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Abstract: Cutting chatter is extremely harmful to the machining process, and it is of great significance
to eliminate chatter through analyzing the stability of the machining process. In this work, the stability
of the milling process with multiple delays is investigated. Considering the regeneration effect,
the dynamics of the milling process with variable pitch cutter is modeled as periodic coefficients
delayed differential equations (DDEs) with multiple delays. An adaptive variable-step numerical
integration method (AVSNIM) considering the effect of the helix angle is developed firstly, which can
discretize the cutting period accurately, thereby improving the calculation accuracy of the stability
limit of the milling process. The accuracy and efficiency of the AVSNIM are verified through a
benchmark milling model. Subsequently, a novel spindle speed-dependent discretization algorithm is
proposed, which is combined with the AVSNIM to further reduce the calculation time of the stability
lobes diagram (SLD). The simulation experiment results demonstrate that the proposed algorithm
can effectively reduce the calculation time.
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1. Introduction

Chatter is a self-excited vibration induced in the machining process which reduces the machining
efficiency and surface quality, accelerates the tool wear and shortens the tool durability. There have
been a lot of research on the mechanism of chatter [1–6], among which regenerative effect was usually
considered as a main inducement. Since the regenerative chatter is caused by the phase differences
between wavy surfaces left by the adjacent teeth, it can be suppressed by adjusting the pitch angle
between the adjacent teeth. The use of variable pitch cutters to improve the stability of the milling
process is built on this idea. Different from the uniform pitch cutter, when the variable pitch cutter is
used, the dynamics model of cutting vibration changes from DDEs with single delay to DDEs with
multiple delays.

The stability analysis of the milling process with multiple delays has been studied through different
methods. Altintas et al. [7] adopted the frequency domain method to analyze the milling stability
of the variable pitch cutter and presented a method to select the optimal pitch angles. Budak [8,9]
proposed an analytical design method for nonconstant pitch milling cutters to improve the stability
of the milling process and verified it through cutting experiments. The results showed that chatter
stability can be improved significantly even at slow cutting speeds by properly designing the pitch
angles. The modified semi-discretization method (SDM) was used by Sims et al. [10] to investigate
the stability of variable pitch and variable helix milling tools. Considering the tool runout and the
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pitch angle, Wan et al. [11] proposed a unified stability prediction method for a milling process
with multiple delays based on the SDM. Zhang et al. proposed an improved full-discretization
method (FDM) [12] and the variable-step numerical integration method [13] for milling chatter stability
prediction with multiple delays. Olgac and Sipahi [14] studied the stability boundary in a milling
process with variable-pitch cutters based on the cluster treatment of characteristic roots method and
presented an optimization procedure for the geometry design of variable pitch cutters. The enhanced
multistage homotopy perturbation method was presented by Compean et al. [15] to analyze the milling
stability influenced by the variable cutting edge pitch, the variable helix, and the variable rake angle.
The spectral element approach was first introduced by Khasawneh et al. to study the stability of delay
systems with single delay [16]. Later, it was generalized to time-periodic delay equations with multiple
delays [17]. Lehotzky et al. [18] generalized the spectral element method for time-periodic DDEs with
multiple delays and distributed delay and given an explicit formula for the construction of the matrix
approximation of the monodromy operator. An improved SDM was presented by Jin et al. [19,20]
to predict the stability of milling process with multiple delays. On the basis of the multifrequency
solution, Andreas et al. [21] presented a new method for the identification of the chatter stability
lobes in milling with non-uniform pitch and variable helix tools. Tao et al. [22] proposed an extended
Adams–Moulton-based method for the stability prediction of milling processes with multiple delays.

After the stability analysis is completed, the stability limits under different processing parameters
are usually displayed in one diagram, which is known as the SLD. The SLD is a powerful tool, which can
not only help to select the optimal process parameters to realize the chatter-free machining, but also
assist the geometric design of the cutting tools. A variety of methods have been proposed to improve
the accuracy or calculation efficiency of the SLD. The improved FDM was used in [12] to reduce the
calculation time. However, similar to the SDM, it was also based on the equal-step discretization
technique. In the case of low radical immersion cutting, it is necessary to reduce the time step to
maintain the accuracy. Besides, it may not be able to guarantee that all the discretization number of
the forced vibration intervals are integers in the case of multiple delays. The variable-step method
proposed in [13] can discretize the forced vibration intervals accurately, and thus the calculation result
has high accuracy, however, the effect of the helix angle is not considered in the derivation process.
Ozoegwu et al. [23] proposed a speed-dependent discretization method to improve the calculation
accuracy at lower spindle speed and save the calculation time. Li et al. [24] applied an iterative
dichotomy search algorithm to determine the stability limit of the milling process. The dichotomy
search algorithm has a high efficiency, but it is not suitable for the situation where the unstable islands
exit [25].

It has always been desirable to improve the accuracy and calculation efficiency of stability
analysis. In this work, an AVSNIM, considering the helix angle, and a novel spindle speed-dependent
discretization algorithm, are developed and combined to analyze the stability of the milling process
with multiple time delays. They are expected to obtain high accuracy and shorten the calculation time.
The rest of this paper is organized as follows: the dynamics model of the milling process with multiple
delays is outlined in Section 2. In Section 3, an AVSNIM that takes into account the helix angle is
developed and verified by a benchmark milling model. In Section 4, a novel spindle speed-dependent
discretization algorithm is proposed and combined with the AVSNIM to further reduce the calculation
time of the SLD. Finally, conclusions are derived in Section 5.

2. Milling Model with Multiple Delays

Milling vibration considering the regeneration effect is usually modeled by DDEs which can be
written as

M
..
y(t)+C

.
y(t)+Ky(t) = f(t) (1)

where M, C and K are the mass, damping and stiffness matrices respectively, y(t) is the vibration
displacements vector and f(t) is the time-varying cutting force vector. When using the variable pitch
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cutter (as described in Figure 1), the dynamics model of the milling process becomes DDEs with
multiple delays. The cutting force f(t) in Equation (1) can therefore be expressed as

f(t) =
N∑

j=1

H j(t) ·
[
y(t) − y

(
t− T j

)]
(2)

where N is the number of teeth, T j is the time delay of the j-th tooth, y(t) and y
(
t− T j

)
are the

vibration displacements at the current moment and the previous tooth-passing period of the j-th tooth
separately. H j(t) is the time-varying cutting force coefficient matrix of the j-th tooth, which satisfies
H j(t) = H j(t + T), where T is the spindle period. H j(t) can be written as

H j(t) =
[

hxx, j(t) hxy, j(t)
hyx, j(t) hyy, j(t)

]
(3)

where 

hxx, j(t) =
zu , j(t)∫

zl, j(t)

(
−Kt cosϕ j(t, z) sinϕ j(t, z) −Kn sinϕ j(t, z) sinϕ j(t, z)

)
· dz

hxy, j(t) =
zu, j(t)∫

zl, j(t)

(
−Kt cosϕ j(t, z) cosϕ j(t, z) −Kn sinϕ j(t, z) cosϕ j(t, z)

)
· dz

hyx, j(t) =
zu, j(t)∫

zl, j(t)

(
+Kt sinϕ j(t, z) sinϕ j(t, z) −Kn cosϕ j(t, z) sinϕ j(t, z)

)
· dz

hyy, j(t) =
zu , j(t)∫

zl , j(t)

(
+Kt sinϕ j(t, z) cosϕ j(t, z) −Kn cosϕ j(t, z) cosϕ j(t, z)

)
· dz

(4)

where Kt and Kn are the tangential and radial cutting force coefficients, respectively. zu, j(t) and zl, j(t)
are the upper and lower bounds of the cutting edge participating in cutting on the j-th tooth as shown
in Figure 1c, respectively. ϕ j(t, z) is the angular position of the differential element of cutting edge
with a height z on the j-th tooth, which can be expressed as

ϕ j(t, z) = ϕ j(0, 0) +
2πΩ

60
· t−φlag(z) (5)

where ϕ j(0, 0) is the angular position of the lowest differential element on the j-th tooth at the initial
time, Ω is the spindle speed, φlag(z) is the lag angle of the differential element at height z as shown in
Figure 1d, and φlag(z) = (2 tan β/D) · z, where D is the diameter of the cutter, β is the helix angle.

Equation (1) can be converted to the state-space form as

.
x(t) = Ax(t) +

N∑
j=1

B j(t)
[
x(t) − x

(
t− T j

)]
(6)

where A is a constant matrix, representing the time-invariant characteristics of the milling system,
while B j is a periodic matrix satisfying B j(t) = B j(t + T), which describes the periodic characteristics
of the system. x is known as the state vector

A =

[
0 I

−M−1K −M−1C

]
, B j(t) =

[
0 0

M−1
·H j(t) 0

]
, x(t) =

[
y(t)
.
y(t)

]
where I is an identity matrix with the same size as M.

Obviously, Equation (6) describes a linear periodic system. According to the Floquet theory,
the stability of a linear periodic system depends on the spectral radius of the Floquet transition matrix:
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if the spectral radius is less than one, then the system is asymptotically stable; if it is larger than one,
the system is unstable; if the spectral radius equals to one, then the system is in a critical stable state.
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Figure 1. Schematic of two-degree of freedom (DOF) milling model with variable pitch milling cutter, 
(a) schematic of milling model; (b) z-direction view; (c) distribution of the cutter teeth; (d) the lag 
angle and tooth sweep angle. 
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N

j j
j

t t t t t T
=

 = + − − x Ax B x x  (6)

where A  is a constant matrix, representing the time-invariant characteristics of the milling system, 
while jB  is a periodic matrix satisfying ( ) ( )j jt t T= +B B , which describes the periodic 
characteristics of the system. x  is known as the state vector 

1 1− −

 
=  − − 

0 I
A

M K M C
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t

t−

 
=  ⋅ 

0 0
B
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t
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x

y
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Figure 1. Schematic of two-degree of freedom (DOF) milling model with variable pitch milling cutter,
(a) schematic of milling model; (b) z-direction view; (c) distribution of the cutter teeth; (d) the lag angle
and tooth sweep angle.

3. AVSNIM Considering the Helix Angle

The variable-step technique can discrete the milling period accurately. Considering the effect of
helix angle, an AVSNIM for the stability analysis of milling process with multiple delays is proposed
in this section.

3.1. Algorithm Description

For the milling process with multiple delays, the cutters may experience several free and forced
vibrations in one spindle period. When the hysteresis effect caused by the helix angle is considered,
the free vibration and forced vibration intervals will vary with the axial depth of the cut.

In order to achieve accurate discretization, the first thing is to determine the free vibration and
forced vibration interval of the cutter in one spindle period T. Let φ j be the pitch angle between the
(j − 1)-th and the j-th tooth, w be the axial depth of cut, ϕst and ϕex be the tool start angle and exit
angle, respectively. The angle swept by each tooth from cutting into the workpiece to cutting out of the
workpiece can be expressed as

φs(w) = ϕex −ϕst + φlag(w) (7)
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Then, the free vibration angle interval before the j-th tooth cutting into the workpiece φ f r, j can be
expressed as

φ f r, j(w) = φ j −φs(w) (8)

In general, the distribution of free vibration and forced vibration in one spindle period can be
divided into two categories: one where, at most, one tooth is in cutting during one spindle period;
the other where more than one tooth is in cutting simultaneously at a certain time in one spindle period.
If φ f r, j(w) > 0 holds for all j ( j = 1, 2, · · · , N), it corresponds to the first case. There are N free vibration
intervals and N forced vibration intervals distributed alternately in one spindle period and each forced
vibration angle interval φ f o, j(w) equals to φs(w), as shown in Figure 2a. Else if φ f r, j(w) ≤ 0, it means
that the j-th tooth has already cut into the workpiece before the (j − 1)-th tooth cuts out of the workpiece,
which belongs to the second case. Under these circumstances, the continuous forced vibration angle
intervals are combined as one forced vibration angle interval, as shown in Figure 2b,c. The length of
this continuous forced vibration angle interval φ f oc(w) can be calculated as

φ f oc(w) = φ f o, j−1(w) + φ j (9)

According to the above analysis, one spindle period is finally divided into Nd (Nd ≤ N) free
vibration and Nd forced vibration intervals that are alternately distributed. For the convenience of
description, we mark one pair of adjacent free vibration and forced vibration intervals as one segment,
hence one whole spindle period is divided into Nd segments, as described in Figure 2c.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 23 
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Figure 2. The distribution of free vibration and forced vibration angle interval in one spindle period,
(a) at most one tooth is in cutting; (b) more than one tooth is in cutting simultaneously; (c) combine the
continuous forced vibration angle interval.

Once the distribution of free vibration and forced vibration intervals of the cutter is obtained,
the spindle period can be discretized according to the following rules. In the free vibration interval,
the vibration displacement of the cutter can be solved analytically, so there is no need to discretize.
For the forced vibration interval, the following strategies are adopted for discretization.

Firstly, the sum of all forced vibration angle intervals of the cutter is calculated as

φ f o(w) = 2π−
Nd∑
i=1

φ f r,i(w) (10)
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Then, φ f o(w) is discretized into mp intervals; each interval has a size of ∆φp(w), and

∆φp(w) =
φ f o(w)

mp
(11)

where mp is the pre-set discretization parameter.
Next, the discrete number mi(w) and angle step ∆φp,i(w) of each forced vibration angle interval

φ f o,i(w) can be obtained by the following formula mi(w) = round
(
φ f o,i(w)

∆φp(w)

)
∆φp,i(w) =

φ f o,i(w)

mi(w)

(12)

where “round (*)” means rounds “*” towards the nearest integer, i = 1, 2, · · · , Nd.
The discrete time step can be easily converted from the discrete angle step through the

following formula  ∆t f r,i(w) =
60·∆φ f r,i(w)

2πΩ

∆tp,i(w) =
60·∆φp,i(w)

2πΩ

(13)

To date, we have got all the discretization information in one spindle period, including the
number of discrete intervals and the length of each interval. The number of discrete intervals is

m(w) =
Nd∑
i=1

[1 + mi(w)] and therefore the index of the discrete time nodes in one spindle period are{
1, 2, · · · , m(w), m(w) + 1

}
. Let n(i, k) be the index of the k-th node of the i-th segment in the discrete

time nodes of one spindle period, where k = 1, 2, · · · , 1 +mi(w) + 1, n(i, k) ∈
{
1, 2, · · · , m(w), m(w) + 1

}
and can be expressed as

n(i, k) =


k(i = 1)
i−1∑
r=1

[1 + mr(w)] + k(1 < i ≤ Nd)
(14)

According to the theory of differential equation, the state vector at the k-th time node of the i-th
segment x

(
tn(i,k)

)
can be deduced as

x
(
tn(i,k)

)
=



x1(i = 1, k = 1) Initial Value
eA·∆t f r,i · x

(
tn(i,k−1)

)
(k = 2) Free Vibration

eA·∆tp,i · x
(
tn(i,k−1)

)
+

tn(i,k)∫
tn(i,k−1)

eA(tn(i,k)−s)
·

N∑
j=1

B j(s)
[
x(s) − x

(
s− T j

)]
ds

(2 < k ≤ mi(w) + 2) Forced Vibration

(15)

Exchanging the order of integration and summation in Equation (15), and using the trapezoidal
rule to approximate the integral term [26], the state vector x

(
tn(i,k)

)
at forced vibration time nodes can

be expressed as

x
(
tn(i,k)

)
= eA·∆tp,ix

(
tn(i,k−1)

)
+

N∑
j=1

∆tp,i
2

 eA·∆tp,i ·B j
(
tn(i,k−1)

)[
x
(
tn(i,k−1)

)
− x

(
tn(i,k−1) − T j

)]
+B j

(
tn(i,k)

)[
x
(
tn(i,k)

)
− x

(
tn(i,k) − T j

)]  (16)

To get the Floquet transition matrix, the delay terms x
(
tn(i,k−1) − T j

)
and x

(
tn(i,k) − T j

)
should be

interpolated on two adjacent spindle periods, as shown in Figure 3.
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Let n
(
i, k, T j

)
be the index of the time node on two adjacent spindle periods and satisfy the

following relationship  tn(i,k−1,T j)
≤ tn(i,k−1) − T j < tn(i,k−1,T j)+1

tn(i,k,T j)
≤ tn(i,k) − T j < tn(i,k,T j)+1

(17)

where n
(
i, k− 1, T j

)
, n

(
i, k, T j

)
∈

{
1−m(w), 2−m(w), · · · ,−1, 0, 1, · · · , m(w)

}
, then x

(
tn(i,k−1) − T j

)
and

x
(
tn(i,k) − T j

)
can be expressed as the following unified form x

(
tn(i,k−1) − T j

)
= cτl

i,k−1 · x
(
tn(i,k−1,T j)

)
+ cτr

i,k−1 · x
(
tn(i,k−1,T j)+1

)
x
(
tn(i,k) − T j

)
= cτl

i,k · x
(
tn(i,k,T j)

)
+ cτr

i,k · x
(
tn(i,k,T j)+1

) (18)

If time intervals
[
tn(i,k−1,T j)

, tn(i,k−1,T j)+1

]
and

[
tn(i,k,T j)

, tn(i,k,T j)+1

]
are in the free vibration interval,

the interpolation coefficients in Equation (18) can be expressed as cτl
i,k−1 = e

A·(tn(i,k−1)−T j−tn(i,k−1,Tj)
)
, cτr

i,k−1 = 0

cτl
i,k = e

A·(tn(i,k)−T j−tn(i,k,Tj)
)
, cτr

i,k = 0
(19)

Else, if time intervals
[
tn(i,k−1,T j)

, tn(i,k−1,T j)+1

]
and

[
tn(i,k,T j)

, tn(i,k,T j)+1

]
are in the forced vibration

intervals, the interpolation coefficients can be obtained through Lagrange interpolation and expressed as
cτl

i,k−1 =
tn(i,k−1,Tj)+1−(tn(i,k−1)−T j)

tn(i,k−1,Tj)+1−tn(i,k−1,Tj)
, cτr

i,k−1 =
(tn(i,k−1)−T j)−tn(i,k−1,Tj)

tn(i,k−1,Tj)+1−tn(i,k−1,Tj)

cτl
i,k =

tn(i,k,Tj)+1−(tn(i,k)−T j)
tn(i,k,Tj)+1−tn(i,k,Tj)

, cτr
i,k =

(tn(i,k)−T j)−tn(i,k,Tj)

tn(i,k,Tj)+1−tn(i,k,Tj)

(20)

Substituting Equation (18) into Equation (16), and rewriting it as follows

Fn(i,k−1) · x
(
tn(i,k−1)

)
+ Fn(i,k)x

(
tn(i,k)

)
=

N∑
j=1

F j
n(i,k−1,T j)

· x
(
tn(i,k−1,T j)

)
+

N∑
j=1

F j
n(i,k−1,T j)+1

· x
(
tn(i,k−1,T j)+1

)
+

N∑
j=1

F j
n(i,k,T j)

· x
(
tn(i,k,T j)

)
+

N∑
j=1

F j
n(i,k,T j)+1

· x
(
tn(i,k,T j)+1

) (21)

Based on Equations (15) and (21), the discrete dynamical map in matrix form on two adjacent
spindle periods can be obtained as follows.

P ·


x(t1)

...
x
(
tm(w)+1

)
 =

N∑
j=1

(
Q1, j + Q2, j

)
·


x(t1 − T)

...
x
(
tm(w)+1 − T

)
+

N∑
j=1

(
R1, j + R2, j

)
·


x(t1)

...
x
(
tm(w)+1

)
 (22)
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Then, the Floquet transition matrix Φ can be expressed as

Φ =

P−
N∑

j=1

(
R1 j + R2 j

)
−1

·

N∑
j=1

(
Q1 j + Q2 j

)
(23)

where the superscript ‘−1’ indicate the operation of matrix inversion.
For details of the coefficients of the state vectors in Equation (21) and matrices P, R1 j, R2 j, Q1 j

and Q2 j in Equations (22) and (23), please refer to Appendix A. The stability of milling process can be
determined by the spectral radius of the Floquet transition matrix Φ according to the Floquet theory.

It can be observed from the derivation process that the proposed method can adaptively complete
the discrete of the spindle period and get the time step of each discrete interval only by simply setting
a discretization parameter in advance. It is worth noting that under some machining parameters,
the cutter will not experience free vibration, and then the variable-step method degenerates to the
equal-step algorithm. Meanwhile, although the trapezoid rule is used to approximate the integral term
in the algorithm derivation, other numerical methods, such as the SBM [27], the SSM [28], etc. can also
be adopted to deal with Equation (15).

3.2. Algorithm Verification and Results Discussion

For convenience of comparison and verification, the milling model used in [7,13,22] is employed
for numerical simulation in this section. A 19.05 mm diameter variable pitch cutter with four flutes
is adopted. The helix angle is 30◦ and the pitch angles are 70◦–110◦—70◦–110◦. The detailed values
of the modal parameters and cutting force coefficients are as follows: the modal masses in x and y
directions are mtx = 1.4986 kg and mty = 1.199 kg, respectively; the natural angular frequencies in x
and y directions are ωnx = 563.55× 2π rad/s and ωny = 516.27× 2π rad/s, respectively; the damping
ratios in x and y directions are ζx = 0.0558 and ζy = 0.025, respectively; the cutting force coefficients are
Kt = 6.79× 108 N/m2 and Kn = 2.56× 108 N/m2. The SLDs constructed with the AVSNIM proposed
in Section 3.1 are provided to compare with those obtained with the 1st-SDM presented in [29] and
equal-step numerical integration method (ESNIM) presented in [30]. The SLD is constructed over a
200 × 100-sized grid, the machining condition is down-milling and the simulation parameters are set
as follows: the spindle speed Ω ranges from 2500 to 12,500 rpm and the axial depth of cut w ranges
from 0 to 10 mm. The simulation is performed in Matlab® (The MathWorks Inc., Natick, MA, USA.
Version: R2017b) on a laptop computer (Manufacturer: Hewlett-Packard, Made in China. Prosessor:
Intel® CoreTM i7-6700HQ CPU, @2.60 GHz, Installed Memory (RAM): 8.00 GB, System type: Windows
10 home 64-bit Operating system.). The results are shown in Figures 4–6, in the SLD, the reference
stability limits demoed by the red line are obtained by the 1st-SDM with the discretization number
mp = 600.
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Figure 4. Stability lobes diagram (SLD) of the two-DOF milling model with radial immersion 0.3 and
mp = 60, (a) SLD obtained by the 1st-SDM; (b) SLD obtained by the equal-step numerical integration
method (ESNIM); (c) SLD obtained by the adaptive variable-step numerical integration method
(AVSNIM).
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Figure 5. SLD of the two-DOF milling model with radial immersion 0.2 and mp = 60, (a) SLD obtained
by the 1st-SDM; (b) SLD obtained by the ESNIM; (c) SLD obtained by the AVSNIM.
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Figure 6. SLD of the two-DOF milling model with radial immersion 0.1 and mp = 50, (a) SLD obtained
by the 1st-SDM; (b) SLD obtained by the ESNIM; (c) SLD obtained by the AVSNIM.

The radial immersion in Figures 4–6 is selected as 0.3, 0.2 and 0.1, respectively. It is found
that, compared with the other two methods, the differences between the simulation results of the
AVSNIM and the reference values are smaller under the same computational parameters. Consequently,
the computational accuracy of the proposed method is higher than those of the other two methods.
For quantitative comparison, the mean relative error (MRE) of the 1st-SDM, ESNIM and AVSNIM is
provided. The MRE is defined as

MRE =
1
ns

ns∑
i=1

∣∣∣∣∣∣wa,i −wre f ,i

wre f ,i

∣∣∣∣∣∣ (24)

where ns is the total discrete points of the spindle speed in the SLD, |∗|means the absolute value of
“*”, wa,i is the approximate value of the stability limit obtained by the numerical algorithm at the i-th
discrete spindle speed, wre f ,i is the reference value of the stability limit at the i-th discrete spindle speed.

Figure 7 displays the MRE of stability limits obtained by 1st-SDM, ESNIM and AVSNIM under
the same simulation parameters that were used in Figures 4–6. It can be seen from Figure 7 that the
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stability limit obtained by the AVSNIM has the minimum MRE under each radial immersion. At the
same time, it can be seen that the smaller the radial immersion is, the more obvious the advantage of
the variable step size algorithm is. This shows that the proposed algorithm is particularly suitable for
the stability analysis of milling process under the small radial depth of cut. This is because, under the
same discretization parameter, the equal-step methods (the 1st-SDM and the ESNIM) need to discrete
the whole spindle period, while the variable-step method only needs to discrete the forced vibration
interval of the whole spindle period, so the time step is smaller than that of the other two methods.
In numerical computation, a smaller time step usually means higher computational accuracy.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 23 

stability limit obtained by the AVSNIM has the minimum MRE under each radial immersion. At the 
same time, it can be seen that the smaller the radial immersion is, the more obvious the advantage of 
the variable step size algorithm is. This shows that the proposed algorithm is particularly suitable for 
the stability analysis of milling process under the small radial depth of cut. This is because, under the 
same discretization parameter, the equal-step methods (the 1st-SDM and the ESNIM) need to discrete 
the whole spindle period, while the variable-step method only needs to discrete the forced vibration 
interval of the whole spindle period, so the time step is smaller than that of the other two methods. 
In numerical computation, a smaller time step usually means higher computational accuracy.  

 
Figure 7. Mean relative error of stability limit obtained by 1st-SDM, ESNIM and AVSNIM. 

The computation efficiency of the AVSNIM is also studied and compared with that of the 1st-
SDM and ESNIM. Theoretically, when obtaining the Floquet transition matrix the 1st-SDM needs to 
perform a large number of matrix multiplication operations. The amount of calculation will increase 
sharply with the increase in the approximate parameter pm , especially when pm  is large. In 
addition, the matrix exponent needs to be calculated at each spindle speed and axial depth of cutting. 
While for the ESNIM and AVSNIM, the transition matrix is obtained by matrix element assignment 
operations, the amount of computation is very small. It should be noted that there is a difference 
between the AVSNIM and the ESNIM: the AVSNIM needs to calculate the variable time step under 
each spindle speed and axial depth of cut, while the ESNIM does not need to do so. This usually 
extends the computation time of the AVSNIM. Thus, we can conclude that the computation efficiency 
of the AVSNIM is slightly lower than that of the ESNIM but much higher than that of the 1st-SDM. 
The computation efficiency of the AVSNIM is validated with the two-DOF milling model. The 
calculation time of each method is listed in Table 1. As outlined in Table 1, the AVSNIM can save up 
to 75% of the calculation time compared with the 1st-SDM. 

Table 1. Calculation time required for the 1st-SDM, ESNIM, and VSNIM (unit: s). 

100pm =  
Radial Immersion 

0.3 0.2 0.1 
1st-SDM 1423.85 1409.86 1385.09 
ESNIM 331.22 322.28 303.50 

AVSNIM 381.37 364.53 341.17 

According to the above analysis, it can be concluded that the AVSNIM developed in this Section 
has high accuracy and good calculation efficiency. 

4. AVSNIM with Spindle Speed-Dependent Discretization Algorithm 

Figure 7. Mean relative error of stability limit obtained by 1st-SDM, ESNIM and AVSNIM.

The computation efficiency of the AVSNIM is also studied and compared with that of the 1st-SDM
and ESNIM. Theoretically, when obtaining the Floquet transition matrix the 1st-SDM needs to perform
a large number of matrix multiplication operations. The amount of calculation will increase sharply
with the increase in the approximate parameter mp, especially when mp is large. In addition, the matrix
exponent needs to be calculated at each spindle speed and axial depth of cutting. While for the ESNIM
and AVSNIM, the transition matrix is obtained by matrix element assignment operations, the amount
of computation is very small. It should be noted that there is a difference between the AVSNIM and
the ESNIM: the AVSNIM needs to calculate the variable time step under each spindle speed and axial
depth of cut, while the ESNIM does not need to do so. This usually extends the computation time of
the AVSNIM. Thus, we can conclude that the computation efficiency of the AVSNIM is slightly lower
than that of the ESNIM but much higher than that of the 1st-SDM. The computation efficiency of the
AVSNIM is validated with the two-DOF milling model. The calculation time of each method is listed
in Table 1. As outlined in Table 1, the AVSNIM can save up to 75% of the calculation time compared
with the 1st-SDM.

Table 1. Calculation time required for the 1st-SDM, ESNIM, and VSNIM (unit: s).

mp = 100
Radial Immersion

0.3 0.2 0.1

1st-SDM 1423.85 1409.86 1385.09
ESNIM 331.22 322.28 303.50

AVSNIM 381.37 364.53 341.17

According to the above analysis, it can be concluded that the AVSNIM developed in this section
has high accuracy and good calculation efficiency.
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4. AVSNIM with Spindle Speed-Dependent Discretization Algorithm

The AVSNIM can provide accurate stability limits, the accuracy of which depends on the pre-set
discretization parameter mp. A large discretization parameter usually brings a small time step and high
calculation accuracy, and at the same time, increases the calculation time. In most of the research work,
the SLD is obtained under constant discretization parameter. A constant discretization parameter
will lead to different time steps and calculation accuracies under different spindle speeds. Generally,
the accuracy of the stability limits in the region with low spindle speed is not as high as that in the
region with a high spindle speed in the SLD. This implies that if the discretization parameter can be
properly selected at each different spindle speed (usually, a large discretization parameter is used
in the low-speed region and a small discretization parameter is used in the high-speed region), it is
possible to improve the calculation accuracy of stability limit at a low speed and save the calculation
time. Inspired by this, a spindle speed-dependent discretization algorithm is proposed to obtain the
appropriate discretization parameters, and used in conjunction with the AVSNIM. The process of the
algorithm is listed as follows:

1. Sample the spindle speed range to get a series of discrete speed nodes Ωks (Ωks = Ωstart : ∆Ω : Ωend),
where ∆Ω is the sampling interval;

2. For each discrete speed nodes Ωks , the stability limit wre f ,ks is obtained under a large reference
discretization parameter mp through the dichotomy search algorithm adopted in [24] and used as
the reference stability limit;

3. Starting from a small discretization parameter md, the approximate stability limit wa,ks(md) is
obtained through the dichotomy search algorithm. The relative error between wa,ks(md) and
wre f ,ks is calculated by the following formula

erks(md) =

∣∣∣∣∣∣wa,ks(md) −wre f ,ks

wre f ,ks

∣∣∣∣∣∣ (25)

4. Compare erks(md) with the pre-set relative error limit ε, if erks(md) > ε, set md = md + ∆m and
return to step 3, until erks(md) ≤ ε is satisfied. Then, record the current md and let m(ks) = md;

5. Repeat steps 2 to 4 for all the spindle speed sampling nodes to get the discretization parameter
m(ks) at each speed node Ωks ;

6. Interpolate the discretization parameter m(ks) at the spindle speed sampling points Ωks to obtain
the approximate discretization parameter ma(k) at all the spindle speed nodes on the SLD. Finally,
ma(k) are rounded to obtain the final discretization parameter m f (k) using the following formula

m f (k) = ceil(ma(k)) (26)

where “ceil (*)” means rounds “*” towards the nearest integer greater than or equal to “*”;
7. The stability limit is calculated using the AVSNIM and the corresponding discretization parameter

m f (k) on all the spindle speed nodes, then the SLD is obtained.

In the above algorithm, parameters ∆Ω, ε and ∆m are variable input parameters. The value of
∆Ω determines the density of spindle speed sampling points. The smaller the value of ∆Ω, the denser
the sampling nodes, and the higher the interpolation accuracy of discretization parameters. The value
of ε sets a relative error. The smaller the relative error is, the closer the stability limit is to the reference
value. ∆m is the increment step of the discretization parameter, the value of which determines the
speed of the discretization parameter approaching the reference discretization parameter. If ∆m is
too small, the number of iterations will increase. On the contrary, if ∆m is too large, a discretization
parameter larger than the required value may be obtained, thereby increasing the final calculation load.
The values of these three parameters can be selected according to the actual engineering requirements.
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Numerical simulation is performed to verify the above algorithm; two milling models are studied
in this section.

The first milling model is the same as used in Section 3.2. The simulation parameters are: down
milling, ε = 1× e−3, ∆m = 2, mp = 200, the initial md = 40, the spindle speed Ω ranges from 2500 to
12,500 rpm and the axial depth of cut w ranges from 0 to 15 mm.

Firstly, the time step under constant discretization parameter and the discretization parameters
based on the spindle-speed-dependent algorithm are simulated. The results are shown in Figure 8.
Figure 8a,b describes the time step under the equal-step method and the variable-step method,
respectively. It can be found that the time step in the equal-step algorithm is only related to the
spindle speed, while in the variable-step method, due to the effect of the helix angle, the step size
depends on both the spindle speed and the axial depth of cut. Figure 8c shows the discretization
parameters obtained through the spindle-speed-dependent algorithm. It can be seen that under
the given relative error ε, the discretization parameters obtained by the spindle-speed-dependent
algorithm are smaller than the reference discretization parameter, which means that the time required
to obtain the SLD will be effectively reduced. At the same time, we can see that the value of the
discretization parameter is higher in the low-spindle-speed region than that in the high-spindle-speed
region in general, which proves the previous conclusion that, in the low-speed region, in order to
maintain the accuracy of the numerical calculation, larger discretization parameters are required.
However, the discretization parameters do not monotonically decrease with the increase in spindle
speed, but there are some fluctuations. There may be two incentives for these fluctuations. One is that
they may be caused by numerical calculation, because the bisection method used in this article may
randomly converge to the upper or lower boundary of the relative error limit, which usually causes
some numerical fluctuations. The second is that they may be caused by the different sensitivity of the
eigenvalues of Floquet transition matrix to the processing parameters (mainly the spindle speed here).

Subsequently, the SLD is provided to verify the effectiveness of the proposed spindle-
speed-dependent discretization algorithm. Figure 9 shows the SLD obtained through the algorithm
proposed above; the SLD is constructed over a 200 × 150-sized grid; the radial immersion in Figure 9a–c
is selected as 1.0, 0.6 and 0.1, respectively. The reference stability limits demoed by the red line are
obtained by the AVSNIM with a large reference discretization parameter. From Figure 9a–c, we can see
that the stability limits obtained by the proposed algorithm are very close to the reference stability
limits. This shows that the proposed algorithm is reliable in terms of calculation accuracy. Meanwhile,
since the radial immersion in Figure 9 ranges from 1.0 to 0.1, this indicates that the proposed algorithm
is applicable to all kinds of radial immersion.

Finally, the calculation time required for the AVSNIM with spindle speed-dependent discretization
parameters is listed in Table 2 to compare with the AVSNIM with constant discretization parameter.
As outlined in Table 2, the AVSNIM with spindle-speed-dependent discretization parameters can
significantly reduce the calculation time.
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Table 2. Calculation time required for the AVSNIM with constant discretization parameter and
spindle-speed-dependent discretization parameters (unit: s).

Radial Immersion AVSNIM with Constant
Discretization Parameter

AVSNIM with
Spindle-Speed-Dependent
Discretization Parameters

1.0 1857.21 857.57
0.6 1784.73 1079.14
0.1 1073.48 492.15
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Another milling model to verify the proposed algorithm is from the literature [31]. In this model,
a 12.75 mm diameter cutter with one flute is adopted, the helix angle of which is 30◦. The detailed
values of the modal parameters and cutting force coefficients are as follows: the modal masses in
x and y directions are mx = my = 0.23 kg; the modal damping coefficients in x and y directions
are cx = cy = 15.73 Ns/m; the modal stiffness in x and y directions are kx = ky = 8.4 × 105 N/m;
the cutting force coefficients are Kt = 5.36 × 108 N/m2 and Kn = 1.87 × 108 N/m2. The simulation
parameters are: down milling, ε = 1× e−3, ∆m = 2, mp = 60, the initial md = 10, the spindle speed Ω
ranges from 5000 to 30,000 rpm and the axial depth of cut w ranges from 0 to 25 mm. The simulation
result is shown in Figure 10. The SLD in Figure 10 is constructed over a 500 × 250-sized grid; the radial
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immersion is selected as 0.02. The reference stability limits demoed by the red line are obtained by the
AVSNIM with a constant discretization parameter m = 100.
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As shown in Figure 10, the stability boundary is very complex, in which there are some islands.
The stability limits obtained by the proposed algorithm are consistent with the reference stability limits
and are the same as those obtained in the literature [31]. This shows that the algorithm proposed in
this work is still effective when the stability boundary is very complex. It is worth noting that there is
only a single time delay in this milling model, which is the same as the milling process with a uniform
pitch milling cutter. This proves that the proposed algorithm is also suitable for the milling process
with a uniform pitch milling cutter.

Based on the above analysis, we can conclude that the proposed algorithm can not only maintain
the calculation accuracy but also effectively reduce the calculation time, and hence can meet the needs
in the engineering field well.

5. Conclusions

This work focuses on the stability analysis of milling process with multiple delays. An AVSNIM
considering the helix angle is developed. According to the geometric characteristics of the cutter
(pitch helix angle, etc.) and machining parameters (spindle speed and axial cutting depth), one
spindle period is divided into several segments; each segment contains a free vibration time interval
and a forced vibration time interval. Then, the discretization of one spindle period is completed
adaptively according to the pre-set discretization parameter. Numerical integration algorithm and
Lagrange interpolation method are used to obtain the vibration state vector on each time node, and the
Floquet transition matrix between two adjacent spindle periods is constructed accordingly. Finally,
the stability of milling process can be analyzed on the basis of the Floquet theory. Numerical verification
is conducted with the two-DOF benchmark milling model, the results of which validate that the
proposed method has superior accuracy. Subsequently, a novel spindle-speed-dependent discretization
algorithm is proposed to further improve the calculation efficiency of the SLD. Numerical simulation
shows that this method can effectively shorten the calculation time of the SLD. The advantages of the
methods proposed in this work are as follows:



Appl. Sci. 2020, 10, 3646 18 of 21

1. The AVSNIM can adaptively complete the discretization of a cutting period according to
the machining parameters and the tool geometry. This is convenient for the subsequent
numerical calculation;

2. The spindle-speed-dependent discretization algorithm can get the appropriate discretization
parameters flexibly according to the spindle speed and accuracy requirements, so as to effectively
reduce the time required for stability analysis;

3. The methods presented in this work are not limited by the geometry of the cutter, and can be
extended to the stability analysis of the milling process with uniform pitch cutters and variable
helix angle cutters.
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Appendix A

The detailed expression of the coefficients of each state vector in Equation (21) are shown as follows.

Fn(i,k−1) = −eA·∆tp,i

I + N∑
j=1

∆tp,i
2 ·B j

(
tn(i,k−1)

)
Fn(i,k) = I−

N∑
j=1

∆tp,i
2 B j

(
tn(i,k)

)
F j

n(i,k−1,T j)
= −

∆tp,i
2 eA·∆tp,i ·B j

(
tn(i,k−1)

)
cτl

i,k−1

F j
n(i,k−1,T j)+1

= −
∆tp,i

2 eA·∆tp,i ·B j
(
tn(i,k−1)

)
cτr

i,k−1

F j
n(i,k,T j)

= −
∆tp,i

2 B j
(
tn(i,k)

)
cτl

i,k

F j
n(i,k,T j)+1

= −
∆tp,i

2 B j
(
tn(i,k)

)
cτr

i,k

The definition of matrices P, R1 j, R2 j, Q1 j and Q2 j in Equations (22) and (23) are

P =



I
−eA·∆t f r,1 I

Fn(1,2) Fn(1,3)
. . .

Fn(1,m1+1) Fn(1,m1+2)

−eA·∆t f r,2 I
Fn(2,2) Fn(2,3)

. . .
Fn(i,k−1) Fn(i,k)

. . .

−eA·∆t f r,Nd I
Fn(Nd,2) Fn(Nd,3)

. . .
Fn(Nd,mNd+1) Fn(Nd,mNd+2)
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Q1, j =



I
2N

0 · · · 0
· · · F j

n(1,2,T j)
F j

n(1,2,T j)+1
. . . . . .

F j
n(1,m1+1,T j)

F j
n(1,m1+1,T j)+1

0 · · · 0
F j

n(2,2,T j)
F j

n(2,2,T j)+1
. . . . . .

F j
n(i,k−1,T j)

...



R1, j =



0 · · · 0
0 · · · 0
...

...
...

F j
n(i,k−1,T j)+1

. . . . . .

F j
n(i,mi+1,T j)

F j
n(i,mi+1,T j)+1

. . . . . .
0 · · · 0

F j
n(Nd,2,T j)

F j
n(Nd,2,T j)+1

. . . . . .

0 F j
n(Nd,mNd+1,T j)

F j
n(Nd,mNd+1,T j)+1

· · ·



Q2, j =



I
2N

0 · · · 0
· · · F j

n(1,3,T j)
F j

n(1,3,T j)+1
. . . . . .

F j
n(1,m1+2,T j)

F j
n(1,m1+2,T j)+1

0 · · · 0
F j

n(2,3,T j)
F j

n(2,3,T j)+1
. . . . . .

F j
n(i,k,T j)

...
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R2, j =



0 · · · 0
0 · · · 0
...

...
...

F j
n(i,k,T j)+1

. . . . . .

F j
n(i,mi+2,T j)

F j
n(i,mi+2,T j)+1

. . . . . .
0 · · · 0

F j
n(Nd,3,T j)

F j
n(Nd,3,T j)+1

. . . . . .

0 F j
n(Nd,mNd+2,T j)

F j
n(Nd,mNd+2,T j)+1

· · ·
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