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Featured Application: Leak mechanics in aerospace applications.

Abstract: With the explosive growth of space debris, collisions among space debris and spacecrafts
seem to be inevitable, which may greatly threaten the structure of on-orbit spacecrafts as well as
astronauts’ safety. It is of crucial importance to locate the leak source and evaluate the corresponding
damage quickly and accurately to ensure the safety of astronauts and spacecraft equipment. It is
widely accepted that acoustic emission method can be used to detect on-orbit leak for space station;
however, accurate prediction of vacuum leak noise in space station is difficult as jet and jet noise in
vacuum environments are different from those in terrestrial environment. Therefore, this paper tries
to investigate sound generations of vacuum leak jet by numerically analyzing dynamics of unsteady
vacuum jet flow. Specifically, numerical simulation based on realizable k-ε model is adopted to study
the aerodynamic properties and the aeroacoustic characteristics. Results show that RANS turbulent
model can capture the pressure fluctuation with high computation efficiency and acceptable accuracy.
Secondly, leak from 1 atm to vacuum forms a supersonic flow with Mach number ranging from 2
to 3, accompanied by obvious gradients of steady density, pressure, and temperature. However,
the terrestrial leak from 2 atm to 1 atm forms subsonic jet flow with gradually varying gradients
of density, pressure, and temperature. Thirdly, obvious reflections of pressure perturbations at the
surface, with the mean free path of air molecule being 0.6 mm, can be found and form cavity-like
acoustic resonance. Such resonant mechanism contributes to harmonic acoustic properties of the
vacuum jet noises besides the broadband turbulent mixing noises.
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1. Introduction

On April 19, 1971, the world’s first space station, Salyut 1, was successfully launched into
orbit, marking the arrival of space age. In the following decades, the U.S. Skylab, the Mir Space
Station, and the International Space Station (ISS) were successively built and continuously developed,
becoming the base of deep space exploration. However, continuously growing space debris increases
collision probability among space debris and spacecrafts, which has caused widespread international
concerns [1]. It was reported that many leak accidents occurred on the ISS [2], leading to an urgent
demand of on-orbit leak detection. The differential pressure method [3] has been widely used on
the pressure vessels of spacecrafts to detect the occurrence of leak. However, it cannot give the leak
location. In order to locate the leak-induced noise source, on-orbit sensing technology based on
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acoustic emission has drawn widespread attention due to its low resource occupancy, little structural
constraints and real-time monitoring [4]. In order to verify the effectiveness of the acoustic emission
technology, the European Space Agency (ESA) conducted verification tests on the experimental cabin
of the ISS [5]. Furthermore, a handheld ultrasonic leak detector developed by National Aeronautics
and Space Administration (NASA) has been successfully applied to leak detection in orbit [6].

The current acoustic emission leak detection method is to detect and analyze the 40 KHz ultrasonic
signals generated by the vortex structures downstream the leak-induced jet [7]. However, because the
leak jet enters the vacuum directly, the acoustic emission signal propagating backwards into the pressure
vessels is very weak. Therefore, the focus of the acoustic emission research is mainly concentrated
on the characteristics of the structure-borne ultrasonic signals in the pressure vessel skin and the
improvement of signal manipulations. Schafer and Janovsky [8] reported propagation characteristics of
stress waves in a thin aluminum plate and honeycomb sandwich panel, and then used a sensor network
with positioning algorithm to locate high-speed impact sources. Reusser et al. [9] studied propagation
and reflection mechanisms of low-order Lamb waves in stiffener components and constructed a
generalized impedance model, which had good agreement with numerical simulation results.

The above researches focused on the propagation mechanism of the leak noise in the cabin skin to
provide theoretical supports for leak location. However, neglecting generation mechanisms of the leak
noise makes it unable to evaluate and classify the leak source. Physically speaking, the spacecraft’s leak
noise is a flow-induced noise excited by jet’s instability waves. In the research of vacuum jet, Draper and
Hill [10] proposed an approximate analytical method to predict the external jet density field in vacuum,
with the results agreeing well with the traditional characteristic method. Shuvalov et al. [11] imposed
two approximate models to improve the accuracy of solving the parameter distribution, such as density,
Mach number. Kannenberg and Boyd [12] applied direct simulation of Monte Carlo (DSMC) method
for plume impingement and obtained good agreements with experimental data. There are few studies
on jet noise in vacuum environment, but the research on jet noise in conventional environment on
the ground is more mature. For subsonic jet noise, Lighthill [13] is a pioneer of aeroacoustic who
proposed the theory of acoustic analogy and V8 law to predict jet noise, which inspires many improved
models [14–17]. Tam and Golebiowski [18] proposed a similarity spectra method. Furthermore,
Tam and Chen [19] reported two components of the similarity spectra, one from fine-scale turbulence
and the other from large-scale turbulence. For supersonic jet noise, Tam [20] summarized three noise
generation mechanisms, namely turbulent mixing noise caused by unstable turbulence, broadband
shock noise associated with the quasi-periodic shock cell structure, and screech tones excited by the
feedback loop.

Although there are many theories on jet in a vacuum environment, they mainly focus on the
effects of plumes generated by thrusters on spacecrafts, such as force, torque, heat, etc. However,
leak jet dynamics is rarely studied. Secondly, there are many studies on the conventional jet noise on
the ground, and various forecasting models are also mature. But due to significant changes of density,
pressure, and temperature in vacuum environment, the terrestrial jet noise model cannot accurately
predict the characteristics of the leak jet noise in vacuum environment. Abedi’s group [21,22] conducted
a leak detection test on the ISS and the measured spectrum showed obvious harmonic wave series,
which cannot be explained by screen tone theory in supersonic jet noise. Furthermore, the turbulence
mixing noise in vacuum environment has not yet been fully understood. Therefore, this paper
concentrates on the numerical simulation of a specific leak condition, preliminarily revealing the
aerodynamic properties and mechanism of the noise propagation in vacuum environment. Specifically,
Section 2 introduces the setup configurations of numerical simulation meanwhile Section 3 presents
corresponding analysis of the simulation results. Finally, Section 4 draws the conclusion of the
whole paper.
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2. Numerical Simulation Setup

The main pressure vessel of the space station cabin is a cylindrical shell structure with a thickness
of 2.5 mm. As leak holes formed by the impact of tiny space debris are generally at the millimeter
level, the computation model is simplified to an axisymmetric model with a leak hole of 2.5 mm in
length and 2 mm, 1 mm, 0.5 mm in diameter, respectively. The pressure inlet, defined as the 1 atm
atmospheric environment is in front of the leak hole, while the pressure outlet, defined as vacuum
environment, is after the leak hole. The specific numerical region is depicted in Figure 1 and the
commercial CFD software Fluent 19 Ansys Inc., which is located at Southpointe 2600 Ansys Drive
Canonsburg, PA 15317, USA, is used in this paper for calculation.
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Figure 1. Schematic diagram of the computational model.

As the ambient pressure on the orbit of the space station is in the order of 10−7~10−4 Pa, the pressure
outlet should be set very low to mimic the actual working conditions. However, extremely low setting of
outlet pressure imposes high requirements on computational convergence. Besides, the Navier–Stokes
(N–S) equations are restricted to describe continuous flow, with limited descriptions of rarefied flow.
To fully describe the vacuum jet flow, CFD-DSMC (Computational Fluid Dynamic-Direct Simulation
of Monte Carlo) method is widely used. Roughly speaking, the CFD calculation is firstly proceeded to
calculate the continuous region and capture the boundary surface between continuous and rarefied
region through Knudsen number, denoted by Kn. Then, the captured boundary surface is used to
initiate the plume field calculation based on DSMC method.

In the numerical calculation, this paper concentrates on the CFD calculation as the acoustic
pressure perturbation is mostly related to the continuous fields. To get the convergence, two different
configurations of output pressure with 1 Pa and 10 Pa are conducted, where the convergence of steady
velocity, pressure, density and temperature is depicted in Figure 2. The results show the difference
of aerodynamic properties in continuous region between the two configurations are so minor that
they are almost negligible. In other words, under the condition that the back pressure is sufficiently
small, the specific value of the back pressure has little effect on the computation accuracy in continuous
region. As such, the pressure outlet is set to 10 Pa to improve the computational convergence while the
pressure inlet is set to 1 atm to simulate actual pressure condition in the space station cabin.

The temperature in the area in front of the leak hole is uniformly set to 300 K to simulate real
thermal condition inside the spacecraft cabin. However, the temperature in orbit is greatly affected by
solar radiation so that the temperature range outside the cabin is exceptionally large. In low earth orbit
where most spacecrafts work, the temperature in the sun light area can reach above 120 degrees Celsius,
while the temperature in the shadow area will quickly drop to below minus 100 degrees Celsius [23].
Therefore, the effect of temperature cannot be neglected. As such, the temperature in the area behind
the leak hole is set to 173 K, 300 K and 393 K respectively. In order to explain the dynamic properties
and aeroacoustic characteristics, jet in atmospheric environment under the same computational model
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It is obvious in Figure 2 that the vacuum leak jet is a supersonic flow with a strong density gradient,
thus the gas compressibility cannot be neglected. As such, the ideal gas state equation is used in this
paper to model the density characteristic of compressible gas, satisfying:

ρ =
M
<

p
T

(1)

where ρ is the density, p is the absolute pressure, T is the static temperature, M is the average molecular
weight of air, and< is the universal gas constant (taken as 8.31 J ·mol−1

·K−1).
As the temperature changes are obvious in the vacuum leak, the fluid viscosity change should be

considered. In numerical calculation, the Sutherland equation is introduced to model the viscosity:

µ = µ0

(
T
T0

) 3
2 T0 + S

T + S
(2)

where µ is the viscosity coefficient, µ0 is the reference viscosity (taken as 1.716 × 10−5 kg ·m−1
· s−1),

T is the static temperature, T0 is the reference temperature (taken as 273.11 K), and S is the Sutherland
constant (taken as 110.56 K).
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In terms of numerical calculation, the turbulent characteristics of the jet must be taken into
consideration to fully simulate the acoustic characteristics. There are usually three method to calculate
a turbulence: Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), and Reynolds
Averaged Navier–Stokes (RANS). DNS can obtain the vortex structure on almost every scale by
directly solving the N-S equations. But it requires grid number reach Re9/4, which greatly increases
the amount of computation. LES uses the N-S equations to directly solve large-scale eddies and
imposes the effect of fine-scale vortices on instantaneous motion through various theoretical models.
RANS has a weaker resolution of fluctuation terms than DNS and LES, but it has been widely used
in the engineering community because of its reliable calculation accuracy, low computation resource
requirement, and widely applicable Reynolds number. Therefore, after comprehensive consideration of
computation resource and computation precision, a RANS method is used in this paper. Many scholars
have proposed a large number of turbulence models to enclose the equations, among which k-ε
model has been widely used. Khavaran [24] applied a k-ε model to the computation of supersonic
jet mixing noise and successfully predicted the noise source strength. Li X. D. [25] used a modified
two-equation standard k-ε model to study a circular jet and not only the predicted shock cell structure
and radial density profiles, but also the amplitudes of the flapping and helical modes coincide with the
experiments very well. Compared with the standard k-ε model [26], the Realizable k-ε model [27] has
higher computation accuracy on jet simulation. As such, the Realizable k-ε model is adopted in this
paper with the transport equation being:

∂
∂t
(ρk) +

∂
∂x j

(
ρku j

)
=

∂
∂x j

[(
µ+

µt

σk

)
∂k
∂x j

]
+ Gk + Gb − ρε−YM + SK, (3)

∂
∂t
(ρε) +

∂
∂x j

(
ρεu j

)
=

∂
∂x j

[(
µ+

µt

σε

)
∂ε
∂x j

]
+ ρC1Sε− ρC2

ε2

k +
√
υε

+ C1ε
ε
k

C3εGb + Sε (4)

It is shown by Thies [28] that the realizable k-ε model has higher prediction accuracy in solving
supersonic turbulent jets where the Mach number is not very large if C2ε = 2.02, σk = 0.324, σε = 0.377,
Pr = 0.422, S =

√
2Si jSi j, η = Sk/ε and C1 = max[0.43, η/η+ 5].

In terms of non-reflecting boundary conditions in aeroacoustic numerical simulation, the common
method is to apply appropriate mathematical processing on the boundary conditions to eliminate the
reflection on the boundary [29,30]. However, it requires a lot of theoretical derivation and programming.
A mixed structed–unstructed grid is created in this paper, as shown in Figure 3, where the grid size
in the structed area should be small enough to adequately resolve the jet structure and pressure
fluctuation meanwhile the grid size in the unstructed area should grow uniformly along the radial
direction and be large enough near the inlet and outlet areas. The reason of the grid setup in this paper
is to use the numerical viscosity brought about by the change of grid size to dissipate the pressure
fluctuation completely before reaching the boundary to avoid the effect of boundary reflection.
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3. Discussion

3.1. Comparison of Vacuum and Atmospheric Environment

Whether the external environment is vacuum or atmospheric determines the formation of flow
field and the mechanism of perturbation propagation. In this section, a 2 mm leak hole model under
different environment is calculated, meanwhile the initial temperature is uniformly set to 300 K in the
entire computational domain.

3.1.1. Dynamic Properties

Figure 4 shows the velocity contour of steady leak jet under vacuum environment and atmospheric
environment respectively, where the leak hole diameter is 2 mm. For vacuum environment, the gas will
expand rapidly through the leak hole into vacuum environment outside and form a supersonic region
with Mach 2 to 3. Furthermore, the diameter of the jet potential core is about 25 times the diameter
of the leak hole. For atmospheric environment, the jet is a subsonic jet and no obvious expansion is
observed. The jet’s diameter is roughly consistent with the diameter of the leak hole.
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Figure 4. Velocity contour of different external environment. (a) vacuum environment; (b)
atmospheric environment.

In a normal atmospheric environment, a supersonic jet will form a series of expansion fans at the
exit of the nozzle, which will be reflected when reaching the jet boundary. Then a series of compression
waves is formed and constitutes a Mach disk. When the compression waves travel downstream to the
jet boundary, the occurrence of reflection induces new expansion fans. Repeated circulation forms a
quasi-periodic shock cell structure, as shown in Figure 5. On a micro level, the generation, propagation
and reflection of wave systems are essentially due to the collisions of a large number of molecules.
When a certain point in the flow field is disturbed, the energy state of surrounding molecules and
the probability of collision between molecules will be changed. Energy transfer will occur between
molecules once the collision happens. As the disturbance propagates to the surrounding environment,
series of directional wave systems are formed.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 15 

transfer will occur between molecules once the collision happens. As the disturbance propagates to 
the surrounding environment, series of directional wave systems are formed. 

 
Figure 5. Shock cell structure and mixing layer in a supersonic jet. 

However, in vacuum environment, the extremely low molecular number density makes the jet 
quickly transform from a continuous flow to a rarefied flow once the gas enters the vacuum 
environment. When the expansion fan reaches the jet boundary, it cannot reflect or generate 
compression wave system because the local molecular number density is far lower than that in the 
normal atmospheric environment. Therefore, there is no shock cell structure generated in the vacuum 
environment. 

Figure 6 shows the density and pressure distribution of steady leak jet under vacuum 
environment and atmospheric environment, respectively. It can be seen that the density in vacuum 
environment shows a shape of droplets, which is in high agreement with the approximate analytical 
solution of Draper and Hill [10]. Besides, there is a large density gradient in a small area near the leak 
hole exit, which satisfies the tendency that the closer to the exit center, the larger the density gradient. 
The density drops rapidly from 0.59 kg/m3 to 0.33 kg/m3 at a distance of 1 mm downstream from the 
leak hole exit center. As a contract, the change of the density in conventional atmospheric 
environment is relatively gentle and no strong gradient is observed. The density only decreases from 
1.45 kg/m3 to 1.44 kg/m3 at a distance of 1 mm downstream from the leak hole exit center. The pressure 
in vacuum environment is similar to the density contour, showing a regular droplet shape. A large 
pressure gradient is also observed in a small area near the leak hole exit with a rapid drop of about 
38,000Pa as the expansion fan travels 5 mm downstream. Nevertheless, the pressure change in 
conventional environment is relatively smooth. 

  
(a) (b) 

Figure 6. Density contour with pressure contour map of different external environment. (a) vacuum 
environment; (b) atmospheric environment. 

3.1.2. Aeroacoustic Characteristics 

Different external space conditions determine completely different acoustic characteristics. As 
shown in Figure 7, it is obvious that two wave series travel in opposite directions in vacuum 
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However, in vacuum environment, the extremely low molecular number density makes the jet
quickly transform from a continuous flow to a rarefied flow once the gas enters the vacuum environment.
When the expansion fan reaches the jet boundary, it cannot reflect or generate compression wave
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system because the local molecular number density is far lower than that in the normal atmospheric
environment. Therefore, there is no shock cell structure generated in the vacuum environment.

Figure 6 shows the density and pressure distribution of steady leak jet under vacuum environment
and atmospheric environment, respectively. It can be seen that the density in vacuum environment
shows a shape of droplets, which is in high agreement with the approximate analytical solution of
Draper and Hill [10]. Besides, there is a large density gradient in a small area near the leak hole exit,
which satisfies the tendency that the closer to the exit center, the larger the density gradient. The density
drops rapidly from 0.59 kg/m3 to 0.33 kg/m3 at a distance of 1 mm downstream from the leak hole exit
center. As a contract, the change of the density in conventional atmospheric environment is relatively
gentle and no strong gradient is observed. The density only decreases from 1.45 kg/m3 to 1.44 kg/m3 at
a distance of 1 mm downstream from the leak hole exit center. The pressure in vacuum environment
is similar to the density contour, showing a regular droplet shape. A large pressure gradient is also
observed in a small area near the leak hole exit with a rapid drop of about 38,000Pa as the expansion
fan travels 5 mm downstream. Nevertheless, the pressure change in conventional environment is
relatively smooth.
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Figure 6. Density contour with pressure contour map of different external environment. (a) vacuum
environment; (b) atmospheric environment.

3.1.2. Aeroacoustic Characteristics

Different external space conditions determine completely different acoustic characteristics.
As shown in Figure 7, it is obvious that two wave series travel in opposite directions in vacuum
environment and cannot reach far field. Why such disturbance propagation is formed in vacuum
environment will be discussed in the next section. Nevertheless, in a subsonic jet under atmospheric
environment, the compressibility of the gas is weak, which leads to the absences of shock cell structure
as well as changes in the characteristic impedance inside and outside the shear layer. So, a directional
quadrupole source is formed at the leak hole exit, which continuously radiates to the far field.
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3.2. Effect of Leak Hole Size

Leak hole size also has great influence on the dynamic properties and aeroacoustic characteristics.
In this section, to explain how leak hole size effect the flow field and why such disturbance
is formed, a 1 mm leak hole model and a 0.5 mm leak hole model under the same vacuum
environment are calculated, meanwhile the initial temperature is uniformly set to 300 K in the
entire computational domain.

3.2.1. Dynamic Properties

Figure 8 shows the velocity contour of steady jet formed by the leak hole of 1 mm and 0.5 mm in
diameter, respectively. The diameter of the jet potential core is also about 25 times the leak hole diameter.
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Figure 9 shows the density and pressure distribution. In addition to the similar droplet-like shape
and large gradient, as the leak hole diameter decreases, the density decreases proportionally to the
leak hole diameter in radial direction but shows a flattening trend in the axial direction. The pressure
distribution is also similar to the 2 mm leak hole model simulated above and the proportional relation
in radial direction and flattening trend in axil direction discovered in the density contour are also
observed in the pressure contour map.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 15 
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3.2.2. Aeroacoustic Characteristics

The essence of sound waves is the transmission phenomenon of pressure disturbances in the
medium. Whether a sound wave can propagate from the disturbance source to the far field depends on
the existence of a medium. As such, mechanisms of the generation and propagation of supersonic jet
noise in atmospheric environment are quite different from those in vacuum environment. In atmospheric
environment, the instability waves travel downstream extracting energy from the potential core and
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making the amplitude grow rapidly. When it interacts with the shock cell structure, strong reflected
waves will be generated and travel upstream. The consistent characteristic impedance makes it possible
for most energy of the reflected waves to penetrate the shear layer and reach the leak hole lip which is
susceptible to external disturbance due to the very thin shear layer. Therefore, new instability wave is
excited, travelling downstream and a complete feedback loop is formed, leading to the excitation of
screech tones [20].

However, in vacuum environment, the extremely low molecular number density makes the
characteristic impedance inside and outside the shear layer very different. So, the instability waves
cannot penetrate the shear layer to reach far field, but be reflected upstream along the shear layer and
new instability wave is excited at the leak hole lip, thereby forming the feedback loop. The reflection
path of pressure fluctuation forms an approximate cavity resonance structure, which is different from
the conventional cavity resonance. On the other hand, obvious density, pressure, and temperature
gradients existing in vacuum leak jet make the mechanism of sound generation very complicated.
Furthermore, the acoustic impedance change also complicates the pressure fluctuation reflection path.

Figure 10 shows the pressure fluctuation contour of different leak hole diameter. It can be seen
obviously that for a vacuum leak jet shown in Figures 7a and 10, as the leak hole diameter decreases,
both forward waves and backward waves get weaker and weaker. However, there is a certain boundary
where a clear reflection phenomenon occurs and the reflected wave feeds back along this boundary.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 
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Knudsen number, Kn, which is a dimensionless parameter representing the flow rarefaction,
can be used to analyze the vacuum jet. Knudsen number is defined by Kn = λ/L, where λ is mean
free path of air molecules and L is the characteristic length. Theoretically, λ is calculated by:

λ =
k0T
√

2πd2p
(5)

where k0 is Boltzmann constant (k0 = 1.38 × 10−23) and d is the average diameter of air molecules
(d = 3.74× 10−10 m). According to the value of Kn, the flow can be divided into four types, namely,
Kn ≤ 0.01 for continuous flow, 0.01 < Kn ≤ 0.1 for slip flow, 0.1 < Kn ≤ 10 for transition flow and Kn > 10
for molecular flow. Continuous flow and slip flow still satisfy the continuity hypothesis and can still
be calculated using the Navier-Stokes (N-S) equation, while the rarefied effect must be considered
when computing transition flow and molecular flow. Choosing leak hole diameter as the characteristic
length, Kn contour is shown in Figure 11.



Appl. Sci. 2020, 10, 3640 10 of 14
Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Kn  contour with λ  contour map of different leak hole diameter (The red line marked 
in the figure represents =0.6mmλ  and the dotted line is an imaginary line to fix the 
discontinuity.). (a) 2 mm; (b) 1 mm; (c) 0.5 mm. 

Because of the vacuum environment, the sound wave energy cannot be transmitted to the far 
field. Part of the energy is transmitted to the plume, which is dissipated as the density decreases. Part 
of the energy is reflected upstream along the acoustic cavity wall (shear layer) and stimulates new 
instability waves near the leak hole lip area, and then generates multiple resonance modes. Abedi’s 
group [21,22] conducted a leak-induced jet noise experiment on the ISS and found an obvious 
resonance phenomenon and harmonic characteristics in the spectrums, which still cannot be 
explained by any terrestrial jet noise theories. The appearance of the resonance phenomenon confirms 
that there is indeed a cavity-like structure in the vacuum jet. Furthermore, the limitation of the cavity 
makes more disturbance waves at different frequencies reflected upstream along the mixing layer. It 
is bound to excite multiple discrete tones at different frequencies, presenting harmonic characteristics 

Figure 11. Kn contour with λ contour map of different leak hole diameter (The red line marked in the
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It can be seen obviously that there is a good agreement between the reflection boundary and
Kn, where Kn = 0.3 for 2 mm leak hole, Kn = 0.6 for 1 mm leak hole and Kn = 1.2 for 0.5 mm leak
hole. Although Kn may seem slightly larger than the criterion to distinguish the continuous flow and
rarefied flow, where Kn = 0.1, the computational results in this paper is still believed to be reliable.
Because characteristic length has a significant influence on Kn. For example, the diameter of the nozzle



Appl. Sci. 2020, 10, 3640 11 of 14

throat is often chosen as the characteristic length when computing the plume field generated by a
Laval nozzle using the CFD-DSMC method. The leak hole in this paper is cylindrical, so the range of
Kn can be appropriately relaxed. Due to the existence of a supersonic region, a silent zone is formed,
and the reflected waves cannot propagate across the whole flow field, but propagate upstream clingy
to the shear layer. Besides, it is not difficult to find that there is a proportional relationship between the
Kn criterion and the leak hole diameter. So when only λ is considered, the criterion can be normalized
to λ = 0.6 mm, as shown in Figure 11. Hence, the λ criterion seems to be more suitable than the Kn
criterion to judge the boundary of the acoustic cavity. Although λ = 0.6 mm may not define the cavity
wall integrally because of the discontinuity of λ = 0.6 mm, it is apparent that the reflection is intense
as long as λ = 0.6 mm exists. The reflected waves within the λ criterion cause resonance phenomenon,
partly forming a typical acoustic cavity resonance problem.

Because of the vacuum environment, the sound wave energy cannot be transmitted to the far
field. Part of the energy is transmitted to the plume, which is dissipated as the density decreases.
Part of the energy is reflected upstream along the acoustic cavity wall (shear layer) and stimulates new
instability waves near the leak hole lip area, and then generates multiple resonance modes. Abedi’s
group [21,22] conducted a leak-induced jet noise experiment on the ISS and found an obvious resonance
phenomenon and harmonic characteristics in the spectrums, which still cannot be explained by any
terrestrial jet noise theories. The appearance of the resonance phenomenon confirms that there is
indeed a cavity-like structure in the vacuum jet. Furthermore, the limitation of the cavity makes more
disturbance waves at different frequencies reflected upstream along the mixing layer. It is bound
to excite multiple discrete tones at different frequencies, presenting harmonic characteristics in the
spectrums. However, current work can only explain qualitatively why such spectrums under real leak
conditions are formed. Further work is still needed to predict precisely when the resonance frequency
occurs and how strong the resonance can be.

3.3. Effect of External Thermal Condition

Spacecrafts endure drastic thermal cycles in orbit, resulting in a large temperature range in the
outer space. To study whether the λ criterion is still applicable to the real thermal condition in orbit,
another two temperature, which is 173 K and 393 K, using 1 mm leak hole model is calculated. Together
with 300 K using 1 mm leak model calculated in last section, three examples are analyzed in this section,
basically covering the whole temperature range.

3.3.1. Dynamic Properties

The information of downstream cannot travel backwardly to the upstream for a supersonic jet,
so the main potential core remains fairly consistent no matter what the outer temperature is, as shown
in Figures 8a and 12. However, the subsonic region peripheral to the potential core can still extracting
energy from outer thermal condition. As the temperature decreases, the whole flow area also shrinks.
High consistence is also observed in density and pressure distribution of different external temperature,
as shown in Figures 9a and 13.
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3.3.2. Aeroacoustic Characteristics

Figure 14 shows the pressure fluctuation contour of different external temperature. It is obvious
that the external temperature does not change the fluctuation propagation as significantly as the leak
hole diameter. The opposing fluctuation waves still propagate at approximately the same position
with approximately the same intensity.
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By analyzing the Kn distribution and λ distribution shown in Figure 15, it can be seen that although
changes in external temperature brings about noteworthy changes in Kn distribution, the boundary
defined by λ = 0.6 mm remains high similarity, that is, the acoustic cavity is not affected by external
temperature, and then accounting for the applicability of λ criterion in real on-orbit condition.
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4. Conclusions

The realizable k-ε model is adopted in this paper to numerically simulate the aerodynamic
properties and aeroacoustic characteristics of a leak-induced jet with different external environment,
different leak hole diameter and different external thermal condition. Numerical results show that:

(1) On the space station, the leak gas will expand into outer vacuum space rapidly and form a
supersonic jet with a Mach number of 2 to 3, the diameter of the jet potential core being about 25 times
the diameter of the leak hole. Although there are large velocity, density, pressure, and temperature
gradients, no typical shock cell structure is observed. In contract, conventional terrestrial leak jet under
the same pressure difference of 1 atm is still subsonic and no obvious expansion can be seen.

(2) The jet noise in vacuum environment shows a phenomenon of acoustic cavity reflection.
Compared with widely used Kn criterion in vacuum plume dynamics, the λ criterion seems more
appropriate to define the acoustic cavity wall. Within the acoustic cavity which is judged byλ = 0.6 mm,
the reflected waves reflect upstream along the acoustic cavity wall, exciting multiple resonance harmonic
modes. Interestingly, the λ criterion is universally suitable for different leak hole diameter and external
temperature, which may confront in the on-orbit applications. In addition, it is not difficult to find
that the source of vacuum leak jet noise is mainly composed of turbulent mixing broadband noise and
resonance harmonic noise.

(3) Although the RANS method’s weaker resolution of the fluctuation terms makes it unable
to accurately describe the turbulent mixing broadband noise, it still has a high resolution of the
jet dynamic properties and the time-averaged characteristics of pressure disturbance propagation.
Furthermore, the computation resource requirement is relatively small. Therefore, RANS method can
effectively analyze the characteristics of harmonic noise caused by resonance.
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