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Abstract: Specific physiological changes during pregnancy exert excessive strain on muscles such as
the erector spinae (ES) and contribute to low back pain (LBP). The link between LBP and sit-to-stand
(STS) motion has previously been investigated through motion analysis using an inertial measurement
unit (IMU); however, the factors leading to LBP have not been revealed. Moreover, clinicians require
an effective assessment method for reducing the physical burden on pregnant women. Therefore,
the investigation of the relationships between motion, muscle load calculated from musculoskeletal
model for pregnancy, and the severity of LBP during STS in pregnant women was conducted.
Furthermore, this study proposes a method for assessing motion and muscle load during STS using
an IMU. The relationship among (i) motion evaluation indices and ES muscle torque, and (ii) the
ES torque and the intensity of LBP during STS was investigated. As the results, significant positive
correlations were observed between (i) the angular velocity of the torso in the sagittal plane and
ES torque, and (ii) two types of evaluation indices of ES torque and intensity of LBP. The proposed
method by an IMU attached to the torso could effectively assess ES load related to LBP during STS in
pregnant women.

Keywords: musculoskeletal model; pregnancy; motion analysis; muscle load evaluation;
low back pain

1. Introduction

Lumbopelvic pain (LPP), which includes low back pain (LBP) and pelvic girdle pain, are common
discomforts experienced by women during pregnancy [1]. Symptoms can have a negative impact on
the quality of life of the mother in both prenatal and postnatal stages [2,3]. Body weight gain, especially
in the abdominal area, and a shift in the position of the body’s center of gravity due to fetal growth
are distinct changes experienced during pregnancy and a common risk factor of LPP. In addition,
an expanded gravid uterus can stretch and weaken the abdominal muscles [4]. These changes in the
physical and musculoskeletal system affect the posture and movement of pregnant women and impose
strain on muscles and joints, which contributes to pain at various locations such as the lower back [5,6].
For example, the sit-to-stand (STS) motion is a cause of LBP during pregnancy [7]. Hence, physical
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methods are required to manage musculoskeletal disturbances during pregnancy, together with the
coaching of proper movement to avoid physical loading [8].

Clinical motion analysis typically employs visual observation as the dominant means of assessment;
however, more quantitative and objective motion assessments are required to obtain meaningful
results [9]. For example, the inertial measurement unit (IMU) allows objective motion measurement
without limitations related to the measurement environment or disturbances in motion. Therefore,
the IMU has been widely used to analyze motions including gait in a straight path and STS [10,11].
Our previous research investigated the differences in torso motion between pregnant women with
and without LPP during STS using an IMU [12]. In the study, an IMU was attached to the lower
torso, and angular velocity data in the sagittal plane were used to assess the flexion and extension
movements of the trunk. Some key indices were then proposed, that is, maximum peak, minimum
peak, and peak-to-peak (PP). The maximum peak represents forward motion of the torso, and the
minimum peak represents backward motion, with larger values indicating faster motion. PP is the
difference between the maximum and minimum peaks and therefore represents a shift in motion from
forward to backward. The results of the study revealed that the maximum peak was greater in the LPP
group than in the non-LPP group. However, the role of other motion characteristics as risk factors of
pain, such as additional stress on lumbar muscles due to muscle load, remains unclear.

Physical movement therapy based on assessments of motion analysis and muscle load, such as
the exerted muscle force, increases the effectiveness of physical therapy for relieving pain. Evaluation
of the erector spinae (ES) muscle force is particularly useful for managing LBP because muscle load
and fatigue are two of the main risk factors associated with LBP during pregnancy [1]. Although the
musculoskeletal model can be used to estimate muscle force, it is difficult to estimate the co-contraction
activation of agonist and antagonist muscles, such as the ES and rectus abdominis (RA) [13,14].
To address these issues, we previously proposed a method for estimating muscle torque from the
musculoskeletal model using a genetic algorithm (GA) for pregnant women [15].

STS motion assessment should consider the ES muscle load in order to manage LBP in pregnant
women. However, the link between muscle load during STS motion and LBP has not yet been revealed
for pregnant women. Therefore, the aim of this study was to propose a method for assessing motion
and muscle load during STS motion using an IMU. A secondary aim was to investigate the relationship
among STS motion, muscle load, and LBP during pregnancy using the proposed assessment method.

2. Materials and Methods

2.1. Study Design

This is a cross-sectional study. Body motion analysis of STS motion in pregnant women was
performed to investigate the relationship among STS motion, muscle load, and LBP. The motion
condition was determined using pitch angular velocity data obtained from an IMU attached to the
lower trunk of pregnant participants with LBP to evaluate their specific motions [16]. Subsequently,
musculoskeletal models tailored to each participant in the study were constructed, and the muscle
torque was estimated using a GA. Finally, the different relationships were investigated using the value
of motion indices, estimated ES muscle torque, and intensity of LBP during pregnancy. The STROBE
checklist of this study is Table S1.

2.2. Participants

The study protocol was approved by the Ethics Committee (Kishokai Medical Corporation:
approval no. 2015_002). Pregnant women who were undergoing a prenatal health checkup in an
obstetrics and gynecology clinic were invited to participate in this study. The purpose and protocol of
this study were explained to all participants by the examiner. Written informed consent was obtained
from each participant, including consent to participate and to publish the findings. Few studies
have focused on the biomechanics of pregnant women and, moreover, studies that investigated the
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relationships between biomechanical factor and some complaints by motion analysis for pregnancy
could not be found. Then, some studies that focused on the biomechanics of pregnant women in
Japan were referenced for determining sample size [17,18]. In each study, eight pregnant women
were investigated. Therefore, the sample size of this study was decided as the same number of these
previous studies, and thus 11 women were recruited, taking account of the case of dropout. Hence,
a group of 11 pregnant women participated in this study. The average duration of pregnancy was
34.5 weeks (standard deviation = 2.0 weeks), and all participants had singleton pregnancies. None of
the participants suffered from any serious neurological or orthopedic conditions, particularly those
associated with LBP, such as intervertebral disk displacement or spinal cord injury. Before the STS
motion analysis, it was confirmed that the participants had not suffered any external injuries that could
influence the analysis. Additionally, physical characteristics (age, height, body mass at the time of
experiment, body mass gained during pregnancy) were obtained via a questionnaire. Personal data of
the participants are listed in Table 1.

Table 1. Personal characteristics of the study participants.

Total With LBP During
Trial Fast

Without LBP
During Trial Fast p-Value

(n = 11) (n = 9) (n = 2)

Age (years) 30.0 (3.1) 29.4 (2.9) 32.5 (3.5) 0.218
Height (cm) 156.2 (5.8) 156.6 (6.4) 154.5 (0.7) 0.582

Body mass (at the time of
experiment) (kg) 62.1 (10.9) 61.2 (9.7) 65.8 (20.2) 0.727

Body mass (before pregnancy) (kg) 50.8 (7.3) 49.7 (6.1) 55.5 (13.4) 0.582
Duration of pregnancy (weeks) 34.5 (2.0) 34.6 (1.9) 34.5 (3.5) 0.999

Number of childbirths
before the experiment 0.7 (0.6) [0–2] 0.8 (0.7) [0–2] 0.5 (0.7) [0–1] 0.727

Number of women with LBP 1

before pregnancy (percentage (%))
7 (63.6) 5 (55.6) 2 (100.0) N/A

Average intensity of LBP
during trial fast 2.5 (1.9) [0–6] 3.1 (1.5) [1–6] 0 N/A

1 LBP: low back pain; Values are mean values (standard deviation) with [range], except for the number of women
with LBP before pregnancy. p-values are the result of the Mann–Whitney U test.

2.3. Sensors for the STS Motion Experiment

Motion, force, and electromyographic (EMG) signal data were obtained using the protocol
of our previous study to calculate joint torque and estimate muscle torque [15]. An IMU
(TSND151, ATR-Promotions Co., Ltd., Kyoto, Japan) was used to obtain joint angles and segment
orientations during the STS motion analysis. The IMU contains tri-axial gyroscopes, accelerometers,
and magnetometers and has been used for human motion analysis [19,20]. In addition, the IMU can be
used in synchronization with the EMG electrodes that were used in this study. The participants were
assessed using six IMUs. Five IMUs were bilaterally attached to a fixed belt, 10 cm above the lateral
malleolus, 10 cm above the patella, and at the level of the L4 spinous process in order to measure
the bilateral motion of the shank segments, thigh segment, and lower trunk (pelvis), respectively
(Figure 1a). Another IMU was attached to the level of the C7 spinous process using skin tape to
measure the motion of the upper trunk. A Nintendo Wii balance board (WBB; Nintendo, Kyoto, Japan)
was used to measure the vertical reaction forces (Figure 1b). WBB has been recently proposed as an
easily available device for measuring ground reaction force and center of pressure (CoP) displacement
and an inexpensive alternative to force plates, which are common in laboratories for the assessment
of posture and balance [21,22]. To measure the reaction force from the chair and the ground reaction
force, respectively, one WBB was placed on the chair, and the other was placed under the participant’s
feet. Four surface EMG electrodes (SE-C-AMP-H100, ATR-Promotions Co., Ltd., Kyoto, Japan) were
used to measure muscle activation of the ES and RA muscles (Figure 1a). Electromyography electrodes
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were bilaterally placed in parallel with the fiber orientation of the RA and longissimus (part of the
ES) muscles.
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2.4. Participant-Specific Musculoskeletal Models

Full-body musculoskeletal models were constructed for each pregnant woman using Biomechanics
of Bodies (BoB; Marlbrook Ltd., Bromsgrove, United Kingdom). BoB is a package containing the
musculoskeletal model of a human being, 36 skeletal segments, and over 600 muscle units [23].
BoB’s biomechanical software is based on the MATLAB and Simulink environments [24]. Torque in
the joints corresponding to the observed motion and force data was calculated by inverse dynamic
analysis using BoB, and the muscle torque was estimated using an optimization approach [25,26].
The following process was then undertaken to develop musculoskeletal models for each subject in
accordance with our previously proposed procedure [15].

A skeletal model previously modified to the average body type of Japanese women was used [15].
Then, the total body height and weight were adjusted for each participant. Furthermore, the muscular
model was also changed because the abdominal muscles were stretched and weakened during
pregnancy by an enlarged gravid uterus [15]. In the previous study, a model of the stretched RA muscle
was constructed using information from an anthropometric dimensions database for pregnant women
and measurements of the three height levels of waist girth for the participants. Thus, the same three
height levels of waist girth were measured for each participant in this study. Weight gain, which is a
characteristic change during pregnancy, was also considered for each participant.

2.5. Experimental Settings and STS Motion Conditions

An overview of the experimental settings is given in Figure 1b. For the motion task, participants
with IMUs attached to their body segments were asked to start from a standing position in front of a
chair. Then, they were instructed to sit down and stand up using the chair as a support. On the basis
of the results of our previous study [12], two types of STS motion, characterized by different values of
maximum peak angular velocities of the torso in the sagittal plane (slow and fast), were conducted
three times by each participant. The difference between the two types of STS motion was the forward
incline speed of participant trunks. The incline speed was checked and instructed by the examiner.
The participants moved at the prescribed velocities and performed the STS motion without using
hands. The participants were asked to put their arms along their sides. The maximum peak represents
the maximum velocity of forward trunk movement during STS motion (an example of the indices from
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our previous research is shown in Figure A1). Specifically, the participants were instructed to move at
low angular velocities for “trial slow” and at high angular velocities for “trial fast”, so that the IMU
attached to the lower trunk would indicate a value similar to that given in Table A1. The order of the
type of motion was determined randomly. A rest period of approximately 10 s was fixed between each
motion. An armless, backless chair was used and adjusted to the height of the participant’s knee in the
condition with WBB, in accordance with previous research [27]. The STS movement was performed by
the participants without their shoes on, and the medial borders of their feet were placed 10–15 cm apart.

2.6. Assessment of LBP

During the first visit, the occurrence of LBP in the year prior to the pregnancy was investigated.
Then, the participants were asked about the presence or absence of LBP during the STS motion analysis
in every trial. If the participants reported LBP, the pain intensity was assessed using an 11-point
numerical rating scale (NRS) [28], where the low and high endpoints represent the extremes of “no pain”
and “worst pain”, respectively. On the basis of the ratings, NRS > 0 was defined as the condition for
the presence of LBP. The NRS score during STS motion was obtained for each participant.

2.7. Processing of Measured Data

Signal processing of IMU data during STS motion analysis was performed using MATLAB Release
2016a (MathWorks, Release 2016a, Natick, MA, USA). The coordinate system in the experimental
settings is shown in Figure 2. First, the segment orientation and joint angles of each segment
were calculated as motion data using IMU data and the same protocol as our previous study [15].
The calculated orientations of body segments and joint angles are shown in Figure 2. The direction of
the axis of each IMU was determined as the line of each segment.
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The joint angle was defined as 0◦ for an anatomically upright posture. The vertical axis in the
sagittal plane was used as the reference axis; thus, it was defined as 0◦ to calculate the inclination angle.
Joint angles were calculated using Equation (1), where θ and φ correspond to the symbols used in
Figure 2.

θ1 = ϕ1

θ2 = 180 + ϕ2 −ϕ1

θ3 = ϕ3 −ϕ2

θ4 = ϕ4 −ϕ3

(1)

Next, the ground reaction forces were calculated using data from the WBBs (body mass acting on
the WBBs, kg) under the foot and hip. Thus, the force (N) in each trial was calculated using Equation (2).
Then, these motion and force data were inputted to the BoB package with the modified musculoskeletal
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models for pregnant women in order to calculate the joint torque. Finally, the optimization process in
BoB was performed using the joint torque to estimate the muscle torque in the model.

F = ma (2)

Here, F is the reaction force (N), m is the body mass measured by the WBB (kg), and a is the
acceleration due to gravity (m/s2).

2.8. Co-Contraction Activation Estimation Using GA

Muscle torque as an index of muscle load was calculated from obtained data in this study.
An overview of the system used to estimate muscle torque is presented in Figure 3. For each trial,
muscle torque was estimated by considering co-contraction activation using a GA according to the
following process. The procedure for estimating RA and ES muscle torque is fundamentally the
same as that in our previous study [15]. First, Equation (3) was used to estimate the muscle torque.
The equation is a mathematical model proposed by Oyong and Jauw [29] that converts EMG signals to
muscle torque:

τest(k) = x1E(k)x2 + x3E(k)x4 (3)

where k is the sampling time, τest (k) is the estimated torque, E(k) is the processed EMG signal, and
xj represents the associated model parameters. Accordingly, the torque of each RA and ES muscle,
as well as the sum of the two muscle torque results, were calculated using Equation (4):

τest_RA(k) = x1ERA(k)
x2 + x3ERA(k)

x4

τest_ES(k) = x5EES(k)
x6 + x7EES(k)

x8

τest(k) = τest_RA(k) + τest_ES(k)

(4)

where ERA is the processed EMG signal of RA, and EES is the processed EMG signal of ES.
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Trial conditions in the GA process such as population size were the same as those in our previous
study [15]. Subsequently, the joint torque during STS motion was calculated using the motion, force,
and skeletal data via inverse dynamic calculation in the pregnant musculoskeletal model, and the
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value of torque was used as the actual torque in the GA. These values enabled us to estimate the
muscle torque via an optimized GA using Equation (5). The fitness values (VFS) in this equation can be
maximized only when a certain estimated muscle torque (τest) fits the actual joint torque (τact) as a
supervisory signal.

VFS =
1∑n

k=1 (τact(k) − τest(k))
2 (5)

Here, VFS is the fitness value, n is the number of τact and τest values in each experiment trial,
and τact is the joint torque calculated from the musculoskeletal model. In addition, a completion
condition was set in this study. To assess the precision of the estimated muscle torque, the root mean
square error (RMSE) was calculated using Equation (6):

dRMSE =

√√
1
n

n∑
k=1

(τact(k) − τest(k))
2 (6)

where τact is the actual joint torque during movement, and τest is the estimated muscle torque.
Smaller RMSE values indicate that the muscle torque values were better estimated. From a previous
study that estimated lumbar muscle force using the EMG-based model [30], the mean ratio of RMSE
between the measured and estimated lumbar sagittal moments to the maximum peak of the measured
sagittal moments was approximately 22.34% in the sagittal plane. In the study, RMSE values that were
higher than those obtained by previous research were not considered suitable for estimated muscle
torque [31,32]. Thus, the cut-off completion condition value in this study was 20% of the peak value of
τact in each trial. The GA step was completed when the value of RMSE was less than 20% of the τact

value in each trial.

2.9. Evaluation Index of Muscle Torque

A universal evaluation index calculated from muscle torque during STS motion has not been
established by previous research. Thus, the following indices were calculated to investigate the
relationship between the motion features and muscle torque of the ES during STS motion in pregnant
women (Figure 4). First, the value of the ES muscle torque (MT) during STS motion at the maximum
peak of the angular velocity in the sagittal plane of the lower trunk segment (MP) was detected and
termed MT-MP (Figure 4, point A). Then, the difference in muscle torque at MP and the standing
position (DMT-MP-stand) was also calculated (Figure 4, point B) to remove the individual differences
in muscle torque in the standing position. The maximum peak of the ES muscle torque during STS
motion (Max-MT) was also detected (Figure 4, point C), and the difference between the value of ES
muscle torque during STS motion and the standing position (DMT-Max-stand) was calculated (Figure 4,
point D). Furthermore, the root mean square (RMS-MT), which is commonly used to express the
effective value of a waveform, was calculated using the ES muscle torque data for each motion by
Equation (7). All relevant indices were calculated for each trial and each participant.

dES_RMS =

√√
1
n

n∑
k=1

(τest_ES(k))
2 (7)
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2.10. Statistical Analysis to Compare Muscle Torque Evaluation Indices

The relationship among the indices of angular velocity, which represents motion information,
the estimated ES muscle torque, and LBP, was investigated using participant data from the motion
analysis. Before the investigation, a normality of each of the data was checked by using of a Shapiro–Wilk
test. Then, a non-parametric test was conducted because none of the datasets followed a normal
distribution. First, a Wilcoxon signed-rank test was conducted to investigate the differences among the
five indices of the estimated ES muscle torque (MT-MP, DMT-MP-stand, Max-MT, DMT-Max-stand,
and RMS-MT) between the STS motion in “trial slow” and “trial fast”. That is, the five indices were
compared for all 11 participants in the two trials.

Next, a bivariate correlation analysis using the Spearman’s rank correlation coefficient was
conducted to investigate the correlation between the five indices of estimated ES muscle torque and
the maximum peak during STS motion. In this analysis, PP was investigated instead of the maximum
peak because the timing of Max-MT was almost the same as PP among the motion indices, as observed
in Figures 4 and A1. Moreover, the data from “Trial fast” representing the characteristic motion of
pregnant women who were experiencing pain were used to investigate the motions that could be linked
to LBP. Furthermore, Spearman’s rank correlation coefficients between each index of the estimated
ES muscle torque and the maximum peak during STS motion, as well as between each index and
PP value during STS motion, were calculated. Finally, a Spearman’s rank correlation coefficient was
calculated using five indices of the estimated ES muscle torque and the LBP-related NRS score to
investigate the correlation between the degree of muscle load and the intensity of LBP. Nine pregnant
women reported LBP during “trial fast,” but none reported LBP during “trial slow”. Thus, data of
these nine participants were used in the last statistical analysis. The analyses were performed on SPSS
23.0 (IBM SPSS Statistics, Chicago, IL, USA) with a significance threshold of p > 0.05.
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3. Results

3.1. Difference of Muscle Torque According to Difference of Motion Trial

The results of the Wilcoxon signed-rank test are presented in Table 2. The DMT-Max-stand index
of “trial fast” was significantly higher than that of “trial slow.” No significant differences were observed
for the other muscle torque indexes between each trial.

Table 2. Differences in evaluated indices of muscle torque according to type of sit-to-stand (STS) motion
(N = 11).

Evaluation Indices of Muscle Torque Trial Fast
(Nm)

Trial Slow
(Nm) p-Value

MT-MP 1 187.0 (43.2) 163.0 (53.6) 0.213
DMT-MP-stand 2 128.5 (44.5) 96.3 (36.1) 0.110

Max-MT 3 257.2 (54.3) 212.4 (82.2) 0.062
DMT-Max-stand 4 198.2 (60.1) 143.9 (78.7) 0.041

RMS-MT 5 201.7 (34.7) 189.3 (72.7) 0.477
1 MT-MP: the value of the erector spinae (ES) muscle torque (MT) during STS motion at the maximum peak (MP) of
the angular velocity; 2 DMT-MP-stand: the difference in muscle torque at MP and the standing position; 3 Max-MT:
the maximum peak of the ES muscle torque during STS motion; 4 DMT-Max-stand: the difference between the value
of ES muscle torque during STS motion and the standing position; 5 RMS-MT: the root mean square of the ES muscle
torque. Values shown are mean values (standard deviation). The data in bold is statistically significant.

3.2. Correlation between Indices of Estimated Muscle Torque and the Value of Motion Indices in STS

Table 3 lists the results of the statistical correlation analysis performed for the five indices of
the estimated ES muscle torque and values of the motion index, revealing that a significant positive
correlation was observed between DMT-Max-stand and PP. No significant correlations were observed
between maximum peak and indices of estimated muscle torque.

Table 3. Correlation analysis results for motion and muscle torque (N = 11).

Evaluation Indices of Muscle Torque r 1 p-Value

Maximum peak

Max-MT 2 0.073 0.688
DMT-Max-stand 3 0.120 0.507

MT-MP 4 0.011 0.950
DMT-MP-stand 5 0.121 0.517

RMS-MT 6 0.112 0.536

PP 7

Max-MT 0.282 0.112
DMT-Max-stand 0.355 0.043

MT-MP 0.141 0.434
DMT-MP-stand 0.145 0.419

RMS-MT 0.176 0.327
1 r: correlation coefficient; 2 Max-MT: the maximum peak of the ES muscle torque during STS motion;
3 DMT-Max-stand: the difference between the value of ES muscle torque during STS motion and the standing
position; 4 MT-MP: the value of the ES muscle torque (MT) during STS motion at the maximum peak (MP) of the
angular velocity; 5 DMT-MP-stand: the difference in muscle torque at MP and the standing position; 6 RMS-MT:
the root mean square of the ES muscle torque; 7 PP: peak-to-peak. The data in bold is statistically significant.

3.3. Correlation between the Indices of Estimated Muscle Torque and the Intensity of LBP in STS

Table 4 presents the results of the statistical correlation analysis for the five indices of estimated
ES muscle torque and the LBP-related NRS score, revealing significant positive correlations between (i)
Max-MT and LBP intensity and (ii) DMT-MP-stand and LBP intensity. No other significant correlations
were observed between the indices of estimated muscle torque and LBP intensity.
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Table 4. Correlation analysis results for muscle torque and low back pain (n = 9).

Evaluation Indices of Muscle Torque r 1 p-Value

Max-MT 2 0.743 0.022
DMT-Max-stand 3 0.726 0.027

MT-MP 4 0.143 0.382
DMT-MP-stand 5 0.367 0.331

RMS-MT 6 0.376 0.319
1 r: correlation coefficient; 2 Max-MT: the maximum peak of the ES muscle torque during STS motion;
3 DMT-Max-stand: the difference between the value of ES muscle torque during STS motion and the standing
position; 4 MT-MP: the value of the ES muscle torque (MT) during STS motion at the maximum peak (MP) of the
angular velocity; 5 DMT-MP-stand: the difference in muscle torque at MP and the standing position; 6 RMS-MT:
the root mean square of the ES muscle torque. The data in bold is statistically significant.

4. Discussion

This study proposed a method for assessing motion and muscle load in pregnant women during
STS motion on the basis of an inertial measurement unit. This study also investigated the relationships
between motion evaluation indices, muscle load (erector spinae activation), and the severity of LBP.
The link between muscle load during STS motion and LBP in pregnant women has not previously
been determined, despite this being a common discomfort experienced by women during pregnancy,
which can have a negative impact on quality of life during both prenatal and postnatal stages. As its
results, this study established the relationship between erector spinae muscle torque and LBP severity
during STS motion in pregnant women.

4.1. Difference of Muscle Torque According to Difference of Motion Trial

The results in Table 2 suggest that the ES muscle torque during STS motion, excluding muscle
torque in a standing still position, was higher for specific motions exhibited by pregnant participants
with LBP than for those exhibited by participants without LBP. These results indicate that higher
muscle load from an immobile standing position could be related to LBP during STS motion.

4.2. Correlation between Indices of Estimated Muscle Torque and the Value of Motion Indices in STS

The positive correlation between DMT-Max-stand and PP, which is a parameter describing the
change in incline speed from forward (maximum peak) to backward (minimum peak) motion, suggests
that ES muscle load might increase with a higher degree of shift change from forward bending to
backward bending motion. Therefore, the results confirm that the value of maximum ES muscle torque
in relation to the motion of standing up can be evaluated using the PP of angular velocity from the
IMU attached to the lower torso, without the need for a direct evaluation of muscle load.

4.3. Correlation between the Indices of Estimated Muscle Torque and the Intensity of LBP in STS

In addition to Table 4, scatter diagrams of the NRS score with the Max-MT and DMT-MP-stand
are shown in Figure A2. The significant positive correlation between Max-MT and LBP intensity
implies that higher values of maximum ES muscle torque during STS motion could indicate a higher
correlation with LBP. Moreover, a significant positive correlation between DMT-MP-stand and LBP
intensity was also observed. Thus, a larger value of maximum ES muscle torque in relation to the
standing up motion might be related to more severe LBP symptoms.

4.4. Relationships among the Motion Indices from an IMU, Estimated Muscle Torque, and the Intensity of LBP
in STS

Our previous research revealed that the STS motion particular to pregnant women with LBP
can be observed using an IMU attached to the lower torso. For example, a higher maximum angular
velocity peak in the sagittal plane was observed in the LBP group. However, other risk factors, such as
muscle fatigue, were not considered in that research. In the current study, however, the relationships
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among the motion index, muscle torque, and LBP during STS motion were investigated for pregnant
women using motion, force, and EMG data, respectively. The results in Section 3.2 reveal a statistically
significant positive correlation between PP and ES muscle torque (out of muscle torque in the standing
position) during STS motion. Simultaneously, the results in Section 3.3 reveal a statistically significant
positive correlation between the maximum muscle torque and the intensity of LBP. These results
suggest that the PP of angular velocity in the sagittal plane, obtained from an IMU attached to the
lower trunk, may have expressed not only the trunk motion characteristics, but also the ES muscle
torque exhibited during STS motion for pregnant women. Mechanical information, such as muscle
torque estimated by the proposed model, is more useful for quantifying the physical burden related
to LBP. In addition, the results reveal the relationship between higher ES muscle torque and LBP
severity during STS motion in pregnant women. Thus, this study indicates the potential for conducting
pregnancy motion analysis and muscle torque evaluation, which may be associated with LBP, using
the proposed IMU-based method, without the need for EMG measurement.

This is the first study that has focused on the biomechanics of pregnant women and investigated
the relationships between ES muscle torque during motion and LBP by motion analysis. However,
there are various factors that should be considered when investigating the relationships between
biomechanics and LBP during pregnancy. For example, the iliopsoas muscle has a relevant role in
STS movement and is related to LBP. Moreover, this muscle might be stretched as well as the rectus
abdominis during pregnancy. Similarly, other muscles such as the diaphragm and other abdominal
wall muscles might be related to LBP [33,34]. Moreover, other studies have indicated that there is a
relationship between myofascial trigger points in the paraspinal muscles and LBP [35]. Therefore,
further study would be required to investigate the existence of an extensive and detailed biomechanical
factor related to LBP during pregnancy.

5. Conclusions

Experiments on STS motion with pregnant women indicated the possibility that muscle torque
related to LBP can be evaluated using an IMU. Higher ES muscle load from an immobile standing
base state might be related to LBP during STS motion in pregnancy. However, measuring muscle load
is difficult, especially during STS motion and for pregnant women. Our results revealed that the PP
of angular velocity in the sagittal plane measured by an IMU attached to the lower trunk indicates
greater ES muscle torque during STS motion. In addition, our experiments revealed the relationship
between higher ES muscle torque and LBP severity during STS motion in pregnancy.

The limitations of this study include the small sample size and cross-sectional design. Therefore,
the causal relationship between motion characteristics, exerted ES muscle torque, and LBP during
STS motion could not be revealed. Moreover, the value of correlation coefficient of the relationship
between PP and DMT-Max-stand was not high. Thus, the correlation might not be strong. Similarly,
the results of the relationships between muscle torque and intensity of LBP were not enough to decide
the higher muscle torque indicating the higher intensity of LBP. Therefore, other factors should be
considered for utilizing the results of this study. Hence, further research that includes a larger number
of participants, a longitudinal design, and surveying of other risk factors of LBP is required to support
the results of this study. Despite these limitations, this study established the effectiveness of an IMU
attached to the torso for assessing STS motion in pregnant women. Moreover, the proposed physical
assessment method can be employed to manage LBP during pregnancy.
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Figure A1. Wave forms and indices of angular velocity of lower trunk on the sagittal plane.

Table A1. Value of angular velocity of trunk motion in the sagittal plane, according to the occurrence
of lumbopelvic pain (LPP) in our previous research.

LPP During
Stand Up
(N = 10)

Non LPP During
Stand Up
(N = 19)

p-Value

Maximum peak (deg/s) 88.49 (13.35) 73.98 (15.72) 0.020
Minimum peak (deg/s) −43.53 (12.83) −36.77 (10.79) 0.144

PP (deg/s) 132.02 (15.10) 110.75 (22.37) 0.012

A Student’s t-test was used; values are shown as mean (standard deviation); LPP: lumbopelvic pain, PP: peak-to-peak.
The data in bold is statistically significant.
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Figure A2. Scatter diagram of numerical rating scale (NRS) score with maximum of muscle torque and
difference of maximum of muscle torque with stand.
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