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Abstract: Under the fierce competition and budget constraints, most mobile apps are launched
without sufficient tests. Thus, there exists a great demand for automated app testing. Recent
developments in various machine learning techniques have made automated app testing a promising
alternative to manual testing. This work proposes novel approaches for one of the core functionalities
of automated app testing: the detection of changes in usage-phases of a mobile app. Because of
the flexibility of app development languages and the lack of standards, each mobile app is very
different from other apps. Furthermore, the graphical user interfaces for similar functionalities are
rarely consistent or similar. Thus, we propose methods detecting usage-phase changes through object
recognition and metrics utilizing graphs and generative models. Contrary to the existing change
detection methods requiring learning models, the proposed methods eliminate the burden of training
models. This elimination of training is suitable for mobile app testing whose typical usage-phase
is composed of less than 10 screenshots. Our experimental results on commercial mobile apps
show promising improvement over the state-of-the-practice method based on SIFT (scale-invariant
feature transform).

Keywords: automated mobile app testing; graph entropy; graph kernel; generative model;
machine learning; unsupervised learning

1. Introduction

As users prefer mobile devices over conventional personal computers as a platform for news
and entertainment, mobile apps now dominate software usage. However, developers have faced
new challenges. Under the fierce competition and budget constraints, most developers do not have
time for detecting bugs and potential crashes in their apps; thus, most apps are launched without
sufficient testing. Testing technologies have yet to catch up, and mobile app testing still depends on
manual methods, while reliable automated testing tools are rare [1].

In the domain of automated app testing, Google’s Android Monkey tool is regarded as the
state-of-the-practice for automated testing for the Android system [2]. Android Monkey takes a
practical solution for GUI (graphical user interface) based testing: a random testing approach (“monkey
testing”) for generating random events [3,4]. Although the “monkey” approach is cost-effective, the
unintelligent manner of testing leaves room for improvement. For example, recent developments in
object recognition have been utilized for improving random testing [5]. In [6], a reinforcement learning
based approach was proposed for identifying how individual UI widgets are interacting. Saumya et al.
introduced the idea of the automatic generation of worst case test inputs from a model of program
behavior in order to test programs under extreme loads [7]. More detailed descriptions on approaches
for automated testing of mobile apps were introduced in [8]. Automated mobile app testing requires a
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number of functionalities such as feature extraction, event generation, event execution, etc. AI (artificial
intelligence)/ML (machine learning) based approaches can augment or improve the performance of
some functionalities for example by recognizing UI widgets in GUI and extracting keywords through
OCR (optical character recognition).

In this paper, we introduce methods for detecting changes in mobile app usage based on
GUI screenshots. The detection of changes in usage is important for generating input events and
backtracking past executions. From the viewpoint of detecting changes in data streams, there already
exist excellent works on concept drift [9,10]. However, the characteristics of mobile app testing
make it difficult to employ existing achievements in the field of concept drift. Typical concept drift
methods train models in order to measure the error rate or to estimate densities. In the field of
mobile app testing, each usage-phase is typically composed of less than 10 images, and it is practically
impossible to construct a training dataset due to time limits or flexible and inconsistent designs and
implementations of the same functionalities. Thus, we are unable to utilize training based methods
(supervised approaches).

In order to tackle this obstacle, we propose detection methods not requiring training (unsupervised
approaches). Our detection methods compare GUI screenshots of a mobile app. In order to
measure the difference between consecutive images, we utilize graph entropy [11], graph kernels [12],
a probability distribution comparison metric, a generative model (Chapter 1 in [13]), and a sequence of
log-likelihood values. Experimental results on 50 commercial apps report that the proposed methods
achieve encouraging performance compared to the current state-of-the-practice method based on SIFT
(scale-invariant feature transform) [14,15], and it is possible to detect changes in a data stream in an
unsupervised manner.

The structure of the rest of this work is as follows. Section 2 summarizes the relevant works.
Section 3 describes the details of the dataset and the proposed methods. Section 4 includes the
experimental results. Finally, we give concluding remarks in Section 5.

2. Related Work

Many applications require the detection of significant changes in data streams such as video
streams or streams of signals. The changes of interest can be detected by methods utilizing concept
drift learning [9] or methods based on anomaly detection [16] in general. The goal of concept drift
techniques is to mine inherent patterns from data streams by learning the underlying distribution over
time [10]. In order to obtain inherent patterns, a typical procedure for drift detection is composed
of data retrieval, data modeling, the calculation of test statistics, and hypothesis testing steps [10].
Although data retrieval for data streaming is also an important research topic [17], the key to drift
detection is the measurement of dissimilarity. Gama et al. introduced a detection method based on
the error rate of a learner in which once the error rate of a model reaches a threshold (the warning
level), then the training step for a new learner is started [18]. For fast training, extreme learning
machine (ELM) was introduced, whose architecture has a single hidden layer, and only the connections
between the hidden layer and output layer are trained [19]. Xu et al. [20] conceived of a dynamic
extreme learning machine improving ELM by adjusting the architecture of a model according to the
classification performance of the current model.

The distance or dissimilarity between the distribution of the past and new data can be utilized to
detect changes. In [21], the relative entropy was used to compare the dissimilarity between two
distributions while the bootstrap method enhanced the statistical significance. In least-squares
density-difference (LSDD) estimation, a density-difference model is fit to the target density-difference
function through the squared loss [22]. For unknown distributions, the difference between
two distributions represented by LSDD can be estimated by the Gaussian kernel function, thus
enabling change detection [23]. Ross et al. improved traditional sequential monitoring methods
through nonparametric charts capable of detecting arbitrary changes to the process distribution [24].
With an estimated distribution, a sequence of the likelihood of the data stream can be computed.
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The distributions of log-likelihood were compared so as to detect changes by computing the symmetric
Kullback–Leibler divergence [25].

The occurrence of changes in a data stream can be interpreted as anomalies [26]. Recently,
graph based approaches have been actively researched [16]. In order to represent graphs as points
in a non-Euclidean space and detect changes, adversarial training of autoencoders was employed
for graph embeddings on constant-curvature manifolds, and change detection tests were performed
considering embedded graphs [27]. Dissimilarity from prototype graphs was also utilized for change
detection [28].

The test for detecting changes can be interpreted as a procedure for deciding to either
reject a hypothesis that a new instance is generated from the current distribution or not reject it.
The Student t-test quantifies how significant the difference between two datasets is (chap10 in [29]).
For sequential data, the Mann–Kendall test and the CUSUM (cumulative sum) test are suitable [30].
With multiple parameters, the sequence of log-likelihood is a good indicator for change detection.
For a log-likelihood stream, t-statistics, Kolmogorov–Smirnov, or Lepage can be utilized as the test
statistic [25].

3. Materials and Methods

The term “usage-phase” denotes states comprised of a user’s experience with a mobile app
such as login, viewing goods, writing/reading a post, etc. In most cases, changes of usage-phases
accompany changes in GUI compositions. Some changes in usage-phase are easy to detect. However,
some changes are so subtle that they make automated testing difficult. For example, if a user reads
a long review, dragging down causes changes in screen composition, but the sequence of slightly
different images constitutes the same usage-phase semantically. Without semantic knowledge on the
current usage, an automated tester is likely to decide that each image corresponds to a new usage-state
and devise a complex testing strategy. The proposed methods aim to detect changes in usage-phases
while minimizing the false-positive ratio. In order to achieve our goal in an unsupervised manner,
we propose methods based on graphs and probability distributions in a screenshot. In Sections 3.1.1
and 3.1.2, we formulate the problem and describe our dataset. Section 3.2 describes the basic change
detection algorithm and its proposed variations briefly. Section 3.3 discusses a method based on SIFT.
Section 3.4 describes graph kernel and graph entropy based change detection methods. In Section 3.5,
methods utilizing probability distributions are explained.

3.1. Experiment Description

3.1.1. Problem Statement

In this research, a user experience is represented as a stream of images,D = {y1, ...yn}, where each
image corresponds to a screenshot of the currently used mobile app. With a given distance metric
d(·, ·), a change in usage-phase can be detected if the measured difference between two consecutive
screenshots (yi, yi+1) is greater than a threshold (τ),

d(yi, yi+1) > τ. (1)

The choice of d(·, ·) and τ is important for implementing error-robust test systems. For the
construction of error-robust test systems, we consider not D, but a sequence of graphs converted from
D (i.e., undirected labeled graphs characterized by nodes representing UI widgets and edges denoting
relations between UI widgets) and a stream of probability distributions representing each screenshot.
For conversion, UI widgets in yi are recognized through Faster R-CNN [31].
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3.1.2. Data

For our study, we collected 13,272 screenshots from 50 Android apps. After installing each app,
a user used the installed app and produced screenshots utilizing the ADB (Android Debug Bridge)
tool. In general, approximately 4 to 5 screenshots were sampled per second. After sampling, the user
grouped a set of consecutive screenshots as a usage-phase manually. Details on the collected datasets
are provided in Table 1.

Table 1. A list of tested apps and the number of usage-phase screenshots (numbers in parentheses
mean the number of usage-phases manually determined/the averaged number of GUI screenshots per
usage-phase).

4shared alba albamon amazon baedal cars cbs cgvheaven sports
231 92 176 201 135 294 252 154

(34/6.8) (8/11.5) (20/8.8) (35/5.7) (8/16.9) (42/7.0) (18/14.0) (36/4.3)

coupang deep door drink water ebay emart espn facebookbooster dash reminder
133 433 580 217 143 158 97 225

(19/7.0) (55/7.9) (187/3.1) (22/9.9) (24/6.0) (13/12.2) (15/6.5) (27/8.3)

fish google groupon hawhae home& kakao korail little
brain translator shopping bus caesars
310 189 335 196 177 279 212 193

(40/7.8) (32/5.9) (47/7.1) (20/9.8) (46/3.8) (59/4.7) (40/5.3) (48/4.0)

mcdonalds melon messenger my fitness naver news offerup papagowebtoon break
373 201 388 387 150 273 365 173

(69/5.4) (11/18.3) (53/7.3) (49/7.9) (17/8.8) (25/10.9) (32/11.4) (27/6.4)

pininterest pluto tv poshmark roku shareit smart spotify the weather
news channel

394 299 348 333 458 263 263 195
(49/8.0) (32/9.3) (74/4.7) (22/15.1) (63/7.3) (28/9.4) (57/4.6) (18/10.8)

today triple tubi wayfair wish workout for yanolja yelphome woman
227 237 227 549 393 359 258 411

(31/7.3) (72/3.3) (14/16.2) (96/5.7) (68/5.8) (56/6.4) (63/4.1) (76/5.4)

yeogieotae zumo The mean of the manually-labeled
208 128 usage-phases

(44/4.7) (31/4.1) 265.44

3.2. Basic Change Detection Algorithm

Algorithm 1 provides the basic working of the proposed methods. In essence, a set of usage pages,
U , is constructed by computing Equation (1) on D = {y1, ...yn}. If the computed value is larger
than a threshold, τ, it is regarded that a change is detected. However, there exist variations of
Algorithm 1 according to the employed methods and the selection of the threshold, τ. The threshold, τ,
is determined by three methods: Min+Max

2 , the mean, and the empirical threshold. In order to compute
Min+Max

2 , we observe differences between two consecutive screenshots in the current usage-phase,
Ut. “Min” and “Max” are the minimum and maximum difference in Ut, respectively. Thus, in each
usage-phase, Ut, τ is adjusted dynamically. The “mean” is computed by firstly observing differences
between consecutive screenshots in a mobile app, then computing the averaged differences. As a
result, each app has a distinct “mean” value. In the case of empirical threshold, we fix τ by an
empirically-determined number.

There are also variations on the computation of Equation (1). With the SIFT based method
(Section 3.3), Equation (2) is utilized for computing Equation (1). For graph based methods
(Sections 3.4.1 and 3.4.2), Algorithm 1 becomes more complicated. Firstly, the input, D = {y1, ...yn},
is converted into a set of graphs, G = {g1, ...gn} (for more details, refer to Section 3.4). Then for graph
entropy based detection (Section 3.4.1), the conditional graph entropy (Equation (4)) between two
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consecutive graphs gi and gi+1 is utilized as a measure of difference between two corresponding GUI
screenshots yi and yi+1. For graph kernel-based detection (Section 3.4.2), dissimilarity (measured by
Equation (5)) between two graphs gi and gi+1 is utilized as a measure of the difference between two
corresponding GUI screenshots.

Algorithm 1: Basic change detection algorithm.
Input :D = {y1, ...yn} and a threshold τ.
Output : A set of usage-phases, U = {U1, ..., Um}.

1 Initialize t← 1.
2 Initialize U1 with y1.
3 for i← 1 to n− 1 do
4 if d(yi, yi+1) < τ then
5 Add yi+1 to Ut.
6 end if
7 else
8 t← t + 1.
9 Initialize Ut.

10 Add yi+1 to Ut.
11 end if
12 end for

For probability distribution based methods (Sections 3.5.1 and 3.5.2), the input, D = {y1, ...yn},
is converted into a set of probability distributions, P = {P1, ...Pn} (for more details, refer to
Section 3.5). The Kullback–Leibler divergence between consecutive probability distributions Pi and
Pi+1 is computed to measure the difference between corresponding GUI screenshots yi and yi+1
(Section 3.5.1). In Section 3.5.2, a generative model, Mt, for the current usage-phase, Ut, is constructed.
Then, the likelihood of a new image ynew (exactly the likelihood of a converted probability Pnew) is
computed by Equation (9). By computing Equation (9), a sequence of likelihood values is obtained.
We also attempt to detect changes by testing the hypothesis that a probability distribution representing
ynew is generated by the current usage-phase model (Mt) based on the sequence of likelihood values
(Section 3.5.3).

3.3. SIFT Based Method

The scale-invariant feature transform (SIFT) is utilized to detect local features in an
image [32]. Because features extracted by SIFT are invariant to orientation, changes in illumination,
and uniform scaling, SIFT is widely used for image and video analysis [33,34]. Target image search
based on local features (TISLF) was introduced as a method for comparing target images and images
in video sources by means of local features [34]. The TISLF is composed of a video segmentation step,
a recognition step, and an estimation step. In TISLF, SIFT keypoints are utilized as a similarity measure
between two consecutive images yi and yi+1 by:

p(yi, yi+1) =
# of matching points
total # of keypoints

. (2)

The value computed by Equation (2) is interpreted as the probability of two successive
images belonging to the same interval. These values can be concatenated into the vector W =

(P(y1, y2), . . . , P(yi−1, yi)) representing the successive similarities over successive images. We utilize
Equation (2) for detecting changes and denote it as the “SIFT” method in this paper. The SIFT based
method is regarded as the state-of-the-practice method in this work.
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3.4. Graph Based Methods

After recognizing UI widgets in a screenshot, a graph can be obtained from a set of recognized UI
widgets and their corresponding coordinates. The given user experience, D = {y1, ...yn}, is converted
into a stream of graphs, G = {g1, ..., gn}, by Prim’s algorithm. For graph conversion, each recognized
UI widget is considered as a node, and an edge between two nodes is determined with a label denoting
the minimum distance between two UI widgets. In detail, a complete graph consisting of every
recognized UI widget and node between every possible combinations of nodes is converted into a
minimum spanning tree by Prim’s algorithm. The resulting minimum spanning trees act as inputs
for graph based detection methods. With the converted graphs, we can choose d(·, ·) in Equation (1)
based on measures such as graph entropy [11] or graph kernels [12].

3.4.1. Graph Entropy Based Detection

Entropy based similarity can be interpreted as a measure of information needed to describe
a distribution P utilizing another distribution Q [35]. Therefore, the conditional entropy, H(X|Y),
which is the required amount of information for quantifying the outcome of a random variable X
given another random variable Y, gives a lead for the similarity between two graphs g1, g2. The graph
entropy of a graph G and a random variable X is defined as:

HG(X) = min
X∈W∈Γ(G)

I(W; X). (3)

In Equation (3), Γ(G) denotes the group of independent sets of G (here, a set of vertices of G is
considered as independent if there exists no interconnection), I(W; X) is the relative entropy where
I(W; X) = H(W)− H(W|X), and W takes values in Γ(G). From the basic definition of graph entropy,
the conditional graph entropy [11] is:

HG(X|Y) = min
X∈W∈Γ(G)

I(W; X|Y). (4)

In Equation (4), W, X, Y is a Markov chain, that is p(w|x, y) = p(w|x). From Equation (3) and the
definition of the relative entropy, we are able to compute the entropy of a graph gi and compare two
consecutive graphs.

3.4.2. Graph Kernel Based Detection

A kernel k(x, x‘) is a similarity measure between x and x‘. The role of a graph kernel is to evaluate
similarity in the graph structure (an extensive study on graph kernels was provided in [36]). A graph
can be interpreted as bags of vertices and edges. Then, the level of similarity between two graphs, G1

and G2, can be computed by comparing all pairs of labels of the vertex from g1 and g2,

kVL(g1, g2) = ∑
vi∈g1

∑
v‘r∈g2

k(l(vi), l(v‘r)) (5)

where l(vi) denotes the label of vertex vi and k(·, ·) is the equality indicator function. kVL acts as a
linear function of labels (of vertices) in two different graphs. Thus, two consecutive graphs can be
compared by graph kernels, especially the vertex label histogram kernel [37].

3.5. Probability Distribution Based Methods

Each screenshot can be represented as a probability distribution of UI widgets and
their connections. For a screenshot yi, the probability distribution of yi is defined as:

P(yi) = (P(v1), · · · , P(vn), P(e1), · · · , P(em)) (6)
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where n denotes the number of UI widget categories and m is the number of possible combinations of
UI widgets (note: because the categories of UI widgets are fixed, we are able to generate the possible
combination of nodes (UI widgets) and assign a unique identification label to each edge connecting two
nodes). Based on Equation (6), a detecting method based on the Kullback–Leibler divergence (KLD)
measure, a generative approach utilizing the likelihood measure, and a method through hypothesis
testing are conceptualized.

3.5.1. KLD Based Detection

The Kullback–Leibler divergence, Equation (7), is a measure for comparing two
probability distributions. For discrete probability distributions P and Q defined on a probability
space X , the Kullback–Leibler divergence is:

DKL(P||Q) = ∑
x∈X

P(x)log
(

P(x)
Q(x)

)
. (7)

Because we convert each screenshot into a probability distribution by Equation (6), Equation (7)
is a natural choice for computing Equation (1). The procedure is simple: Firstly, two consecutive
screenshots yi and yi+1 are represented as probability distributions based on Equation (6). Then, the
KLD value between two resulting probabilities, P(yi) and P(yi+1), is computed by Equation (7).

3.5.2. Usage-Phase Model Based Detection

Once we detect usage-phase changes, we are able to collect screenshots (Ut = {yt,1, · · · , yt,2, yt,i};
yt,i denotes the ith screenshot belonging to the tth usage-phase, Ut) deemed to belong to a same
usage-phase. With the probability distribution converted screenshots in Ut, we build a model, Mt,
for Ut:

Mt =
(

P(v(1)|Ut), · · · , P(v(n)|Ut), P(e(1)|Ut), · · · , P(e(m)|Ut)
)

(8)

where P(v(k)|Ut) = 1
Z × ∑

|Ut |
i=1 v(k)t,i and P(e(k)|Ut) = 1

Z × ∑
|Ut |
i=1 e(k)t,i (Z is a normalization constant to

make the summation of all elements in Mt equal to one; v(k)t,i and e(s)t,i denote the number of the kth
UI widget and the sth edge in the ith screenshot in Ut, respectively). That is, P(v(k)|Ut) is computed
from the number of occurrence of the UI widget, v(k), in screenshots belong to Ut. From Equation (8),
we can compute the likelihood L(ynew|Mt): the probability of a new screenshot, ynew, being sampled
from a probability distribution represented by Mt. The log-likelihood L(ynew|Mt) is computed by:

L(ynew|Mt) = logCMt +
n

∑
k=1

logP(v(k)|Ut)
v(k)new +

m

∑
k=1

logP(e(k)|Ut)
e(k)new , (9)

where CMt =
(∑i v(i)new+∑j e(j)

new)!

∏k v(k)new !×∏l e(l)new !
. v(k)new and e(l)new denote the number of the kth UI widget and the lth edge

in ynew, respectively. If the computed likelihood is greater than a threshold, ynew is accepted as a
member of Ut, else ynew is regarded as a member of a new usage-phase, Ut+1.

3.5.3. Hypothesis Testing Based Detection

By computing Equation (9) on Ut, a set of likelihood values is obtained. We are able to determine
whether to accept the hypothesis that a set of parameters representing an unknown distribution for
ynew is equal to a set of parameters specifying Ut by running a likelihood ratio test,

λ =
L(Ω̂0)

L(Ω̂)
=

maxΘ∈Ω0 L(Θ)

maxΘ∈Ω L(Θ)
. (10)
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In order to compute Equation (10) in our setting, we regard the probability values in Equation (8)
as a set of parameters specifying the hypothesis. Elements in a probability distribution (Equation (8))
produced by Ut constitute Ω0. We calculate the maximum likelihood of the new screenshot yi+1, which
is observed after the screenshot in Ut (gt,i) based on the assumed model described by Ω0 (for more
details on the likelihood ratio test, refer to [29]).

4. Results and Discussions

The performance of each method was compared based on datasets from 50 commercial mobile
apps. In order to measure performance in terms of the fraction of correctly estimated changes and
the fraction of detected changes, TP (true positive), TN (true negative), FP (false positive), and
FN (false negative) were deployed. TP means a case in which the proposed method detects the
changes successfully. TN is a case where the proposed method does not notice the changes in
the same usage-phase. If the proposed method claims a change in a stream of screenshots in fact
belongs to the same usage-phase, this is considered as FP. Finally, FN is a case where the proposed
method fails to detect changes. The performance of each proposed method was quantified utilizing
precision(precision = TP

TP+FP ), recall(recall = TP
TP+FN ), and accuracy(accuracy = TP+TN

TP+FP+TN+FN ).
Precision is a measure of the ratio of correctly detected changes, and recall is the fraction of detected
changes. Accuracy measures the fraction of correct changes to estimations.

4.1. Overall Performance

Table 2 reports the overall performance of the proposed methods. In terms of precision and
accuracy, graph based methods (“graph kernel” and “graph entropy” in Table 2) and probability
distribution based methods (“KLD” and “likelihood” in Table 2) achieved better results compared to
the SIFT based method and hypothesis testing based method when τ was determined dynamically.
In terms of recall, however, the SIFT based method and the hypothesis testing based method reported
better result than graph based methods or other probability distribution based methods. The difference
in performance tells us that the SIFT based method and hypothesis testing based method were too
sensitive to changes in the observed features. Thus, they detected more changes, but incorrectly.

Table 2. Change detection performance in 50 apps.

Method TP FP TN FN Precision Recall Accuracy

(Min + Max)/2

SIFT 684 1413 9787 1388 0.326 0.330 0.789
Graph kernel 323 368 10,832 1749 0.467 0.156 0.840

Graph entropy 369 682 10,518 1703 0.351 0.178 0.820
KLD 264 428 10,772 1808 0.382 0.127 0.832

Likelihood 260 432 10,768 1812 0.376 0.125 0.831
Hypothesis 1084 5481 5719 988 0.165 0.523 0.513testing

Mean

SIFT 1031 4306 6894 1041 0.193 0.498 0.597
Graph kernel 682 1550 9650 1390 0.306 0.329 0.778

Graph entropy 953 2413 8787 1119 0.283 0.460 0.734
KLD 778 2458 8742 1294 0240 0.375 0.717

Likelihood 781 2533 8667 1,291 0.236 0.377 0.712
Hypothesis 1085 5480 5720 987 0.165 0.524 0.513testing

SIFT 706 1141 10,059 1366 0.382 0.341 0.811
Graph kernel 569 927 10,273 1503 0.380 0.275 0.817

Empirical Graph entropy 1159 3921 7279 913 0.228 0.559 0.636
threshold KLD 538 1105 10,095 1534 0.327 0.260 0.801

Likelihood 751 2214 8986 1321 0.253 0.362 0.734
Hypothesis 1085 5482 5718 987 0.165 0.524 0.513testing

For detecting changes in usage-phases, reducing the ratio of misdetection(the cases of wrongly
detecting changes in a usage-phase) is as important as increasing the ratio of the accuracy, precision,
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and recall. In order to measure performance in term of misdetection, we defined new measures of
NPrecision (negative precision, NPrecision = TN

TN+FN ) and NRecall (negative recall, NRecall = TN
TN+FP ).

Table 3 reports the performance in terms of NPrecision and NRecall. Each method reported similar
performance in terms of NPrecision, but the graph based method (“graph kernel”) and the method
focusing on the difference between two probability distributions (“KLD”) achieved better performance
than others in terms of NRecall. From Tables 2 and 3, we concluded that (1) “graph kernel” based
methods and the “KLD” based method achieved promising results compared to other methods, and
(2) dynamically adjusted thresholds were better than fixed thresholds.

Table 3. Change detection performance in 50 apps: misdetection.

Method Threshold NPrecision NRecall Threshold NPrecision NRecall

SIFT

(Min + Max)/2

0.876 0.874

Mean

0.869 0.616
Graph 0.861 0.967 0.874 0.862kernel
Graph 0.861 0.939 0.887 0.785entropy
KLD 0.856 0.962 0.871 0.781

Likelihood 0.856 0.961 0.870 0.774
Hypothesis testing 0.853 0.511 0.853 0.511

SIFT 0.880 0.898
Graph 0.872 0.917kernel
Graph Empirical 0.889 0.650entropy threshold
KLD 0.868 0.901

Likelihood 0.872 0.802
Hypothesis testing 0.853 0.511

4.2. Case Studies

Dividing a stream of screenshots into distinct usage-phases is not easy. Figure 1 provides
an example. In this example, it is possible to group Figure (a), (b), and (c) into one usage-phase
(because they represent searching) or make a group of Figure (b) and (c) as they show search results.
Because it is ambiguous to make distinct groups from such screenshots in Figure 1, we refer to these
cases as ambiguous cases and observe the performance considering ambiguous cases.

Table 4 reports the performance on datasets considering ambiguous cases. From 13,272
screenshots, seven-hundred thirty-six screenshots were designated as ambiguous cases. As expected,
the performance on the ambiguous cases (numbers in parentheses in Table 4) was poor.
The performance on datasets excluding ambiguous cases was slightly better than the reported
performance in Table 2 because screenshots corresponding to ambiguous cases amounted to only 5.5%
of the whole screenshots.

Figure 1. An example of the ambiguous division of usage-phases. (a) An initial search window. (b)
Corresponding search result. (c) The same search result with images.
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Table 4. Performance on the dataset excluding ambiguous cases (numbers in parentheses mean
performance on the dataset of ambiguous cases).

Method TP FP TN FN Precision Recall Accuracy

(Min + Max)/2

SIFT 610 1401 9643 882 0.303 0.409 0.818
(74) (12) (144) (506) (0.860) (0.128) (0.296)

Graph 208 355 10,689 1284 0.369 0.139 0.869
kernel (115) (13) (143) (465) (0.898) (0.198) (0.351)
Graph 294 672 10,372 1198 0.304 0.197 0.851

entropy (75) (10) (146) (505) (0.882) (0.129) (0.300)

KLD 190 442 10,622 1302 0.310 0.127 0.862
(74) (6) (150) (506) (0.925) (0.128) (0.304)

Likelihood 187 426 10,618 1305 0.305 0.125 0.862
(73) (6) (150) (507) (0.924) (0.126) (0.303)

Hypothesis 819 5401 5643 673 0.132 0.549 0.515
testing (265) (80) (76) (315) (0.768) (0.457) (0.463)

Mean

SIFT 905 4251 6793 587 0.176 0.607 0.614
(126) (55) (101) (454) (0.696) (0.217) (0.308)

Graph 480 1505 9539 1012 0.242 0.322 0.799
kernel (202) (45) (111) (378) (0.818) (0.348) (0.425)
Graph 774 2379 8665 718 0.245 0.519 0.753

entropy (179) (34) (122) (401) (0.840) (0.309) (0.409)

KLD 577 2409 8635 915 0.193 0.387 0.735
(202) (43) (113) (378) (0.824) (0.348) (0.428)

Likelihood 582 2485 8559 910 0.190 0.390 0.729
(200) (44) (112) (380) (0.820) (0.345) (0.424)

Hypothesis 821 5403 5641 671 0.132 0.550 0.515
testing (265) (80) (76) (315) (0.768) (0.457) (0.463)

SIFT 629 1127 9917 863 0.358 0.422 0.841
(77) (14) (142) (503) (0.846) (0.133) (0.298)

Graph 392 891 10,153 1100 0.306 0.263 0.841
kernel (177) (36) (120) (403) (0.831) (0.305) (0.404)
Graph 956 3869 7175 536 0.198 0.641 0.649

Empirical entropy (203) (52) (104) (377) (0.796) (0.350) (0.417)
threshold KLD 406 1087 9957 1086 0.272 0.272 0.827

(131) (18) (138) (449) (0.879) (0.226) (0.365)

Likelihood 549 2175 8869 943 0.202 0.368 0.751
(201) (34) (122) (379) (0.855) (0.347) (0.439)

Hypothesis 819 5399 5645 673 0.132 0.549 0.516
testing (265) (80) (76) (315) (0.768) (0.457) (0.463)

Graph based methods require multiple nodes and edges to construct a graph. If a screenshot
contains too few UI widgets (Figure 2) or the number of successfully recognized UI widgets is too small,
graph based methods are likely to produce poor performance. Table 5 reports the performance on
datasets excluding cases generating too small graphs (a graph with less than three nodes) and the
performance on datasets corresponding to too small graphs (numbers in parentheses in Table 5). From
Tables 2 and 5, we can see that the performance on datasets excluding small graphs was better than
performance on datasets considering whole screenshots. However, the improvement in performance
was not so impressive due to the small number of screenshots corresponding to small graphs (4.5% of
all screenshots).

Besides precision, recall, and accuracy, the number of estimated usage-phases gave insight into the
performance of the proposed methods. Table 6 provides the average number of estimated usage-phases
(the number of manually labeled usage-phases is provided in Table 1). The performance in Table 6
informs us that methods based on SIFT (when utilizing the “mean” threshold), graph entropy (when
utilizing the “empirical threshold”), and hypothesis testing were too sensitive.
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Figure 2. An example of screenshots generating too small graph.

Table 5. Performance on datasets capable of forming large enough graphs (numbers in parentheses
mean performance on datasets forming relatively small graphs).

Method TP FP TN FN Precision Recall Accuracy

(Min + Max)/2

SIFT 621 1404 9515 1136 0.307 0.353 0.800
(63) (9) (272) (252) (0.875) (0.200) (0.562)

Graph 254 351 10,568 1503 0.420 0.145 0.854
kernel (69) (17) (264) (246) (0.802) (0.219) (0.559)
Graph 342 661 10,258 1415 0.341 0.195 0.836

entropy (27) (21) (260) (288) (0.563) (0.086) (0.482)

KLD 207 415 10,504 1550 0.333 0.118 0.845
(57) (13) (268) (258) (0.814) (0.181) (0.545)

Likelihood 203 420 10,499 1554 0.326 0.116 0.844
(57) (12) (269) (258) (0.826) (0.181) (0.547)

Hypothesis 983 5436 5483 774 0.153 0.559 0.510
testing (101) (45) (236) (214) (0.692) (0.321) (0.565)

Mean

SIFT 907 4,220 6699 850 0.177 0.516 0.600
(124) (86) (195) (191) (0.590) (0.394) (0.535)

Graph 585 1510 9409 1172 0.279 0.333 0.788
kernel (97) (40) (241) (218) (0.708) (0.308) (0.567)
Graph 862 2385 8534 895 0.265 0.491 0.741

entropy (91) (28) (253) (224) (0.765) (0.289) (0.577)

KLD 680 2,407 8512 1077 0.220 0.387 0.730
(99) (45) (236) (216) (0.688) (0.314) (0.562)

Likelihood 684 2,484 8435 1073 0.216 0.389 0.720
(98) (45) (236) (217) (0.685) (0.311) (0.560)

Hypothesis 985 5438 5481 772 0.153 0.561 0.510
testing (101) (45) (236) (214) (0.692) (0.321) (0.565)

SIFT 640 1129 9790 1117 0.362 0.364 0.823
(66) (12) (269) (249) (0.846) (0.210) (0.562)

Graph 473 887 10,032 1284 0.348 0.269 0.829
kernel (96) (40) (241) (219) (0.706) (0.305) (0.565)
Graph 1064 3892 7027 693 0.215 0.606 0.638

Empirical entropy (95) (29) (252) (220) (0.766) (0.302) (0.582)
threshold KLD 458 1079 9840 1299 0.298 0.261 0.812

(79) (26) (255) (236) (0.752) (0.251) (0.560)

Likelihood 649 2164 8755 1108 0.231 0.369 0.742
(101) (45) (236) (214) (0.692) (0.321) (0.565)

Hypothesis 983 5434 5485 774 0.153 0.559 0.510
testing (101) (45) (236) (214) (0.692) (0.321) (0.565)
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Table 6. Average number of the estimated usage-phases.

Real Method Threshold Estimated Threshold Estimated Threshold Estimated

41.44

SIFT

Min+Max
2

41.94

Mean

106.74 36.94
Graph 13.82 44.64 26.92kernel
Graph 21.02 67.32 Empirical 101.6entropy threshold
KLD 13.84 64.62 32.84

Likelihood 13.84 66.22 59.18
Hypothesis 131.3 131.38 131.26testing

Compared to the average value of the number of the manually-labeled usage-phases (265.44),
it seemed that the SIFT based method and hypothesis testing achieved better results. However, we
should be cautious when comparing the number of detected usage-phases. SIFT and hypothesis testing
based methods detected more usage-phases than other methods, but the usage-phases detected by
these two methods contained more false positive cases.

In this research, we proposed various candidates for detecting changes in a mobile app’s usage in
an unsupervised manner. The empirical results in Tables 2 and 3 state that each method was relatively
good at avoiding misdetection, but poor at detecting changes. Graph based methods utilizing the
graph kernel and graph entropy and probability distribution based methods based on Kullback–Leibler
divergence (KLD) and the usage-phase model (the “likelihood” method) achieved promising results in
terms of accuracy. However, the performance from the perspective of precision and recall showed that
we could not confirm the superiority of any method compared to other methods.

However, our work provided valuable insights for other researchers. The first insight was the
need for a dynamically adjusted threshold. Our research confirmed that in order to detect changes,
a threshold should be adjusted dynamically (Tables 2, 4, and 5). The empirical results showed that
conventional change detecting methods based on hypothesis testing ([28,30]) were not suitable for
detecting changes in usage-phases of a mobile app. The inferior performance of the hypothesis testing
based method resulted from the lack of sufficient screenshots in each usage-phase. In our datasets,
each usage-phase consisted of 6.0 screenshots on average. Thus, conventional hypothesis testing based
methods may be unsuitable for app testing.

The second insight was the need for utilizing probability distributions resulting from screenshots.
Although a graph kernel based method achieved better results overall, graph based methods had
some deficiencies due to external causes. Firstly, current object recognition techniques are not perfect,
so there existed some UI widgets that were unrecognized or wrongly recognized. Secondly, each
screenshot from a mobile app contained a relatively small number of UI widgets. Thus, the failure of
recognition could hinder the formation of graphs.

5. Conclusions

This paper presented change detection methods based on graph entropy, graph kernel,
the Kullback–Leibler divergence, a generative model, and a hypothesis testing method. By utilizing
recent advancements in object recognition, we were able to convert the input sequence of GUI
screenshots into a sequence of graphs or probability distributions, thus constructing more robust
change detection methods compared to the current state-of-the-practice method. The proposed
methods detected changes in an unsupervised manner, not requiring training. This elimination of
training requirements was a very significant advantage compared to the current change detection
methods. Contrary to the datasets analyzed by existing change detection methods, our intended
application, mobile app testing, typically had less than 10 GUI screenshots per usage-phase; thus,
we could not obtain enough instances to train a model. In addition, the requirements of mobile app
testing did not allow time for training. Our experimental results demonstrated that the proposed
methods achieved promising results compared to the current state-of-the-practice method, but the
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result also clarified that the proposed methods should be improved before being employed for mobile
app testing.

Our experience from this research and daily usage of mobile apps told us that we could not
deny the existence of usage-phases in one app, but it was very difficult to define usage-phases in an
objective manner and that the concept of the usage-phase was very ambiguous. In our future works,
we will develop methods based on these findings. Rather than attempting to fix change-occurring
points, we will search for micro usage-phases (composed of 2~3 screenshots), then combine these
micro usage-phases into bigger clusters dynamically. Although this method is likely to be inferior to
the proposed methods in this research in terms of memory cost, the hierarchical combination of micro
usage-phases may overcome the inherent ambiguity of usage-phases. We also have plans to enhance
the proposed methods by utilizing additional features such as event generation.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial intelligence
CUSUM Cumulative sum
ELM Extreme learning model
FN False negative
FP False positive
GUI Graphical user interface
KLD Kullback–Leibler divergence
LSDD Least-squares density-difference
ML Machine learning
NPrecision Negative precision
NRecall Negative recall
OCR Optical character recognition
R-CNN Regions with convolutional neural network
SIFT Scale-invariant feature transform
TISLF Target image search based on local features
TN True negative
TP True positive
UI User interface
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