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Abstract: Dynamic hand gesture recognition based on one-shot learning requires full assimilation of
the motion features from a few annotated data. However, how to effectively extract the spatio-temporal
features of the hand gestures remains a challenging issue. This paper proposes a skeleton-based
dynamic hand gesture recognition using an enhanced network (GREN) based on one-shot learning
by improving the memory-augmented neural network, which can rapidly assimilate the motion
features of dynamic hand gestures. Besides, the network effectively combines and stores the shared
features between dissimilar classes, which lowers the prediction error caused by the unnecessary
hyper-parameters updating, and improves the recognition accuracy with the increase of categories.
In this paper, the public dynamic hand gesture database (DHGD) is used for the experimental
comparison of the state-of-the-art performance of the GREN network, and although only 30% of
the dataset was used for training, the accuracy of skeleton-based dynamic hand gesture recognition
reached 82.29% based on one-shot learning. Experiments with the Microsoft Research Asia (MSRA)
hand gesture dataset verified the robustness of the GREN network. The experimental results
demonstrate that the GREN network is feasible for skeleton-based dynamic hand gesture recognition
based on one-shot learning.
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1. Introduction

With the rapid development of Kinect, Leap Motion, and other sensors in recent years, hand
motion capture is getting much more efficient. By estimating the posture of the hand gesture, the
position information of each joint can be detected from video or image sequences. Recent research [1–5]
has tried various ways for dynamic hand gesture recognition based on 3D skeleton data characterized as
strong correlations, temporal continuity, and co-occurrence relationships. Besides, the skeleton-based
algorithm has fewer parameters, which is easier to calculate and more suitable for analyzing dynamic
hand gestures. However, it is still challenging because hands are non-rigid objects, which can express
a variety of different semantics [6]. With the gesture recognition technology being applied in more
fields such as gaming and industry training, it is often necessary to make different customized
annotation samples in large sizes. However, it is worth noting that the existing hand gesture database
could not meet the needs of gesture interaction in various fields. The cost of large-scale gesture
sample extraction artificially in each field is so high that it would limit the application of gesture
recognition [7,8]. Meanwhile, the traditional gradient-based networks also require extensive iterative
training to complete the model optimization. When encountering the new data, the models need to
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relearn their hyper-parameters to adequately incorporate the new information without catastrophic
interference [9], which is inefficient. The existing networks fail to complete the optimization of the
model with small size training samples, while one-shot learning could infer results as expected [10].
Therefore, the method of one-shot learning can be used to solve the problem that the model could not
be optimized by the insufficient samples of skeleton-based dynamic hand gestures.

However, if the current algorithm of “one-shot learning” is directly applied to the hand gesture
recognition, there will be three gradient-based optimization problems. Firstly, due to the small
amount of data, many advanced and mature algorithms, such as Momentum [11] and Adagrad [12],
cannot be optimized in limited iterations; especially when encountering non-convex problems, many
hyper-parameters cannot achieve convergence. Secondly, for different tasks, the parameters of the
network need to be initialized randomly. If the amount of data is too small, the final model cannot
achieve convergence. This can be alleviated by conducting transferring learning methods, such
as fine-tuning [13,14]. Finally, for the traditional neural network, its memory storage is limited.
Additionally, the process of learning a new set of patterns will suddenly and completely erase a
network’s knowledge of what it had already learned, which is referred to as catastrophic interference [15].
Therefore, we need to find a memory module that can be used for large-scale storage and can also
be accessed for relevant information. The large capacity enhanced memory neural networks, such
as a neural Turing machine (NTM) [16], provides a feasible method for one-shot learning combined
with hand gesture recognition. The NTM provides the capability to quickly encode and retrieve
new information by limiting the changes in the output of the network before and after the network
update [15,17]. In addition, it can also eliminate gradient-based optimization problems. On this basis,
Santoro [9] introduced a new and pure content-based method for accessing an external memory, which
is different from previous methods, additionally using a memory location-based focusing mechanism.
The method can rapidly bind never-before-seen information to the external memory after a single
presentation and combines the gradient descent to slowly learn an abstract method for obtaining useful
representations of raw data. As a result, it can accurately identify the categories of data that have
occurred only once.

This paper focuses on the architecture of enhanced neural networks based on skeleton-based
algorithms and one-shot learning. Based on the memory-augmented neural network (MANN) [9],
we propose skeleton-based dynamic hand gesture recognition using an enhanced network (GREN).
The long short-term memory (LSTM) network is selected as the controller of the GREN network to
enhance the recognition and memory ability of the network. Compared with the MANN network,
which was originally applied to image recognition, the proposed GREN network classifies hand
gestures by identifying skeletal sequences. Through the recognition of the GREN network, we conduct
experiments on a dynamic hand gesture dataset (DHGD) [18] to show the effectiveness of our method.
Then, we implement our method on the Microsoft Research Asia (MSRA) hand gesture dataset [19] to
verify its contributions.

The rest of this paper is organized as follows:

• Section 2 details the related work of skeleton-based dynamic hand gesture recognition and
one-shot learning.

• The GREN network is introduced in Section 3.
• The experiments of skeleton-based dynamic hand gesture recognition are explained in detail in

Section 4.
• In Section 5, results and discussion are presented.
• The conclusions are given in Section 6.
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2. Related Work

2.1. Skeleton-Based Dynamic Hand Gesture Recognition

Much research has been focused on skeleton-based dynamic hand gesture recognition [20–29].
Chen X. et al. [30] proposed a skeleton-based dynamic hand gesture recognition algorithm that has also
been suggested to surpass depth-based methods in the aspect of performance. Chin-Shyurng et al. [31]
created a skeleton-based model by capturing the palm position, and the dynamic time-warping
algorithm was applied to the recognition of disparate conducting gestures at various conducting
speeds, which achieves real-time dynamic musical conducting gesture recognition. Ding, Ing-Jr et al. [32]
designed an adaptive hidden Markov model (HMM)-based gesture recognition method with user
adaptation (UA) to simplify large-scale video processing to realize the natural user interface (NUI) of
a humanoid robot device. Similarly, Kumar, Pradeep et al. [33] used the HMM to identify occluded
gestures in line with a robust position invariant sign language recognition (SLR) framework.

Additionally, some studies have employed deep learning methods to conduct skeleton-based
dynamic hand gesture recognition. Mazhar, Osama et al. [34] proposed that humans need neither to
wear any specific clothing (motion capture clothes or inertial sensors) nor to carry a special remote
control or learn complex teaching instructions in gesture recognition. As a result, they developed a
real-time, robust, and background-independent gesture detection module in the light of convolutional
neural network (CNN) transmission learning. Chen, XH et al. [29] exploited motion features of
traits and global movements to augment features of recurrent neural networks (RNNs) for gesture
recognition and improve the classification performance. Lin, C et al. [35] proposed a novel refined
fused model in combination with the masked Res-C3D network and skeleton LSTM for abnormal
gesture recognition in RGB-D videos, which learns discriminative representations of gesture sequences
in particular abnormal gesture samples by fusing multiple characteristics from different models. Based
on a combination of a CNN network and an LSTM network, Nunez, JC et al. [36] proposed a deep
learning-based approach for temporal 3D pose recognition problems, and the proposed network
architecture does not need to be adapted to the type of activity or the gesture to be recognized, as well as
the geometry of the 3D sequence data as input. So far, there is no available deep learning network that
can be directly used for skeleton-based dynamic hand gesture recognition based on small size samples.

2.2. One-Shot Learning

The implementations of one-shot learning can be divided into statistics-based, weight-based
matching, and meta-learning. For the statistics-based, Lake [37] adopted the Bayesian framework
realized one-shot learning of handwritten character pictures based on the statistical point of view and
the way humans learn things, triggering the new wave of one-shot learning.

Besides the above statistics, there are also many methods on the basis of weighted matching for
one-shot learning, which performs certain criteria modeling on known samples and then determines
the class according to the distance of samples. The most typical method is the k-nearest neighbor
(KNN), which is a nonparametric estimation method that can directly employ distance to determine
the category without prior training. Another method is to learn an end-to-end nearest neighbor
classifier, which can not only quickly learn new samples but also have a great generalization of
known samples. Snell et al. [38] carried out classification by calculating the distance from prototype
representations of each class, which turns into the nearest neighbor classification in the metric space.
While Koch et al. [39] performed efficacious feature extraction on new samples by limiting input
methods, then used supervised metric learning based on twin networks to train and finally reused
features extracted by that network for small or no sample learning. Similarly, Oriol Vinyals et al. [40]
also utilized metric learning based on deep neuro features, which uses external memory to enhance the
neural network that maps a small labeled support set and an unlabeled example to its label, obviating
the need for fine-tuning to adapt to new class types.
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Meta-learning, also known as “learning to learn”, aims to train a model on a variety of learning
tasks, such that it can solve new learning tasks using only a small number of training samples [41].
A neural network with memory can implement meta-learning, but its memory storage is limited.
A large number of new features may exceed the memory storage capacity so that the network cannot
learn new tasks. The NTM network can solve this problem, as it is capable of both long-term storage
via slow updates of its weights and short-term storage via its external memory module [16]. Based on
the NTM network, Santoro et al. [9] introduced a memory access module that emphasizes accurate
encoding of relevant (recent) information and pure content-based retrieval to implement meta-learning.
Besides, Ravi et al. [42] proposed an LSTM-based meta-learner model, whose parameterization allows
it to learn appropriate parameter updates specifically for the scenario where a set amount of updates
will be made, while also learning a general initialization of another learner (classifier) network that
allows for quick convergence of training.

In general, the current one-shot learning-based methods are in a booming period. However, there
is still no appropriate method for one-shot learning with skeleton-based hand gesture recognition.
Therefore, this paper will study the current advanced achievements and propose a suitable algorithm
to realize hand gesture recognition in line with one-shot learning.

3. Dynamic Hand Gesture Recognition with the GREN Network

By improving a MANN network, this paper implements the GREN network based on one-shot
learning, which is a variant of the NTM network from Santoro et al. [9]. Compared with the MANN
network originally applied to image recognition, the proposed GREN network classifies hand gestures
by recognizing skeletal sequences. The structure of the GREN network is shown in Figure 1.
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Figure 1. The structure of the GREN network. For the current time-step t, it takes the hand joint
coordinate sequence Xt and the corresponding sample-class yt as input and outputs the categorical
distribution of prediction by a softmax layer. The controller, neuron Clstm, generates ht and ct, which are
the hidden state and the cell state of the LSTM used for the next time-step. A memory, rt, is retrieved
by the read heads from the external memory.

The GREN network consists of three components: a controller, read and write heads, and
an external memory. The controller, neuron Clstm, employed in our model is an LSTM network,
which receives the current input and controls the read- and write-heads to interact with the external
memory, respectively. Memory encoding and retrieval in an external memory are rapid, with vector
representations being placed into or taken out of memory potentially every time-step [16], which
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makes it a perfect candidate for one-shot prediction. Additionally, it can be stored either for long-term
storage by slowly updating the weights or for short-term storage by an external memory. Thus, when
the model learns the type of representation of a gesture sequence, it will be placed into memory, and
later these representations will be used to make predictions of data that it has only seen once. Besides,
according to the difference of classification methods between the input of images and sequences,
the average pooling layer (avgpool) is introduced to further focus on characteristics of sequence and
improve the calculation efficiency in the network. For one-shot learning, the output distribution is
categorical, which is implemented as a softmax function.

At the beginning, the initialized state of the GREN network is represented by init_state. The external
memory is initialized, which does not store any data representations. Also, the memory r0 retrieved
from the external memory is empty. In addition, the cell state of the initialized controller, neuron Clstm,
is represented by c0. Given the input sequence Xt, the controller receives the memory rt−1 and cell state
ct−1 provided by the previous state prev_state, then produces a query key vector kt used to retrieve a
particular memory. When encountering sequences of the already-seen class, the particular memory
vector row could be retrieved by read heads, which is addressed using the cosine similarity measure:

K(kt, Mt(i)) =
kt·Mt(i)
‖kt‖·‖Mt(i)‖

(1)

where Mt is the memory matrix at time-step t and Mt(i) is the ith row in this matrix. The row of Mt(i)
serve as memory “slots”, with the row vectors themselves constituting individual memories.

After then, a read-weight vector wr
t is produced by these similarity measures according to the

softmax function:

wr
t(i)←

exp(K(kt, Mt(i)))∑
j exp(K(kt, Mt( j)))

(2)

where the read heads can amplify or attenuate the precision of the focus by the read weights.
Those read weights wr

t and corresponding memory Mt(i) are used to retrieve the memory rt:

rt ←
∑

i

wr
t(i)·Mt(i) (3)

where the memory rt is used by the controller as both an input to a classifier, namely, a softmax layer
for class prediction and as an additional input for the next input sequence.

To achieve the combined learning in disparate classes and implement the one-shot learning,
the least recently used access module (LRUA) proposed by Adam Santoro [9] is adopted, which is a
pure content-based memory write head that writes memories to either the least used memory location
or the most recently used one, and focusing on the accurate encoding of the most relevant information.
In terms of a new sequence, it is written to a rarely-used location with the recently encoded information
preserved or to the last used location, which can be used for updating with newer or possibly more
relevant information:

wu
t ← γ·wu

t−1 + wr
t + ww

t (4)

wlu
t (i) = 1 i f wu

t ≤ m
(
wu

t , n
)

else 0 (5)

ww
t ← σ(α)·wr

t−1 + (1− σ(α))·wlu
t−1 (6)

Mt(i)←Mt−1(i) + ww
t (i)·kt·∀i (7)

where wu
t is the usage weight updated at each time-step to keep track of locations most recently read

from or written to; γ is the decay parameter; wlu
t is the least-used weight computed using wu

t for a
given time-step; the notation m(v, n) is introduced to denote the nth smallest element of the vector v; n
is set to equal the number of the writer to memory; ww

t is the written weight computed by the sigmoid
function σ(.), which combines the previous read weights wr

t−1 and previous least-used weights wlu
t−1; α
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is a dynamic scalar gate parameter to interpolate between weights. Before writing to memory, the least
used memory location is computed from wu

t−1 and set it to zero, then the memory Mt is written by the
computed vector of written weights ww

t . Thus, Mt(i) can be written into the zeroed memory location
or the previously used memory location; if it is the latter, then wlu

t will simply get erased.
With the above analysis, we propose the following GREN algorithm, as shown in Algorithm 1.

Algorithm 1: GREN

Input: Given N samples {X1, X2, . . . , XN} belonging to C classes with
Sample-classes yt ∈ Y = {1, . . . , C}, f or t = 1, . . . , N;
Output: A softmax layer for class prediction;

1 Initialization:
2 prev_state← init_state(N){

3 c0 ← Clstm(N);
4 r0 ← 0N×(head_num∗memory_size);
5 wr

0 ← one_hot_weigh_vector(N, head_num, memory_slots);
6 wu

0 ← one_hot_weigh_vector(N, memory_slots);
7 M0 ← εN×memory_slots×memory_size;
8 return

{
c0, r0, wr

0, wu
0 , M0

}
;

9 };
10 o = [ ];
11 for t← 1 to N do
12 ht, ct ← Clstm((Xt, yt), prev_state);
13 for i← 0 to Xt.length do
14 output, curr_state← gren((Xt(i), x_lablet(i)), prev_state){
15 Memory Retrieval:
16 K(kt, Mt(i))← cosine_similarity(kt, Mt(i));
17 wr

t(i)← so f tmax(K(kt, Mt(i)));
18 rt+ = wr

t(i)·Mt(i);
19 Memory Encoding (LRUA):
20 wu

t ← γ·wu
t−1 + wr

t + ww
t ;

21 if wu
t ≤ m

(
wu

t , n
)

then wlu
t (i) = 1 else wlu

t (i) = 0;
22 ww

t ← sigmoid(α)·wr
t−1 + (1− sigmoid(α))·wlu

t−1;
23 Mt(i)←Mt−1(i) + ww

t (i)·kt;
24 return {ht, rt},

{
ct, rt, wr

t , wu
t , Mt

}
;

25 };
26 prev_state = curr_state;
27 if i == 0 then
28 o2o_w← (output.length, Mclass), rand_uni f _init(minv, maxv);
29 o2o_b← (Mclass), rand_uni f _init(minv, maxv);
30 end if;
31 output = output·o2o_w + o2o_b;
32 output = so f tmax(output);
33 o.append(output);
34 end
35 learning_loss = −cross_entropy_cost(yt, o);
36 optimizer = AdamOptimizer(learning_rate);
37 train_op = optimizer.minimize(learning_loss);
38 end

In the algorithm, the one_hot_weigh_vector(a, b, c) function generates a tensor of shape
a × b × c with [:, :, 0] set to one (or [:, 0], if the one_hot_weigh_vector(a, b) function generates a
tensor of shape a × b);

{
(a, b), rand_uni f _init(minv, maxv)

}
generates a tensor of shape a × b (or
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{
(a), rand_uni f _init(minv, maxv)

}
generates a tensor of shape a× 1) with a uniform distribution, and

the value of all elements is set between minv and maxv.
In general, for the current time-step t, the sample data Xt and the corresponding sample-class

yt will be received by the controller Clstm. The current state of the GREN network curr_state is used
by the controller as an additional input for the next time-step. According to each sequence of the
sample, the GREN algorithm randomly generates the class label x_labelt. If the sample date Xt comes
from a never-before-seen class, it will be bound to the appropriate sample-class yt and stored by the
write heads in the external memory, which is presented in the subsequent time-step (see Figure 1).
Later, once a sample from an already-seen class is presented, the controller will retrieve the bound
sample-class information by the read heads from the external memory for class prediction. A softmax
layer, so f tmax(·), is selected to output the standardized probability distribution of the model prediction,
and combined with the cross-entropy cost function, cross_entropy_cost(·), to measure the loss between
the predicted value and correct class label. Then, the adaptive moment estimation (Adam) [43],
AdamOptimizer(·), is adopted to minimize the loss, and the back-propagated error signal from the
current prediction updates those previous weights, which is followed by the updating of the external
memory. Those processes would be repeated until the model converges.

4. Experiments

In this section, two hand gesture datasets named dynamic hand gesture database (DHGD) and
MSRA are used for the experiments. Details about the experimental setup of the GREN network are
introduced in the later part of this section.

4.1. Datasets

4.1.1. DHGD Hand Gesture Dataset

The public DHGD hand gesture dataset [18] contains sequences for 14 right-hand gestures
performed in two ways: using one finger and the whole hand. Each class of gestures is performed 1 to
10 times by 28 participants in both of the above two ways, resulting in 2800 sequences, and the length
of the gestures varies from 20 to 50 frames. Each frame contains the coordinates of the 22 joints in the
2D depth image space and 3D world space, and those joints are shown in Figure 2.
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Figure 2. Twenty-two joints of a right-hand skeleton.

Some gestures (such as swipe and shake), which are defined by the movement of the hand, called
the coarse gesture, while others are defined by the shape of the gesture, called the fine gesture. Table 1
shows the different classes of gestures in DHGD:
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Table 1. List of 14 gestures in the dynamic hand gesture database (DHGD).

Name of the Gesture Type of the Gesture Type of the Gesture

1 Grab Fine
2 Tap Coarse
3 Expand Fine
4 Pinch Fine
5 Rotation Clockwise Fine
6 Rotation Counter Clockwise Fine
7 Swipe Right Coarse
8 Swipe Left Coarse
9 Swipe Up Coarse

10 Swipe Down Coarse
11 Swipe X Coarse
12 Swipe + Coarse
13 Swipe V Coarse
14 Shake Coarse

4.1.2. MSRA Hand Gesture Dataset

The public MSRA [19] hand gesture dataset, which contains skeleton-based sequence data of 17
right-hand gestures performed by 28 participants, is chosen to verify the robustness of the GREN
network. The 17 right-hand gestures are manually chosen and are mostly from American Sign
Language, to span the space of finger articulation as much as possible. Additionally, the length of each
gesture varies from 490 to 500 frames. Each of these frames contains the coordinates of the 21 joints in
the 2D depth image space and 3D world space, and those joints are shown in Figure 3.
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4.2. Experimental Setup

4.2.1. Data Pre-Process

The skeleton-based hand gesture datasets should be preprocessed as the input of our network.
The whole framework of the data preprocessing is shown in Figure 4, in which the kth class gesture is
processed by our method as an example.
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First of all, the nested interval unscented Kalman filter (UKF) [44] is used to eliminate the possible
noise in the hand gesture datasets. Moreover, due to some hand gesture datasets may contain unequal
sequences from different participants, the short and long sequences should be changed into a standard
sequence. The length of the standard sequence is set to a fixed value n based on both the average
length of the sequence of each gesture. For short sequences, the length of them is increased by linear
interpolation. For long sequences, we will eliminate the first few frames and the last few frames of the
sequence because there are usually many pause actions at the beginning and the end, and they are not
important to the whole gesture. The joint Pi,k(t), a full hand skeleton Hk(t) and the kth class gesture Gk
are shown as follows:

Pi,k(t) =
[
xi,k(t), yi,k(t), zi,k(t)

]
(8)

Hk(t) =
m∑

i=1

Pi,k(t) (9)

Gk =
n∑

t=0

Hk(t) (10)

where n is the scale of the kth class gesture sequences; all of the joints i in one hand are combined into a
full hand skeleton Hk(t) when the time scale of the kth class gesture is at t; m represents the maximum
number of joints in a full hand skeleton; the shape of the kth class gesture Gk is processed into n× (am);
the feature scale is am, and a is the spatial scale.

The shape of the standard sequence is split into n1 × n2 × (am) through the segmentation gestures
(SG), where the kth class gesture forms n1 sets of sequences and the time scale of each set is n2.

Then, the skeleton-based hand gesture sequences can be mapped to the same specific interval
by normalizing the changing hand joints, which is effective to improve the convergence rate of
our network:

µB ←
1
m

Hk(t) (11)

σ2
B ←

1
m

m∑
i=1

(
Pi,k(t) − µB

)2
(12)

P̂i,k(t)←
Pi,k(t) − µB√

σ2
B + ε

(13)

where µB is the mean of the sample and σ2
B is the sample variance; The linear transformation is added

to these sequences and normalizes them to obtain P̂i,k(t), which limits the distribution of them and
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makes the network more stable during training; ε is the role of the minimum number, which avoids
zero in the denominator in the expression.

The network may lose its original feature representation capabilities by the normalization. A pair
of learnable parameters γ and β are set for each normalization to eliminate hidden dangers, which is
used to restore the original distribution to obtain Qi,k(t).

Qi,k(t)← γ·P̂i,k(t) + β ≡ BNγ,β
(
Pi,k(t)

)
(14)

In the formula, BNγ,β
(
Pi,k(t)

)
is represented as a complete batch normalization (BN).

Additionally, the joint coordinates of the hand skeleton-based sequences are limited by the
neighborhood, which increases the variance of the estimate and is not conducive to enhancing network
learning. The average pooling layer (avgpool) can solve the above problems, which makes the structure
of the skeleton-based sequence simpler and more stable, improves the calculation efficiency of the
network, and avoids over-fitting during training. Here Qi,k(t) is introduced to represent the changes in
the same joints of the adjacent multiple frames after the avgpool:

Q̂i,k(t) =
1
f 2

t0+2∑
t=t0

(
Qi,k(t)

)
(15)

Ĝk =
n̂∑

t=0

m∑
i=1

Q̂i,k(t) (16)

where f is the size of a filter of the average pooling layer; the size of n̂ is set to the equal of n1 ∗ (n2/ f );
the shape of Ĝk is split into n1 × (n2/ f ) × (am/ f ), which contains the features information of the kth

class gesture, and as the input sequence of our network.
Finally, for one-shot learning, only a small part of the hand gesture datasets was taken as the

training samples for subsequent experiments.

4.2.2. Implementation

The whole process of dynamic hand gesture recognition based on one-shot learning is shown in
Figure 5.
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Firstly, the M different classes are randomly selected from the N classes already contained in
the dataset, which prevents the network from simply mapping class labels to the output. From the
episode to the next episode, those classes presented in the current episode with the associated labels
and specific samples will be shuffled. Later, the sample sequences are equally singled out from each of
the M classes, which are supposed to be of the same size. Each group from the randomly re-labeled M
classes extracts 10 sets of sequences as the training data at random. Of course, it is not enough to take
merely 10 sets of the sequence for each training. Additionally, the corresponding batch size is taken
by random sampling as the input of training. Then, the model will be validated by the validation
set every k epochs, and output the prediction accuracy with corresponding loss. Finally, the above
processes are repeated until the model converges.

For the converged network model, the test set will be randomly selected to evaluate its
generalization ability. After the test, the model’s ability to recognize those new unrecognized
sequences will be the criterion of model selection.

According to the public DHGD hand gesture dataset, the time scale is set to 60 so that the size of
the gesture sequences will be at least 100 sets in each class. After the data preprocessing, the shape of
Ĝk is split into 60× 20× 22. For “one-shot learning”, 60%, 20%, and 20% of the data are used for the
training set, the validation set, and the test set, respectively.

The DHGD dataset contains two different ways of 14-classes gestures: one finger and the whole
hand. N is set to 14 as the number of the unique class; M is set to 3 as the number of sample classes; k
is set to 100 as the epoch-size in each training. For the 28-classes gestures encompassing the above
two ways, N is set to 28 as the number of the unique class, while sizes of M and k remain unchanged
in each training. A grid search [45] is performed over a number of hyper-parameters: controller size
(200 hidden units for an LSTM), the learning rate (4e− 5), the number of read–write heads from memory
(4), and training times (80,000). For the 14-classes, the batch size is taken as 8, while it is set to 16 in the
case of 28-classes. The model presents the best results over those hyper-parameters configurations.

In this study, another comparison experiment has been conducted based on the MSRA dataset.
The time scale is also set to 12. After the data preprocessing, the shape of Ĝk is segmented into
60 × 5 × 21. Moreover, 50% of the data is used for the training set; 25% of the data utilized for the
validation set; 25% of the data applied to the test set. For the MSRA dataset containing hand gestures
of 17 classes, N is set to 17 as the number of the unique classes, and sizes of M and k remain unchanged
in each training. Compared with the 14-classes and 28-classes, hyper-parameters for the 17-classes
are shown: controller size (200 hidden units for an LSTM), the learning rate (4e− 5), the number of
read–write heads from memory (4), batch size (16), and training times (70,000).

5. Results and Discussion

To visualize the process of the recognition accuracy measured on the validation set, we have
separately analyzed two different ways of 14-classes: one finger and the whole hand, and the 28-classes
encompassing both the above two ways. In addition, the accuracy curve is shown in Figure 6.

From Figure 6, the 14-classes, (1) represents right-hand gestures performed with one finger, and
(2) represents gestures with the whole hand. The curve of the one-finger classified by our method
is shown in blue, the curve of the whole-hand is shown with an orange line, and the curve of the
28-classes is shown with a grey line. It is observed that the recognition accuracy of the 14-classes (2) is
superior to the 14-classes (1), and the 28-classes is between those two. Compared with the 14-classes
(1), the 28-classes has better performance.

To assess the effectiveness of our algorithm for classifying the hand gestures of DHGD into
14-classes and 28-classes, we compare the standard LSTM network with regard to their DHGD
recognition accuracy. Table 2 shows the comparison results of skeleton-based hand gesture recognition
between LSTM and GREN networks.
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Figure 6. The accuracy curve of our method for 14-classes and 28-classes in the DHGD dataset.

Table 2. Comparison results between long short-term memory (LSTM) and gesture recognition using
an enhanced network (GREN) networks based on the DHGD dataset.

Type LSTM (%) GREN (%)

14-classes
1 75.18 78.65
2 79.82 85.90

28-classes both 76.89 82.03

From Table 2, the final accuracy of our GREN network reaches 82.29% for the 14-classes classification
that is the average of the two ways and 82.03% for the 28-classes classification. The proposed network
indicates that recognition accuracy can reach 78.65% for the one-finger and 85.90% for the whole-hand.
Thus, compared with the standard LSTM networks, the accuracy of the recognition increased by
approximately 5.14%, the accuracy of the one-finger increased by approximately 3.47%, and the
whole-hand accuracy increased by 6.08%, which show excellent performance of our method in
one-shot learning.

We compare the GREN network with the state-of-the-art algorithm in DHGD, and the results are
shown in Table 3.

For the different ways of learning, a mature scheme of one-shot learning combined with hand
gesture recognition has not been proposed before. Those advanced methods of comparison adopt
the way of recognizing large size samples for experiments. While our GREN network uses small size
samples in the DHGD dataset and trains based on one-shot learning.

Compared with other advanced algorithms, our method also performs well. For the 14-classes
classification, the final accuracy of our GREN network is 82.29%, which is higher than most other
algorithms. Additionally, our GREN network presents a higher accuracy in the 28-classes recognition
than does that of the other advanced algorithm. A comparison of other advanced algorithms shows
that the accuracy of the GREN network will not reduce significantly with the increase of the classes of
hand gestures in the 28-classes recognition. Experimental results suggest that the proposed GREN
network is an efficient method for hand gesture recognition.
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Table 3. Result of different method comparison for 14/28-classes gestures on dynamic hand gesture
dataset using skeleton-based data.

Learning Methods Accuracy 14-Classes
Gestures

Accuracy 28-Classes
Gestures

Large-samples

HON4D: Histogram of Oriented 4D
Normals for Activity Recognition from
Depth Sequences [46]

75.53% 74.03%

3-D Human Action Recognition by Shape
Analysis Of Motion Trajectories on
Riemannian Manifold [47]

79.61% 62.00%

Joint Angles Similarities and HOG2 for
Action Recognition [48] 80.85% 76.53%

Key Frames with Convolutional Neural
Network [18] 82.90% 71.90%

Skeleton-Based Dynamic Hand Gesture
Recognition [49] 83.07% 79.14%

NIUKF-LSTM [44] 84.92% 80.44%

SL-Fusion-Average [36] 85.46% 74.19%

MFA-Net [29] 85.75% 81.04%

One-shot GREN 82.29% 82.03%

Besides, to verify the robustness of the network, a similar experimental setup has also been
performed on the MSRA hand gesture dataset. To more clearly demonstrate our network, we compared
the experimental result with the LSTM network based on the MSRA dataset, which is shown in Table 4.

Table 4. Comparison results between LSTM and GREN networks based on the MSRA dataset.

Type LSTM (%) GREN (%)

17-classes 72.92 79.17

From Table 4, the final accuracy of our network is 79.17% for the 17-classes classification.
Additionally, compared with the LSTM networks, the accuracy of the recognition increased by
approximately 6.25%, which shows the better performance of the GREN network. The experiment
verifies that this network could be replicated for other similar datasets, even if they are small sample
size datasets.

6. Conclusions

This paper proposes the GREN network to recognize dynamic hand gestures based on a small
number of skeleton-based sequence samples. According to the MANN network, the ability to store
and update sequence data is further enhanced by introducing the average pooling layer (avgpool)
and batch normalization (BN), so that we can combine the hand skeleton sequence with the GREN
network to achieve dynamic hand gesture recognition based on one-shot learning. Experiments with
the DHGD hand gesture dataset demonstrate the state-of-the-art performance of the GREN network for
skeleton-based dynamic hand gesture recognition based on one-shot learning. Additionally, the MSRA
hand gesture dataset verifies the robustness of our GREN network.
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