selection, simultaneously. The experiments based on the collected data show that the proposed
model outperforms very powerful classifiers in terms of detection power. Further analysis of
the selected features by the model shows that some features were much frequent than others, like
WAKE_LOCK, and java-util-jar, meaning that they have higher contribution than other features for
enhancing the prediction capability of the proposed approach. However, in terms of further potential
work, having a larger dataset promotes the effectiveness of the learning algorithms and increases
the chance of capturing more insightful characteristics of the ransomware, which elevates the algorithm
detection capacity. Therefore, employing advanced machine learning such as deep learning becomes
more feasible.

Author Contributions: Conceptualization; H.F. and I.M.; Methodology, H.F. and M.E.; Validation, H.F. and M.E.,
M.H. and I.M.; Data curation, I.M.; Writing original draft preparation, H.F., M.H., M.E. and I.M.; Writing review
and editing, H.F. and I.A.; Supervision H.F.; Project administration, I.M. and H.F. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding. The APC is funded by Prince Sultan University.

Acknowledgments: We would like to acknowledge the Security Engineering Lab (sel.psu.edu.sa) team and Prince
Sultan University for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. O’Dea, S. Number of Smartphone Users Worldwide from 2016 to 2021. Available online: www.Statista.com
(accessed on 28 February 2020).

2. Perlroth, N. Android Phones Hit by Ransomware. Available online: www.nytimes.com (accessed on 22
March 2020).

3. Malwarebytes-Labs.. All About Malware. Available online: www.malwarebytes.com (accessed on 24 March
2020).

4. Herrera Silva, J.A.; Barona López, L.I.; Valdivieso Caraguay, Á.L.; Hernández-Álvarez, M. A Survey
on Situational Awareness of Ransomware Attacks—Detection and Prevention Parameters. Remote Sens.
2019, 11, 1168. [CrossRef]

5. Ameer, M. Android Ransomware Detection using Machine Learning Techniques to Mitigate Adversarial
Evasion Attacks. Ph.D. Thesis, Capital University, Columbus, OH, USA, 2019.

6. Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell.
1997, 97, 245–271. [CrossRef]

7. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Beckington, IK, 2010; ISBN 9781905986088.
8. Al Shorman, A.; Faris, H.; Aljarah, I. Unsupervised intelligent system based on one class support vector

machine and Grey Wolf optimization for IoT botnet detection. J. Ambient Intell. Humaniz. Comput. 2019, 1–17.
[CrossRef]

9. Messaoud, R.B. Extraction of uncertain parameters of single and double diode model of a photovoltaic panel
using Salp Swarm algorithm. Measurement 2020, 154, 107446. [CrossRef]

10. Abbassi, R.; Abbassi, A.; Heidari, A.A.; Mirjalili, S. An efficient salp swarm-inspired algorithm for parameters
identification of photovoltaic cell models. Energy Convers. Manag. 2019, 179, 362–372. [CrossRef]

11. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm:
A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

www.Statista.com
www.nytimes.com
www.malwarebytes.com
http://dx.doi.org/10.3390/rs11101168
http://dx.doi.org/10.1016/S0004-3702(97)00063-5
http://dx.doi.org/10.1007/s12652-019-01387-y
http://dx.doi.org/10.1016/j.measurement.2019.107446
http://dx.doi.org/10.1016/j.enconman.2018.10.069
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002

Appl. Sci. 2020, 10, 3706 24 of 25

12. Hegazy, A.E.; Makhlouf, M.; El-Tawel, G.S. Feature selection using chaotic salp swarm algorithm for data
classification. Arab. J. Sci. Eng. 2019, 44, 3801–3816. [CrossRef]

13. Ala’M, A.Z.; Heidari, A.A.; Habib, M.; Faris, H.; Aljarah, I.; Hassonah, M.A. Salp Chain-Based
Optimization of Support Vector Machines and Feature Weighting for Medical Diagnostic Information
Systems. In Evolutionary Machine Learning Techniques; Springer: Berlin, Germany, 2020; pp. 11–34.

14. Andronio, N.; Zanero, S.; Maggi, F. Heldroid: Dissecting and detecting mobile ransomware. In Research in
Attacks, Intrusions, and Defenses, Proceedings of the 18th International Symposium on Recent Advances in Intrusion
Detection, Kyoto, Japan, 2–4 November; Springer: Berlin, Germany, 2015; pp. 382–404.

15. Zheng, C.; Dellarocca, N.; Andronio, N.; Zanero, S.; Maggi, F. Greateatlon: Fast, static detection of mobile
ransomware. In Security and Privacy in Communication Networks, Proceedings of the 12th International Conference,
Security and Privacy in Communication Systems, Guangzhou, China, 10–12 October 2016; Springer: Berlin,
Germany, 2016; pp. 617–636.

16. Song, S.; Kim, B.; Lee, S. The effective ransomware prevention technique using process monitoring on
android platform. Mob. Inf. Syst. 2016, 2016. [CrossRef]

17. Gharib, A.; Ghorbani, A. Dna-droid: A real-time android ransomware detection framework. In Network and
System Security, Proceedings of the 11th International Conference on Network and System Security, Helsinki, Finland,
21–23 August 2017; Springer: Berlin, Germany, 2017; pp. 184–198.

18. Almomani, I.; Khayer, A. Android Applications Scanning: The Guide. In Proceedings of
the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia,
3–4 April 2019; pp. 1–5.

19. Almomani, I.; Alenezi, M. Android Application Security Scanning Process. In Telecommunication
Systems; Alimi, I.A., Monteiro, P.P., Teixeira, A.L., Eds.; IntechOpen: Rijeka, Croatia, 2019; Chapter 3.
doi:10.5772/intechopen.86661. [CrossRef]

20. Chen, J.; Wang, C.; Zhao, Z.; Chen, K.; Du, R.; Ahn, G.J. Uncovering the face of android ransomware:
Characterization and real-time detection. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1286–1300. [CrossRef]

21. Canfora, G.; Mercaldo, F.; Visaggio, C.A. An hmm and structural entropy based detector for android
malware: An empirical study. Comput. Secur. 2016, 61, 1–18. [CrossRef]

22. Chen, S.; Xue, M.; Tang, Z.; Xu, L.; Zhu, H. Stormdroid: A streaminglized machine learning-based system
for detecting android malware. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, Xi’an, China, 30 May–3 June 2016; pp. 377–388.

23. Ahmadi, M.; Sotgiu, A.; Giacinto, G. Intelliav: Toward the feasibility of building intelligent anti-malware on
android devices. In Machine Learning and Knowledge Extraction, Proceedings of the International Cross-Domain
Conference for Machine Learning and Knowledge Extraction, Reggio, Italy, 29 August–1 September 2017; Springer:
Berlin, Germany, 2017; pp. 137–154.

24. Garcia, J.; Hammad, M.; Malek, S. Lightweight, obfuscation-resilient detection and family identification of
android malware. ACM Trans. Softw. Eng. Methodol. 2018, 26, 1–29. [CrossRef]

25. Cimitile, A.; Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Talos: No more ransomware victims with
formal methods. Int. J. Inf. Secur. 2018, 17, 719–738. [CrossRef]

26. Su, D.; Liu, J.; Wang, X.; Wang, W. Detecting Android locker-ransomware on chinese social networks.
IEEE Access 2018, 7, 20381–20393. [CrossRef]

27. Sharma, G.; Johri, A.; Goel, A.; Gupta, A.; others. Enhancing RansomwareElite App for Detection of
Ransomware in Android Applications. In Proceedings of the 2018 Eleventh International Conference on
Contemporary Computing (IC3), Noida, India, 2–4 August 2018; pp. 1–4.

28. Poudyal, S.; Dasgupta, D.; Akhtar, Z.; Gupta, K. A multi-level ransomware detection framework using
natural language processing and machine learning. In Proceedings of the 14th International Conference on
Malicious and Unwanted Software (MALCON), Nantucket, MA, USA, 2–4 October 2019.

29. Scalas, M.; Maiorca, D.; Mercaldo, F.; Visaggio, C.A.; Martinelli, F.; Giacinto, G. On the effectiveness of system
API-related information for Android ransomware detection. Comput. Secur. 2019, 86, 168–182. [CrossRef]

30. Alzahrani, N.; Alghazzawi, D. A Review on Android Ransomware Detection Using Deep Learning
Techniques. In Proceedings of the 11th International Conference on Management of Digital EcoSystems,
Limassol, Cyprus, 12–14 November 2019; pp. 330–335.

31. Alsoghyer, S.; Almomani, I. Ransomware Detection System for Android Applications. Electronics 2019, 8, 868.
[CrossRef]

http://dx.doi.org/10.1007/s13369-018-3680-6
http://dx.doi.org/10.1155/2016/2946735
https://doi.org/10.5772/intechopen.86661
http://dx.doi.org/10.5772/intechopen.86661
http://dx.doi.org/10.1109/TIFS.2017.2787905
http://dx.doi.org/10.1016/j.cose.2016.04.009
http://dx.doi.org/10.1145/3162625
http://dx.doi.org/10.1007/s10207-017-0398-5
http://dx.doi.org/10.1109/ACCESS.2018.2888568
http://dx.doi.org/10.1016/j.cose.2019.06.004
http://dx.doi.org/10.3390/electronics8080868

Appl. Sci. 2020, 10, 3706 25 of 25

32. Alsoghyer, S.; Almomani, I. On the Effectiveness of Application Permissions for Android Ransomware
Detection. In Proceedings of the 6th Conference on Data Science and Machine Learning Applications
(CDMA), Riyadh, Saudi Arabia, 4–5 March 2020; pp. 94–99.

33. Hwang, J.; Kim, J.; Lee, S.; Kim, K. Two-Stage Ransomware Detection Using Dynamic Analysis and Machine
Learning Techniques. Wirel. Pers. Commun. 2020, pp. 1–13. [CrossRef]

34. Abdullah, Z.; Muhadi, F.W.; Saudi, M.M.; Hamid, I.R.A.; Foozy, C.F.M. Android Ransomware Detection
Based on Dynamic Obtained Features. In Recent Advances on Soft Computing and Data Mining, Proceedings of
the Fourth International Conference on Soft Computing and Data Mining, Melaka, Malaysia, 22–23 January 2020;
Springer: Berlin, Germany, 2020; pp. 121–129.

35. Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H.; Zhang, Y.; Mirjalili, S. Asynchronous accelerating
multi-leader salp chains for feature selection. Appl. Soft Comput. 2018, 71, 964–979. [CrossRef]

36. Faris, H.; Mafarja, M.M.; Heidari, A.A.; Aljarah, I.; Ala’M, A.Z.; Mirjalili, S.; Fujita, H. An efficient binary salp
swarm algorithm with crossover scheme for feature selection problems. Knowl. Based Syst. 2018, 154, 43–67.
[CrossRef]

37. Ahmed, S.; Mafarja, M.; Faris, H.; Aljarah, I. Feature selection using salp swarm algorithm with chaos.
In Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm
Intelligence—ACM, Phuket, Thailand, 24–25 March 2018; pp. 65–69.

38. Zhang, J.; Wang, Z.; Luo, X. Parameter estimation for soil water retention curve using the salp swarm
algorithm. Water 2018, 10, 815. [CrossRef]

39. Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and
multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2012, 42, 513–529.
doi:10.1109/TSMCB.2011.2168604. [CrossRef]

40. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural
networks. In Proceedings of the IEEE international joint conference on neural networks (IEEE Cat. No.
04CH37541), Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 985–990.

41. Winsniewski, R. Android–Apktool: A Tool for Reverse Engineering Android Apk Files. 2012. Available
online: http://ibotpeaches.github.io/Apktool/ (accessed on 26 May 2020).

42. VirusTotal Malware Intelligence Services. (n.d.). Retrieved April 2020. Available online: https://www.
virustotal.com/learn/ (accessed on 20 March 2020).

43. Koodous. Retrieved April 2020. Available online: https://koodous.com/ (accessed on 20 March 2020).
44. Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary particle swarm optimization.

Swarm Evol. Comput. 2013, 9, 1–14. [CrossRef]
45. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of

the IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and
Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108.

46. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software:
An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11277-020-07166-9
http://dx.doi.org/10.1016/j.asoc.2018.07.040
http://dx.doi.org/10.1016/j.knosys.2018.05.009
http://dx.doi.org/10.3390/w10060815
https://doi.org/10.1109/TSMCB.2011.2168604
http://dx.doi.org/10.1109/TSMCB.2011.2168604
http://ibotpeaches. github. io/Apktool/
https://www.virustotal.com/learn/
https://www.virustotal.com/learn/
https://koodous.com/
http://dx.doi.org/10.1016/j.swevo.2012.09.002
http://dx.doi.org/10.1145/1656274.1656278
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Preliminaries
	Salp Swarm Algorithm
	Kernel Extreme Learning Machine

	Proposed Framework for Android Ransomware Detection
	Overview
	Datasets Description and Preparation
	SSA-KELM Classifier
	Design Issues
	Procedure

	Model Evaluation Metrics

	Experiments and Results
	Experiments Setup
	Effect of Leaders Ratio
	Effect of Swarm Size
	Sensitivity Analysis of Fitness Parameters
	Comparison Results

	Conclusions and Future Works
	References

