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Abstract: The early and accurate diagnosis of skin cancer is crucial for providing patients with
advanced treatment by focusing medical personnel on specific parts of the skin. Networks based on
encoder–decoder architectures have been effectively implemented for numerous computer-vision
applications. U-Net, one of CNN architectures based on the encoder–decoder network, has achieved
successful performance for skin-lesion segmentation. However, this network has several drawbacks
caused by its upsampling method and activation function. In this paper, a fully convolutional network
and its architecture are proposed with a modified U-Net, in which a bilinear interpolation method is
used for upsampling with a block of convolution layers followed by parametric rectified linear-unit
non-linearity. To avoid overfitting, a dropout is applied after each convolution block. The results
demonstrate that our recommended technique achieves state-of-the-art performance for skin-lesion
segmentation with 94% pixel accuracy and a 88% dice coefficient, respectively.

Keywords: skin-lesion segmentation; interpolation; PReLU

1. Introduction

Melanoma is one of the most serious skin ailments worldwide, accumulating 287,723 new cases
and over 60,000 estimated fatalities in 2018 [1]. Skin cancer is one of the most significant public health
issues, with over 2000 new diagnoses in South Korea just in the past 5 years [2]. New melanoma arising
on the skin surface can be easily identified via visual inspection. Unfortunately, most melanomas
are not noticed in a timely manner by sufferers [3]. Nevertheless, individual visual inspection by
professional dermatologists provides a diagnostic accuracy of ~60%, which means many potentially
treatable melanomas are not detected until they are quite advanced [4]. The accurate and early
segmentation of skin lesions is critical to the detection and localization of visual dermoscopic features
of the skin and the classification of skin-based diseases. Dermoscopy is an imaging technique that
decreases the surface reflection of skin, allowing deeper layers to be visually inspected. It is used to
improve diagnostic performance and minimize melanoma deaths. Figure 1 displays a few dermoscopic
images of melanoma skin lesions.

The deep-learning community has applied various techniques to boost traditional computer-vision
activities by utilizing neural networks. Hence, convolutional neural networks (CNN) have
revolutionized image classification, scene identification, target recognition, and other capabilities
because of their ability to build inner descriptions of images. CNN-based approaches are much better
than other technologies for comprehending location and dimension in various forms. CNNs have led
to vast improvements in task recognition. Apart from enhancing image classification tasks [5–7], they
have also gained ground in regional tasks requiring organized results. Such advancements have been
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made in object detection [8–10], part and key-point prediction [11,12] and local correspondences [11,13].
CNNs are used for current semantic segmentation techniques [14–19], in which every pixel is
classified according to its nearby object or region. Indeed, this is essential when dealing with medical
images. Consistent image segmentation is a very important task, and successfully enabling diagnostic
capability is the main objective of medical image segmentation, which is principally a pixel-level
classification problem.Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 14 
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Fully convolutional networks (FCN) are one of the successful methods among the initially 
proposed neural networks for image segmentation [5]. By applying FCNs to CNN technology, feature 
to feature mapping can be achieved without first obtaining spatial information [20–24]. The FCN 
architecture is a broadened type of CNN and contains only convolutional and pooling layers, which 
provide the ability to make predictions about inputs. These are generally applied to local tasks 
instead of global ones [25,26]. A variety of FCN-based methods have been suggested recently to 
mitigate this problem. For example, the author of [27] suggested a multi-scale CNN that contained 
sub-networks having different resolution results to gradually expand coarse estimation. 

In order to reconstruct accurate forms of target borderlines, sort pixel-wise class labels and 
calculate segmentation masks, the straightforward deconvolutional step has been replaced with a 
deep up-convolution network in [28]. Several studies tried to achieve better segmentation accuracy 
by using spatial information. U-Net has achieved great performance through skip connections by 
joining features of low-level layers and high-level layers [29]. 

The foremost weakness of the U-Net architecture is that training may reduce the training speed 
in the middle layers of deeper neural networks, so there is the threat of overlooking the layers. The 
main reason for this phenomenon is that gradients become weakened further away from the output 
layer of a network, where the loss of the training is computed. Additionally, the rectified linear unit 
(ReLU) activation function was used in the original U-Net paper. The dead neuron problem of the 
ReLU has been detected by Lu et al. [30]. We substituted ReLU activation function with PReLU non-
linearity for training the network to lessen the effect of this problem. 

The foremost responsibility of activation functions is to convert an input signal of a layer in the 
neural network to an output signal. A rectified linear unit (ReLU) is the key activation function for 
this activity in deep-neural networks [31]. It expedites the convergence of the training procedure and 
produces better results compared with standard sigmoid-like activation functions. Apart from the 
numerous benefits of a ReLU rectifier, recent studies have shown that there are shortcomings [30,32]. 

The main downside of U-Net is that training can decelerate in the intermediate layers of deeper 
networks. Thus, there is risk of ignoring layers where abstract attributes are exemplified. This is 
caused by gradients becoming weakened farther away from the last layer of the network, where the 
difference between predicted and actual values is calculated, causing slower updates for far-removed 

Figure 1. Sample dermoscopic images of skin lesions.

Fully convolutional networks (FCN) are one of the successful methods among the initially
proposed neural networks for image segmentation [5]. By applying FCNs to CNN technology, feature
to feature mapping can be achieved without first obtaining spatial information [20–24]. The FCN
architecture is a broadened type of CNN and contains only convolutional and pooling layers, which
provide the ability to make predictions about inputs. These are generally applied to local tasks instead
of global ones [25,26]. A variety of FCN-based methods have been suggested recently to mitigate this
problem. For example, the author of [27] suggested a multi-scale CNN that contained sub-networks
having different resolution results to gradually expand coarse estimation.

In order to reconstruct accurate forms of target borderlines, sort pixel-wise class labels and
calculate segmentation masks, the straightforward deconvolutional step has been replaced with a
deep up-convolution network in [28]. Several studies tried to achieve better segmentation accuracy by
using spatial information. U-Net has achieved great performance through skip connections by joining
features of low-level layers and high-level layers [29].

The foremost weakness of the U-Net architecture is that training may reduce the training speed in
the middle layers of deeper neural networks, so there is the threat of overlooking the layers. The main
reason for this phenomenon is that gradients become weakened further away from the output layer of
a network, where the loss of the training is computed. Additionally, the rectified linear unit (ReLU)
activation function was used in the original U-Net paper. The dead neuron problem of the ReLU has
been detected by Lu et al. [30]. We substituted ReLU activation function with PReLU non-linearity for
training the network to lessen the effect of this problem.

The foremost responsibility of activation functions is to convert an input signal of a layer in the
neural network to an output signal. A rectified linear unit (ReLU) is the key activation function for
this activity in deep-neural networks [31]. It expedites the convergence of the training procedure and
produces better results compared with standard sigmoid-like activation functions. Apart from the
numerous benefits of a ReLU rectifier, recent studies have shown that there are shortcomings [30,32].

The main downside of U-Net is that training can decelerate in the intermediate layers of deeper
networks. Thus, there is risk of ignoring layers where abstract attributes are exemplified. This is caused
by gradients becoming weakened farther away from the last layer of the network, where the difference
between predicted and actual values is calculated, causing slower updates for far-removed weights.
Another limitation is that the classic deconvolutional method of generating images, achievements
notwithstanding, has produced theoretical concerns that direct artifacts are sometimes produced
in images. In our approach, we apply an interpolation method for upsampling to overcome these
problems. We achieve an adequate accuracy for skin-lesion segmentation because of the aspects of
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the bilinear interpolation and a parametric ReLU (PReLU) nonlinearity, which admirably matches the
chosen interpolation method.

Deep-neural networks include multiple nonlinear concealed layers, leading to expressive models
learning very complex relations between inputs and results. With restricted training data, many of
these complex relationships will refer to noise, which leads to overfitting. Several approaches have
been applied to avoid this. Strivastava et al. proposed a dropout method to mitigate this problem.
The technique randomly drops units from the neural network during training [33]. This prevents
excessive perfect co-adaptations. More technically, individual nodes are either dropped from the net
with probability of 1−p or kept with probability of p. The reduced network is then left for training
while the inputs and outputs for the dropped-out nodes are eliminated, as illustrated in Figure 2.
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Figure 2. Dropout neural network. (a) A traditional network with two hidden layers; (b) An instance
of a thinned network. Crossed nodes have been dropped.

The main purpose of this paper is achieving an adequate accuracy for skin-lesion segmentation
because of the aspects of the bilinear interpolation and a parametric ReLU (PReLU) nonlinearity,
which admirably matches the chosen interpolation method. In order to avoid overfitting and speeding
up the training step, we use a dropout technique after convolutional layers.

2. Materials and Methods

2.1. Overview

We propose a novel neural-network architecture that can overcome uneven overlapping and
fading gradients in the intermediate layers. The key advantage of this recommended architecture
over the classical U-Net framework entails its upsampling stage. The attained segmentation accuracy
is commensurate-to-slightly-better-than that accomplished using the standard U-Net architecture.
Furthermore, its accuracy is increased, reducing segmentation artifacts. Our modified architecture
is also more computationally effective than the standard transposed convolutional U-Net method.
The proposed method has been trained with the following system configuration: a Intel(R) Core (TM)
i7-9700K processor, 32 GB of installed memory (RAM) and an 8 GB NVIDIA GeForce RTX 2060 SUPER
graphics card.

2.2. Dataset

We use the dataset reported in [34], which contains both training and testing data. The training
dataset includes 2594 dermoscopic skin-lesion images and corresponding ground-truth response masks.
The testing dataset consists of 1000 images. Originally, every image in both the training and testing
sets is of different size. First, images should be equal in size and grayscale. We thus resized all the
input images to 256 × 256 and converted them to binary prior to training. Second, normalization must
be applied before training. For image normalization, the matrices representing training and testing
were divided by 255 to place them in the range (0, 1). We then split the training dataset into training
and validation at 90% and 10%, respectively.
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2.3. Proposed Method Architecture

Figure 3 provides a general flowchart of our image segmentation model, through which the input
images transit. The initial training step is executed automatically by default. The binary cross-entropy
loss function is computed by comparing the ground truth with the resultant image segmentation.
This procedure is repeated until the properties of the callback function are satisfied during training.
At each iteration, the weights and biases are updated via backpropagation. When training is complete,
the model checkpoints save the final parameter values. These weight values and biases are then used
for testing unseen images.
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In Figure 4, the model architecture consists of two paths: encoder (left side) and decoder (right
side). The encoder path operates like a classic CNN. It includes joint 3 × 3 convolutions with batch
normalization, followed by a PReLU activation function. In every down-sampling step, we have two
convolution layers. To avoid overfitting, the dropout method is used before applying a max-pooling
operation. The channel size is increased twice at each down-sampling step so that the size of the
feature map declines.
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The most important path in CNN-based image segmentation is that of the decoder. At each
decoder path step, a 2 × 2 bilinear interpolation is applied for upsampling the feature map. To reform
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the spatial data, the result of the decoder path and the correspondingly cropped feature map from the
encoder feature map are merged and tracked by again operating the same-size convolution layers,
batch normalization, and PReLU nonlinearity. A 1 × 1 convolution is used for the final layer to record
each feature vector tailed with its sigmoid activation function for extracting the binary image. In the
next sub-sections, we discuss the techniques used in the network architecture.

2.4. Upsampling Method

U-Net normally includes two sections: downsampling and upsampling. The authors of [29]
attained accurate pixel-level localization by concatenating the downsampling and upsampling
layers together. Upsampling is the most important part of the U-Net architecture, because the
spatial information of the feature map is generated here. Transpose convolution (or deconvolution),
having learnable parameters, is used in the upsampling section. Apart from its learnable parameters,
this execution method is very time-consuming, because the kernels require additional weights for
training. Moreover, it can lead to uneven overlap [35], as depicted by the checkerboard pattern of
Figure 5, which causes artifacts at a variety of scales.
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Figure 5. Schematic illustrating an artifact caused by the transposed convolution: (a) checkerboard
problem caused by applying a transpose convolution; (b) uneven overlap (with the parameters of
stride 2 and size 3).

We use bilinear interpolation, an alternative to standard deconvolution, in the decoder part of our
model to avoid artifacts. In contrast to deconvolution, this method does not have artifacts because of
its default behavior. The image coordinates, f (n10, n20), f (n11, n21), f (n12, n22) and f (n13, n23), are the
nearest neighbors of g(n1, n2). The intensity values of the interpolated image g(n1, n2) are computed
as follows:

g(n1, n2) = A0 + A1n1 + A2n2 + A3n1n2 (1)

Equation (1) represents a bilinear function having coordinates (n1, n2). Here, we refer to f as an
intensity value at given (n10, n20), (n11, n21), (n12, n22) and (n13, n23) pixel locations before applying
interpolation and g as an intensity value of interpolated image matrix in (n1, n2) coordinates, and As
are the bilinear weights. The bilinear weights, A0, A1, A2 and A3, are computed by solving the matrix
in Equation (2): 

A0

A1

A2

A3

 =


1 n10

1 n11

n20 n10n20

n21 n11n21

1 n12

1 n13

n22 n12n22

n23 n13n23


−1

f (n10, n20)

f (n11, n21)

f (n12, n22)

f (n13, n23)

 (2)

As a result, g(n1, n2) is defined as a linear combination of the gray levels of its four nearest
neighbors. The linear combination defined by Equation (1) is, in fact, the value assigned to g(n1, n2)

when the perfect least-squares planar fit is made to these four neighbors. This process of optimal
averaging produces smoother results. In Figure 6, we visually describe bilinear interpolation.

In this example, we increase the size of the 2 × 2 matrix into a 4 × 4 one. According to Equation (2),
the weight values of specific elements in the up-sampled matrix depend on how near this element is to
known elements.
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Figure 6. Example of bilinear interpolation.

Transpose convolution has learnable parameters for training. The number of parameters is more
than 10 million in deep-neural networks, such as U-Net, because of their trainable weight and bias
values in transpose convolution. Consequently, this causes adverse impacts triggered by voiding the
middle layers’ gradients of the U-Net models. We achieve a reduction of this detrimental impact by
applying bilinear interpolation to the decoder part.

2.5. Activation Functions

2.5.1. ReLU

Activation functions are key to artificial neural networks discovering and making sense of
complex and nonlinear relationships between input and output, because they bring nonlinearity to the
network. Their objective is to convert an input signal layer of the neural network into an output signal.
The ReLU is the most common activation function in deep networks. It expedites the convergence of
the training procedures and provides better results compared with standard sigmoid-like activation
functions [36–38]. The function and derivative of this nonlinearity are represented as follows:

f (x) =
{

x i f x ≥ 0
0 i f x < 0

f ′(x) =
{

1 i f x > 0
0 i f x < 0

(a) Function (b) Derivative
(3)

Geometrically, the ReLU function and its derivative are illustrated as follows:
The ReLU is linear for all non-negative values and zero otherwise. The derivative, an important

factor for updating gradients, is zero when it takes negative values and one otherwise. Apart from the
numerous benefits of the ReLU rectifier, recent studies show that there are some shortcomings [39,40].
Several gradients can be unstable during training and can “die” by causing a weight to update in such
a way that it will never activate on any data point again. Thus, the ReLU can result in “dead neurons”.
For activations in the region (x < 0) of the ReLU, the gradient will be zero, and the weights 0 will not be
fine-tuned during descent. Thus, the neurons that go into that state will stop responding to variations
in the input. Simply because the gradient is zero, nothing will change. This is called the “dying ReLU”
problem [30,32].

Systems using these units sometimes manifest the dying ReLU issue during training, in which the
state (x < 0) is very likely for most training examples for nodes within the network. It is comprehensible
that the error backpropagation algorithm utilizes a derivative function, f’(x), such that the ReLU
nonlinearity is zero for x < 0 (see Figure 7). Thus, patterns that cause x < 0 do not change the unit’s
parameters. This condition can cause ambiguity in practice, because units that are not active will
probably not be trained. The dying ReLU problem is likely to occur when:

• The learning rate is too high.
• There is a large negative bias.
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Consider the following equation used to update the weight values during backpropagation:

wnew = wold −

( tsL
tsw

)
∗ α+ b. (4)

Here, α is the learning rate, b is the bias, and tsL
tsw is the derivative of the loss function with respect to

the weight value (w). Thus, if the learning rate is too high or the bias is negative, it may bring negative
new weight values after the backpropagation step. After the weight becomes negative, the ReLU
activation function of that neuron will never be activated and will lead to the death of the neuron.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14 
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2.5.2. PReLU

To overcome the downsides of ReLU nonlinearity, the PReLU has been introduced. This is a new
generalization of the ReLU, in which the activation function adaptively learns the parameters of the
rectifiers and increases accuracy at little additional computational cost. The PReLU attempts to fix
the dying ReLU problem by providing a slight negative slope when the input values are negative.
This activation function allows the neurons to decide the most correct slope for the negative region.
The formal definition of the PReLU and its derivative are given below:

f (xi) =

{
xi i f xi

aixi i f xi < 0
f ′(xi) =

{
1 i f xi > 0
ai i f xi < 0

(a) PReLU activation function (b) Derivative of PReLU
(5)

In Equation (5), xi is the input of the activation function, f, in the ith node, and ai is a coefficient
managing the angle of the negative section that allows the nonlinearity to differ at each node. When ai
= 0, it becomes a ReLU. If ai is small and remains the same value, the ReLU becomes a “leaky” ReLU
and has an insignificant impact on precision. If ai is a learnable parameter of the network, the equation
becomes a PReLU. Figure 8 shows the PReLU activation function.
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In the PReLU, the alpha parameter (i.e., the “leak”) is included to prevent the gradient from
becoming zero. This makes the gradient more robust for optimization, because the weight is adapted
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for those neurons that are not active within the ReLU. The PReLU has non-constant coefficients in its
negative part, and these are adaptively learned by the model. Taking all benefits of the PReLU into
consideration, we use this activation function for our proposed neural network.

3. Experimental Settings

3.1. Training Network

Convolutions of 3 × 3 were applied to each convolution layer followed by the PReLU and
max pooling with a size of 2 × 2 and a stride of 2. Sixteen filters were used for the first hidden
layer. This number was doubled for each consecutive hidden layer until the end of the encoder path.
This caused an increase in the number of channels and a decrease in the size of feature map. The volume
of the feature map in the bottleneck (the part of the network between the encoder and decoder path) was
16 × 16 with 256 channels. A 2 × 2 interpolation operated in the decoder path simultaneously enlarged
the size of the feature map and decreased the number of channels. After each upsampling process,
the convolution layer and the PReLU nonlinearity was utilized again. The predicted output size was
the same as the input size: 256 × 256. Overall, the network contained more than 7 million trainable
parameters. Batch normalization was used to normalize the input layer by adjusting and scaling the
activations. Additionally, this permitted each layer of the network to learn by itself, separately from
other layers.

3.2. Data Augmentation

The demand for biomedical image data is always high. Data augmentation is a tactic that allows
the deep-learning community to significantly increase the diversity of data available for training
without collecting new images. The size of the training dataset used in our work was insufficient for
satisfactory training. Thus, we implemented data augmentation for the training set with horizontal
flipping and a 20% rotation range. This way, we prevented our network from learning irrelevant
features and essentially boosted the overall performance.

3.3. Evaluation Metrics

Ground truth is represented by the segmentation region defined by individual experts.
The deep-neural network output is the segmentation result of the identical image generated by
the deep-learning algorithm. The area of overlap defines how the two factors are matched with each
other, and this area represents true positives (TP). False negatives result from the difference between
the ground truth and TP. The remaining part of the union comprises false positives. Another part of
the image that is not predicted by segmentation contains the true negatives. Figure 9 illustrates the
above-mentioned terms geometrically.
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To measure our method’s performance, we used three types of metric: the dice coefficient (DC),
intersection-over-union (IOU), and pixel accuracy. The IOU metric (i.e., the Jaccard index) identifies the
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percentage overlap between the actual mask and our output prediction. Using the terms in Figure 9,
we define IoU as

IoU =
TP

TP + FP + FN
(6)

Similarly, the DC can be written as

Dice =
2 ∗ TP

(TP + FP) + (TP + FN)
(7)

An alternative metric used to assess semantic segmentation calculates the percentage of pixels in
the image that were precisely classified. This pixel accuracy (PA) is usually reported independently for
each class as well as globally for all classes:

PA =
TP + TN

TP + TN + FP + FN
(8)

4. Results and Discussion

When we compared our recorded result with different U-Net methods such as the original U-Net,
FCN-1 (U-Net with the PReLU and transpose convolution), and FCN-2 (U-Net with the PreLU and
bilinear interpolation), we achieved acceptable metrics accuracy with the test dataset. Table 1 shows
the average accuracies over different models. Via experiments, we identified that using bilinear
interpolation jointly with the PreLU was an effective method for skin-lesion segmentation. The training
time per epoch is around 6 min for the original U-Net, and the proposed method spends less than
5 min per epoch.

Table 1. Test accuracy of various U-Net models.

Model Pixel Accuracy Dice IoU

U-Net 91.12% 78.23% 39.26%
FCN-1 90.47% 81.85% 40.51%
FCN-2 91.34% 83.26% 41.84%

Proposed method 94.36% 88.33% 44.05%

Here: U-Net—original U-Net architecture; FCN-1—U-Net with the PReLU and transpose convolution;
FCN-2—U-Net with the PreLU and bilinear interpolation; Proposed method: U-Net with the PreLU, bilinear
interpolation and dropout.

Figure 10 depicts image differences from the above-given versions of U-Net. The transpose
convolution method for upsampling had more false negative results in the validation set.
The experiments showed that a slight underfitting was recorded in the case of using transpose
convolution (see Figure 10c,d). When the interpolation method was used with PreLU nonlinearity,
the model detected more outliers in the validation set images. Figure 10e shows an image of high
variance (overfitting). After applying the dropout technique, we overcame this problem in the
interpolation method. The final visual result of the model is given in Figure 10f.

We compared the validation set accuracies of each model during training (see Figure 11). After 20
training epochs, the validation accuracy of each method remained nearly the same. In Figure 11,
U-Net-1 and U-Net-2 reflect FCN-1 and FCN-2, respectively.

The illustration in Figure 11 helps us reach a conclusion about the learning procedure of each
method. Transpose convolution-based models tend to learn faster, compared with interpolation-based
methods. They almost always achieve their highest accuracy after 12 epochs. Contrarily,
interpolation-based methods take much more time to achieve desired accuracies. The reason for
this phenomenon is that the dropout effect causes a delay in reaching the desired accuracy. Another
explanation for why bilinear interpolation-based approaches (FCN-2 and the proposed method) tend
to learn more slowly than transpose convolution-based methods (U-Net and FCN-1) is that transpose
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convolution uses more learnable parameters compared with interpolation methods. In the initial steps
of learning, transpose convolution-based methods try to learn with higher accuracy because of their
default parameters. On the other hand, interpolation-based methods do not use learnable weights and
biases. Therefore, they start to learn with lower accuracy and slowly reach the desired accuracy.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 
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The graphs in Figure 12 clarify the training and validation accuracies of our technique. There is
not much difference between training and validation accuracy, owing to the dropout regularization
applied to the network.
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Figure 12. The effect of dropout on the learning curve: (a) learning curve with dropout and (b) learning
curve without dropout.

The overall dice coefficient was determined by calculating the average means of the individual
dice coefficients of all images. Some DC values were relatively small because of noise in the input
image. Another reason for the less DC values is that the skin and lesion colors are similar to each
other in some test sample images. Consequently, there is the emergence of similar pixel intensities in
those sample images. Figure 13 illustrates several examples of high and low dice coefficients in the
validation set.
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5. Conclusions and Future Work

In this paper, we used a bilinear interpolation method for the upsampling part of our FCN with a
block of convolution layers. Our proposal approach provided good results for skin-lesion segmentation
by jointly applying the PReLU and bilinear interpolation methods. We successfully eliminated artifacts
caused by theoretical issues and reduced the detrimental impacts of U-Net parameters by using
the interpolation method in the decoder part. To avoid overfitting, dropout was applied after each
convolution block. We achieved ~94% PA and an 88.33% dice coefficient for skin-lesion segmentation.
In future work, we plan to determine the reasons for low dice coefficients in some of our experimental
cases by applying advanced image-processing techniques.
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